Centre of Excellence in MEMS and Micro-fluidics
Rajalakshmi Engineering College

CEMM - REC
Rajalakshmi Engineering College
Rajalakshmi Nagar,
Thandalam, Chennai—602105
Phone: +91-44-37181044
Fax: +91-44-37181113
E-mail: head.cemm@rajalakshmi.edu.in
http://www.rajalakshmi.org
About Us

About Rajalakshmi Engineering College:

Rajalakshmi Engineering College (REC) is one of the leading ISO 9001-2000 certified and NAAC and NBA accredited engineering colleges established under self-financing scheme in 1997. The college has been growing from strength to strength in the last 12 years and moving ahead to become a Centre of Excellence in Engineering, Management Education, Research and Development. The college is located in a serene atmosphere amidst many multinational companies in Thandalam, about 25 km from Chennai on the Bangalore National Highway (NH4), providing the right industrial ambience for the budding engineers. The institution currently offers 10 UG programs, 8 PG programs and 3 Research programs. For more information, please visit www.rajalakshmi.org

Centre of Excellence for MEMS & Microfluidics (CEMM):

Centre of Excellence for MEMS & Microfluidics (CEMM) at REC motivates the research activity in the field of MEMS and Micro-fluidics from design to fabrication of prototypes. The main objective of the center is to design and fabricate successful devices using non-silicon substrates and low-cost process flow suitable for mass production. The Center has the laboratory facilities such as National MEMS Design Centre, Electronics Wet lab, UV Exposure room, Characterization lab and Thin Film Deposition Lab. Recently, this center is augmented with Clean Room facilities of type ISO 6 and ISO 7. We designed and fabricated several micro devices such as Micro Tweezers, MEMS Gyroscope, Micro Heater, Tri-axes Accelerometer, Digital Microfluidics etc. under NPMASS and INUP Programs. We fabricate polymer microfluidic devices using soft lithography technique. We are carrying out sponsored research projects under various funding agencies such as DST, DRDO, AICTE and UGC. We also collaborate with Industries and National Research Laboratories.
Patents Applied:
1. Microfluidic Capacitive Sensors
2. Planar Micro Heater Design for Uniform Surface Temperature
3. MEMS Microphone using Polyimide Membrane

Funded Projects:
1. Fabrication of low cost MEMS microfluidic devices using metal embossing technology on glass for lab on chip applications [Funded by DST] - 124 Lacs - Three Years (2015-2018) - On going
5. Fabrication of Polymer micro molds for MEMS Biosensor using soft lithography techniques. [Funded by DRDO] - 21.686 Lacs -Two Years (2014-2016) - Completed
6. Fabrication of MEMS devices with Thin Film technology [under Internal Funding] - 11.3 Lacs -One Year (2014 -2015) - Completed
7. Fabrication of Super Capacitors Using Conducting Polymers For Automobiles [Funded by AICTE] - 9.5 Lacs -Two Years (2010 -2012) - Completed

Recent Journal Publications:

and more
Micro Fabrication Facilities

Clean Room Facilities
Clean Room ISO 6 Clean Room ISO 7

List of Instruments available:
- Mask Aligner
- UV Exposure System
- DC & RF Sputtering System
- Electroplating work station
- Oxidation Furnace
- Programmable Spin coater
- Dry Film Laminator System
- Thermal Evaporation System
- Thermal Compression System
- Oxygen Plasma System
Characterization Facilities

List of Instruments available:

- HD Optical Microscope
- Fluorescence Spectrophotometer
- Electro Chemical Workstation
- Agilent LCR Meter
- Data Acquisition/Switch Unit
- Precision Source/Measure Unit
- Hioki LCR Meter
- TSE Programmable Microfluidics Syringe Pump
- High Precision Weighing Balance
- Oxygen Plasma System
A National MEMS Design Centre (NMDC) at our institute has been established as a centralized facility, under National Program on Micro and Smart Systems (NPMASS), Govt. of India for the benefit of users from the region. REC motivates the research activity in the field of MEMS by proper utilization of the facilities provided by NPMASS from design to fabrication of prototype MEMS products and specific field applications. REC will also facilitate external researchers from other interested institutes (academic or National Labs subject to individual software licensing conditions) to use the design tools.

INVESTIGATORS:
- Dr. L. Sujatha, Prof/ECE
- Dr. R. Sundar, Prof/ECE
- Dr. Natteri M. Sudarsanan, Prof/Mech
- Mr. V.S. Selvakumar, Asso.Prof/ECE
- Mrs. Suganthi, Asso.Prof/ECE

MEMS CAD TOOLS:
- Coventorware — 1 License
- Intellisuite — 2 Licenses
- Tanner EDA Tool — 1 License
- MEMS +2.0 — 1 License
- Comsol Multiphysics — 30 Class kit
- NISA — 1 License license & one research License
MEMS Devices fabricated under Community Chip Fabrication Program (NPMASS)

NMDC–REC is very active in submitting successful design files for fabrication to Community Chip Fabrication Program, sponsored by NPMASS Program. We have fabricated Silicon Micro Tweezers, Micro Heater, MEMS Gyroscope, Digital Microfluidic device and MEMS Tri-axes Accelerometer under this program.

Electro Thermally actuated Silicon Micro Tweezers: The design and simulation of Electro-thermally actuated silicon microtweezers using SOI-MUMPS process flow was done at NMDC-REC. The devices were fabricated by SOI-MUMPS foundry at MEMSCAP Inc. through NPMASS. The displacement of each arm is observed to be 24 \(\mu m \) for the applied voltage of 10 V. The response time of the device is less than 5 ms and the maximum power dissipation is 110 mW.

MEMS Gyroscope: The design and simulation of MEMS Gyroscope using POLY-MUMPS process flow was done at NMDC-REC. The devices were fabricated by POLY-MUMPS foundry at MEMSCAP Inc. through NPMASS. Characterization of the devices were carried out at CeNSE, IISc, Bangalore. Figures on left and right sides show the SEM picture and the modes of vibration on the fabricated device.

Journal paper submitted to *J.Micro/Nanolith. MEMS MOEMS*

Microheater: The design and simulation of Microheater using POLY-MUMPS process flow was done at NMDC-REC. The devices were fabricated by POLY-MUMPS foundry at MEMSCAP Inc. through NPMASS. Characterization of the devices were carried out at CeNSE, IISc, Bangalore. Figures on left and right sides show the SEM picture and the simulated results respectively.

Manuscript under preparation.

Tri-axes Accelerometer: The design and simulation of Tri-axes Accelerometer using SOI-MUMPS process flow was done at NMDC-REC. The devices were fabricated by SOI-MUMPS foundry at MEMSCAP Inc. through NPMASS. Characterization of the devices have to be carried out at CeNSE, IISc, Bangalore. Figures on left and right sides show the SEM picture and the simulated results respectively.

Presented at ICMEMSS 2014.

Digital Microfluidics: The design for digital microfluidic device by electro wetting on dielectric (EWOD) was done at NMDC-REC. The devices were fabricated at C-MET, Pune using Low Temperature Co-fired Ceramic (LTCC) Technology. Wires were soldered to contact points on the bottom electrode array and terminated in a 10-pin IDE socket. A conducting wire clipped to the hardened silver paste on the ITO sheet provides electrical connection to the ITO top electrode.

Presented at ICMEMSS 2014.
CENTRE OF EXCELLENCE IN MEMS & MICRO-FLUIDICS
RAJALAKSHMI ENGINEERING COLLEGE
CHENNAI - 602105

FACILITIES
- Clean Rooms
- Semiconductor Wet Lab
- Thin Film Deposition
- UV exposure system
- Electro-plating bath
- High Resolution Microscope
- Prog. Syringe Pumps

FABRICATED DEVICES
- Accelerometer
- Gyroscope
- Micro Tweezers
- Micro Reactor
- Digital Micro-fluidics
- Micro Mixers

ACTIVITIES
- Sponsored Research Projects
- Consultancy Projects
- Training Programs

CONTACT
Dr. L. Sujatha,
Head, Centre of Excellence in MEMS & Micro-fluidics,
Rajalakshmi Engineering College, Chennai – 602105
E-mail: sujatha.l@rajalakshmi.edu.in;
Phone: 044-3718 1044