
RAJALAKSHMI ENGINEERING COLLEGE – GE19141 – PROGRAMMING USING C

1

RAJALAKSHMI ENGINEERING COLLEGE (AUTONOMOUS)

THANDALAM, CHENNAI – 602105.

GE19141

PROGRAMMING USING C

 UNIT 1: GENERAL PROBLEM SOLVING CONCEPTS 9

Computer – components of a computer system-Algorithm, and Flowchart for problem solving with

Sequential Logic Structure, Decisions and Loops.

INTRODUCTION

The term computer is derived from the word compute. The word compute means to calculate. A

computer is an electronic machine that accepts data from the user, processes the data by performing

calculations and operations on it, and generates the desired output results. Computer performs both

simple and complex operations, with speed and accuracy.

Basic functions of computer are

accepts data Input

processes data Processing

produces output Output

stores results Storage

Input (Data):

Input is the raw data entered into a computer from the input devices. It is the collection of letters,

numbers, images etc.

Process:

Process is the operation on data as per given instruction. It is totally internal process of the computer

system.

Output:

Output is the processed data or information given by computer after data processing. Output is also
called as result. We can save these results in the storage devices for the future use.

Storage:

Storage technology consists of recording media which is used to retain the data.

Computers store information in the form of "1" and "0"s in different types of storages such as memory,

hard disk, and usb drives etc. The smallest unit of data in a computer is called Bit. Data storage units

are: bit, byte, kilobyte (kb), megabyte (mb), gigabyte (gb), terabyte (tb), petabyte and exabyte,

Zettabyte, Yottabyte

DIGITAL AND ANALOGCOMPUTERS

A digital computer uses distinct values to represent the data internally. All information are

represented using the digits Os and 1s. The computers that we use at our homes and offices are digital

computers.

Analog computer is another kind of a computer that represents data as variable across a

continuous range of values. The earliest computers were analog computers. Analog computers are used

for measuring of parameters that vary continuously in real time, such as temperature, pressure and

voltage. Analog computers may be more flexible but generally less precise than digital computers. Slide

rule is an example of an analog computer.

http://ecomputernotes.com/fundamental/input-output-and-memory/explain-secondary-storage-devices

CHARACTERISTICS OFCOMPUTER

Speed, accuracy, diligence, storage capability and versatility are some of the key characteristics

of a computer.

Speed The computer can process data very fast, at the rate of millions of instructions per second.

Some calculations that would have taken hours and days to complete otherwise, can be completed in a

few seconds using the computer. For example, calculation and generation of salary slips of thousands of

employees of an organization, weather forecasting that requires analysis of a large amount of data

related to temperature, pressure and humidity of various places,etc.

Accuracy Computer provides a high degree of accuracy. For example, the computer can

accurately give the result of division of any two numbers up to 10 decimal places.

Diligence When used for a longer period of time, the computer does not get tired or fatigued. It

can perform long and complex calculations with the same speed and accuracy from the start till the end.

Storage Capability Large volumes of data and information can be stored in the computer and

also retrieved whenever required. A limited amount of data can be stored, temporarily, in the primary

memory. Secondary storage devices like floppy disk and compact disk can store a large amount of data

permanently.

Versatility Computer is versatile in nature. It can perform different types of tasks with the same

ease. At one moment you can use the computer to prepare a letter document and in the next moment

you may play music or print a document.

Computers have several limitations too. Computer can only perform tasks that it has been

programmed to do. Computer cannot do any work without instructions from the user. It executes

instructions as specified by the user and does not take its own decisions.

Basic Computer Organization

Input Unit:

An input device is a hardware or peripheral device used to send data to a computer. An input

device allows users to communicate and feed instructions and data to computers for processing, display,

storage and/or transmission.

Some of the most popularly used input devices are:

a) Mouse

b) Light Pen

c) Touch Screen

d) Keyboard

e) Scanner

f) OCR and MICR

g) Bar Code Reader

h) Joy Stick etc.

OutputUnit:

 The processed data is displayed in the form of result through the output device.

Some of the most popularly used Output devices are:

a) Visual Display Unit(Monitor)

b) Printer: Dot Matrix, Line Printers, Ink-jet, Laser Printer

c) Plotters etc.

Central Processing Unit:

The Central Processing Unit (CPU) is known as the heart of the computer which takes control of
the entire processing system of a computer.

 It performs the basic arithmetical, logical, and input/output operations of a computer system.

 The part of a computer that interprets and carries out instructions.

 It also transfers information to and from other components, such as a disk drive or the
keyboard.

The CPU has three important sub units.

1) Arithmetic-Logic unit

2) Control Unit

3) Memory Unit

Arithmetic-Logic Unit(ALU):

 The ALU is an electronic circuit used to carry out the arithmetic operations like addition,

subtraction, multiplication and division.

 It performs the operation on the data provided by the input devices.

 A comparison operation allows a program to make decisions based on its data input and
results of the previous calculations.

 Logical operations can be used to determine whether particular statement is TRUE or

FALSE.

 The ALU operates on the data available in the main memory and sends them back after

processing again to main memory.

Control Unit:

 The control unit coordinates the activities of all the other units and in the system.

 Its main functions are to control the transfer of data and information between various units

and to initiate appropriate actions by the arithmetic-logic unit.

 The control unit fetches instructions from the memory, decodes them, and directs them to

various units to perform the on specified tasks.

Memory Unit:

Computer memory is divided into two types:

Primary memory Secondary memory

Primary Memory

 The Primary memory is also called Main memory, is used to store data during processing. Once

the CPU has carried out an instruction, it needs the result to be stored. This storage space is

provided by the computer’s memory.

The storage capacity of the memory is generally measured in megabytes. 1 nibble=4 bits

8 Bits = 1 Byte

1024 Bytes= 1 Kilobyte (KB)

1 024 Kilobytes= 1 Megabyte (MB)

1024 Megabytes= 1 Gigabyte (GB)

Different kinds of primary memory are

 Random Access Memory (RAM)and

 Read Only Memory(ROM).

RAM

 RAM is a volatile memory, which means that the stored information is lost when the power
is switched off.

 used to read and write data in RAM

ROM

 We can only read the data from ROM and you cannot write anything into it and the data is

permanent.

 ROM is a non – volatile memory

Secondary Memory

 The data stored in it is permanent.

 Data can be deleted if necessary.

 It is cheaper than primary memory.

 It has high storage capacity.

There are different kinds of secondary storage devices available. Few of them are :

 Floppy Disk

 Fixed or Hard Disk

 Optical Disk like: CD (Compact Disk) DVD (Digital Versatile Disk)

 Magnetic Tape Drive

Difference between ROM and RAM

ROM (Read Only Memory) RAM (Random Access Memory)

ROM is non-volatile RAM is volatile

ROM is cheaper than RAM RAM is very expensive

ROM cannot be updated or corrected RAM can be updated and corrected

ROM serves as permanent data storage RAM can serve as temporary data storage

APPLICATION OFCOMPUTERS

Computers have proliferated into various areas of our lives. For a user, computer is a tool that

provides the desired information, whenever needed. You may use computer to get information about the

reservation of tickets (railways, airplanes and cinema halls), books in a library, medical history of a

person, a place in a map, or the dictionary meaning of a word. The information may be presented to you

in the form of text, images, video clips, etc.

Figure shows some of the applications of computer.

Business

A computer has high speed of calculation, diligence, accuracy, reliability, or versatility which

made it an integrated part in all business organizations.

Computer is used in business organizations for:

 Payroll calculations

 Budgeting

 Sales analysis

 Financial forecasting

 Managing employees database

 Maintenance of stocks etc.

Banking

Today, banking is almost totally dependent on computers. Banks provide following facilities:

 Banks provide online accounting facility, which includes current balances, deposits,

overdrafts, interest charges, shares, and trustee records.

 ATM machines are making it even easier for customers to deal with bank transactions.

Insurance

Insurance companies are keeping all records up-to-date with the help of computers. The insurance

companies, finance houses and stock broking firms are widely using computers for their concerns.

Insurance companies are maintaining a database of all clients with information showing

 procedure to continue with policies

 starting date of the policies

 next due installment of a policy

 maturity date

 interests due

 survival benefits

 bonus

Education

The computer has provided a lot of facilities in the education system.

 The computer provides a tool in the education system known as CBE (Computer Based

Education).

 CBE involves control, delivery, and evaluation of learning.

 The education in schools and colleges is made easy by using computers.

Marketing

Computers are used in the field of marketing for promoting their products by

 Advertising - With computers, advertising professionals create art and graphics, write and

revise copy, and print and disseminate ads with the goal of selling more products.

 At Home shopping – Shopping from home has been made possible through use of

computers (Online shopping) that provide access to product information and permit direct

entry of orders to be filled by the customers.

HealthCare

Computers play an important role in hospitals, labs etc., for diagnosis. ECG, EEG, Ultrasounds and CT
Scans etc., are also done by computerized machines.

Some major fields of health care in which computers are used are:

 Diagnostic System - Computers are used to collect data and identify cause of illness.

 Lab-diagnostic System - All tests can be done and reports are prepared by computer.

 Patient Monitoring System - These are used to check patient's signs for abnormality such

as in Cardiac Arrest, ECGetc.

 Pharma Information System - Computer checks Drug-Labels, Expiry dates, harmful

drug’s side effects etc.

 Surgery: Nowadays, computers are also used to perform surgery.

Engineering Design

Computers are widely used in engineering purpose.

One of major areas is CAD (Computer aided design) for creation of architectural plans and designs

such as

 Structural Engineering - Requires stress and strain analysis for design of Ships, Buildings,

Budgets, and Airplanes etc.

 Industrial Engineering - Computers deal with design, implementation

and improvement of integrated systems of people, materials and equipments.

 Architectural Engineering - Computers help in planning towns, designing buildings,
determining a range of buildings on a site using both 2D and 3Ddrawings.

Military

Computers are largely used in defense. Some military areas where a computer has been used are:

 Missile Control

 Military Communication

 Military Operation and Planning

 Smart Weapons

Communication

Communication means to convey a message, an idea, a picture or speech that is received and

understood clearly and correctly by the person for whom it is meant for. Some main areas in this

category are:

 E-mail

 Chatting

 Usenet

 FTP

 Telnet

 Video-conferencing

Government

Computers play an important role in government. Some major fields in this category are:

 Budgets

 Sales tax department

 Income tax department

 Male/Female ratio

 Computerization of voters lists

 Computerization of driving licensing system

 Computerization of PAN card

 Weather forecasting

PROGRAM DEVELOPMENT LIFECYCLE

As stated earlier, a program is needed to instruct the computer about the way a task is to be

performed. The instructions in a program have three essential parts:

1. Instructions to accept the input data that needs to be processed,

2. Instructions that will act upon the input data and process it, and

3. Instructions to provide the output to user

The instructions in a program are defined in a specific sequence. Writing a computer program is

not a straightforward task. A person who writes the program (computer programmer) has to follow the

Program Development Life Cycle.

Let’s now discuss the steps that are followed by the programmer for writing a program:

Problem Analysis - The programmer first understands the problem to be solved. The

programmer determines the various ways in which the problem can be solved, and decides upon a

single solution which will be followed to solve the problem.

Program Design - The selected solution is represented in a form, so that it can be coded. This

requires three steps:

An algorithm is written, which is an English-like explanation of the solution.

A flowchart is drawn, which is a diagrammatic representation of the solution. The solution is

represented diagrammatically, for easy understanding and clarity.

A pseudo code is written for the selected solution. Pseudo code uses the structured programming

constructs. The pseudo code becomes an input to the next phase.

Program Development

The computer programming languages are of different kinds—low-level languages, and high-

level languages like C, C++ and Java. The pseudo code is coded using a suitable programming

language.

The coded pseudo code or program is compiled for any syntax errors. Syntax errors arise due to

the incorrect use of programming language or due to the grammatical errors with respect to the

programming language used. During compilation, the syntax errors, if any, are removed.

The successfully compiled program is now ready for execution.

The executed program generates the output result, which may be correct or incorrect. The

program is tested with various inputs, to see that it generates the desired results. If incorrect results are

displayed, then the program has semantic error (logical error). The semantic errors are removed from

the program to get the correct results. The successfully tested program is ready for use and is installed

on the user’s machine.

Program Documentation and Maintenance - The program is properly documented, so that

later on, anyone can use it and understand its working. Any changes made to the program, after

installation, forms part of the maintenance of program. The program may require updating, fixing of

errors etc. during the maintenance phase.

Table summarizes the steps of the program development cycle.

Program Analysis Understand the problem.

 Have multiple solutions.

 Select a solution.

Program Design Write Algorithm.

 Write Flowchart.

 Write Pseudocode.

Program Development Compile the program and remove syntax errors, if

any.

 Execute the program.

 Test the program. Check the output results with

different inputs. If the output is incorrect, modify

the program to get correct results.

 Install the tested program on the user’s computer.

Program Documentation and maintenance Document the program, for later use.

 Maintain the program for updating,

removing errors, changing requirements etc.

Table Program development life cycle

ALGORITHM

Algorithm is an ordered sequence of finite, well defined, unambiguous instructions for

completing a task. Algorithm is an English-like representation of the logic which is used to solve the

problem. It is a step- by-step procedure for solving a task or a problem. The steps must be ordered,

unambiguous and finite in number.

For accomplishing a particular task, different algorithms can be written. The different algorithms

differ in their requirements of time and space. The programmer selects the best- suited algorithm for the

given task to be solved.

Let’s now look at two simple algorithms to find the greatest among three numbers, as follows:

Algorithm to find the greatest among three numbers:

ALGORITHM 1

Step 1: Start

Step 2: Read the three numbers A, B, C

Step 3: Compare A and B. If A is greater perform step 4 else perform step 5.
Step 4: Compare A and C. If A is greater, output ―A is greatest‖ else output ―C is

 greatest‖. Perform step 6.

Step 5: Compare B and C. If B is greater, output ―B is greatest‖ else output ―C is

 greatest‖.

Step 6: Stop

ALGORITHM 2

Step 1: Start

Step 2: Read the three numbers A, B, C

Step 3: Compare A and B. If A is greater, store A in MAX, else store B in MAX.

Step 4: Compare MAX and C. If MAX is greater, output ―MAX is greatest‖ else output

 ―C is greatest‖.

Step 5: Stop

Both the algorithms accomplish the same goal, but in different ways. The programmer selects

the algorithm based on the advantages and disadvantages of each algorithm. For example, the first

algorithm has more number of comparisons, whereas in the second algorithm an additional variable

MAX is required.

CONTROLSTRUCTURES

The logic of a program may not always be a linear sequence of statements to be executed in that

order. The logic of the program may require execution of a statement based on a decision. It may

repetitively execute a set of statements unless some condition is met. Control structures specify the

statements to be executed and the order of execution of statements.

Flowchart and Pseudo code use control structures for representation. There are three kinds of

control structures:

Sequential - instructions are executed in linear order

Selection (branch or conditional) - it asks a true/false question and then selects the next

instruction based on the answer

Iterative (loop) - it repeats the execution of a block of instructions.

FLOWCHART
A flowchart is a diagrammatic representation of the logic for solving a task. A flowchart is

drawn using boxes of different shapes with lines connecting them to show the flow of control. The

purpose of drawing a flowchart is to make the logic of the program clearer in a visual form. There is a

famous saying ―A photograph is equivalent to thousand words‖. The same can be said of flowchart. The

logic of the program is communicated in a much better way using a flowchart. Since flowchart is a

diagrammatic representation, it forms a common medium of communication.

Flowchart Symbols

A flowchart is drawn using different kinds of symbols. A symbol used in a flowchart is for a

specific purpose. Figure shows the different symbols of the flowchart along with their names. The

flowchart symbols are available in most word processors including MS-WORD, facilitating the

programmer to draw a flowchart on the computer using the word processor.

Figure Flowchart symbols (available for use in MS-WORD)

Preparing a Flowchart

A flowchart may be simple or complex. The most common symbols that are used to draw a

flowchart are - Process, Decision, Data, Terminator, Connector and Flow lines. While drawing a

flowchart, some rules need to be followed-(1) A flowchart should have a start and end, (2) The direction

of flow in a flowchart must be from top to bottom and left to right, and

(3) The relevant symbols must be used while drawing a flowchart. While preparing the flowchart, the

sequence, selection or iterative structures may be used wherever required. Figure shows the

sequence, selection and iteration structures.

Figure Control structures in flowchart

We see that in a sequence, the steps are executed in linear order one after the other. In a

selection operation, the step to be executed next is based on a decision taken. If the condition is true

(yes) a different path is followed than if the condition evaluates to false (no). In case of iterative

operation, a condition is checked. Based upon the result of this conditional check, true or false, different

paths are followed. Either the next step in the sequence is executed or the control goes back to one of

the already executed steps to make a loop.

Here, we will illustrate the method to draw flowchart, by discussing three different examples. To

draw the flowcharts, relevant boxes are used and are connected via flow lines. The flowchart for the

examples is shown in Figure below.

 Figure Examples of flowchart

The first flowchart computes the product of any two numbers and gives the result. The flowchart

is a simple sequence of steps to be performed in a sequential order.

The second flowchart compares three numbers and finds the maximum of the three numbers.

This flowchart uses selection. In this flowchart, decision is taken based upon a condition, which decides

the next path to be followed, i.e. If A is greater than B then the true (Yes) path is followed else the false

(No) path is followed. Another decision is again made while comparing MAX with C.

The third flowchart finds the sum of first 100 integers. Here, iteration (loop) is performed so that

some steps are executed repetitively until they fulfill some condition to exit from the repetition. In the

decision box, the value of I is compared with 100. If it is false (No), a loop is created which breaks

when the condition becomes true(Yes).

Flowcharts have their own benefits; however, they have some limitations too. A complex and

long flowchart may run into multiple pages, which become difficult to understand and follow.

Moreover, updating a flowchart with the changing requirements is a challenging job.

PSEUDOCODE

Pseudo code consists of short, readable and formally-styled English language used for

explaining an algorithm. Pseudo code does not include details like variable declarations, subroutines

etc. Pseudo code is a short-hand way of describing a computer program. Using pseudo code, it is easier

for a programmer or a non-programmer to understand the general working of the program, since it is not

based on any programming language. It is used to give a sketch of the structure of the program, before

the actual coding. It uses the structured constructs of the programming language but is not machine-

readable. Pseudo code cannot be compiled or executed. Thus, no standard for the syntax of pseudo code

exists. For writing the pseudo code, the programmer is not required to know the programming language

in which the pseudo code will be implemented later.

Preparing a Pseudo Code

Pseudo code is written using structured English. In a pseudo code, some terms are commonly used to

represent the various actions. For example, for inputting data the terms may be (INPUT, GET, READ),

for outputting data (OUTPUT, PRINT, DISPLAY), for calculations (COMPUTE, CALCULATE), for

incrementing (INCREMENT), in addition to words like ADD, SUBTRACT, INITIALIZE used for

addition, subtraction, and initialization, respectively.

The control structures—sequence, selection, and iteration are also used while writing the pseudo

code.Figure below shows the different pseudo code structures. The sequence structure is simply a

sequence of steps to be executed in linear order. There are two main selection constructs—if- statement

and case statement. In the if-statement, if the condition is true then the THEN part is executed otherwise

the ELSE part is executed. There can be variations of the if-statement also, like there may not be any

ELSE part or there may be nested ifs. The case statement is used where there are a number of conditions

to be checked. In a case statement, depending on the value of the expression, one of the conditions is

true, for which the corresponding statements are executed. If no match for the expression occurs, then

the OTHERS option which is also the default option, is executed.

Figure Control structures for pseudo code

WHILE and DO-WHILE are the two iterative statements. The WHILE loop and the DO-

WHILE loop, both execute while the condition is true. However, in a WHILE loop the condition is

checked at the start of the loop, whereas, in a DO-WHILE loop the condition is checked at the end of

the loop. So the DO-WHILE loop executes at least once even if the condition is false when the loop is

entered.

In the following Figure, the pseudo code is written for the same three tasks for which the

flowchart was shown in the previous section. The three tasks are—(i) compute the product of any two

numbers, (ii) find the maximum of any three numbers, and (iii) find the sum of first 100 integers.

Figure Examples of pseudo code

A pseudo code is easily translated into a programming language. But, as there are no defined

standards for writing a pseudo code, programmers may use their own style for writing the pseudo code,

which can be easily understood. Generally, programmers prefer to write pseudo code instead of

flowcharts.

Difference between Algorithm, Flowchart, and Pseudo Code: An algorithm is a sequence of

instructions used to solve a particular problem. Flowchart and Pseudo code are tools to document and

represent the algorithm. In other words, an algorithm can be represented using a flowchart or a pseudo

code. Flowchart is a graphical representation of the algorithm. Pseudo code is a readable, formally

styled English like language representation of the algorithm. Both flowchart and pseudo code use

structured constructs of the programming language for representation. The user does not require the

knowledge of a programming language to write or understand a flowchart or a pseudo code.

1

UNIT 2: C LANGUAGE & TYPES OF OPERATOR AND EXPRESSIONS 9

Introduction- C Structure- syntax and constructs of ANSI C - Variable Names, Data Type and Sizes,

Constants, Declarations - Arithmetic Operators, Relational Operators, Logical Operators, Type Conversion,

Increment and Decrement Operators, Bitwise Operators, Assignment Operators and Expressions, Precedence

and Order of Evaluation, proper variable naming and Hungarian Notation.

Overview of C:

C is one of the most popular programming languages. It was developed by Mr. Dennis Ritchie at

AT&T Bell Laboratories at USA in 1972. It is an upgraded version of two earlier languages, called BCPL and

B, which were also developed at Bell Laboratories. C is called a middle level language It performs the task of

low level language as well as high level language. UNIX operating system is written in C Language.

Features and Applications of C Language:

1. C is a general purpose, structured programming language.

2. C is a powerful, efficient, compact and flexible language.

3. C is highly portable. It can run on different operating systems.

4. It has got rich set of operators.

5. C is widely available.

6. C is a middle level language.

7. C allows manipulation of data at the lowest level.

8. C allows dynamic memory allocation.

9. C is well suited for writing system software

10. C is a robust language.

Structure of a C Program

The Structure of a C program is given below:

/* Comments */

main()

{

/* Comments */

Declaration part;

Executable part;

}

User-defined functions

{

statements;

}

Global Declaration Section

Include Header file Section

2

i. Include Header file section: C program depends upon some header files for function definition

that are used in program.

Eg. #inlcude <stdio.h>

ii. Global Declaration section: This section declares some variables that are used in more than one

function. These variables are known as global variables.

iii. Function main: Every program written in C language must contain main function. It is the starting

point of every C program.

iv. Declaration part: It contains the entire variables that are used in the executable part. The

initialization of variables is also done here.

v. Executable part: This part contains the statements following the declaration of the variables.

vi. User defined functions: The functions defined by the users are called user defined functions.

They are generally defined after the main function.

vii. Comments: To understand the flow of the program, the programmer can include comments in

the program.

Programming Rules:

1. All statements must be in lower case letters.

2. Blank spaces may be inserted between the words.

3. The opening and closing braces must be balanced.

4. The statements can be written anywhere between the opening and closing braces.

5. Every statement must be terminated by a semicolon (;).

Lexical Elements of C

Character Set of C:

The character set is the fundamental set of any language. The character set of C can be represented as

follows:
C Character Set

Source Character

Set

Execution

Character Set

Alphabet

Digits

Special

Characters

White

Spaces

Escape

Sequence

3

Source Character Set:

They are used to construct the statements in the source program.

S.No. Source Character Set Notation

1. Alphabets A to Z and a to z

2. Decimal Digits 0 to 9

3. White Spaces Blank space

4. Special Characters +,-,*,/,%,$,# etc.

Execution Character Set:

These are employed at the time of execution. This set of characters are also called as non graphic characters

because, these characters are invisible and cannot be printed directly. These characters will have effect only

when the program is executed. They are also called as “escape sequences”.

Example:

CODE MEANING

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\" Double quote

 Single quote

\0 Null

\\ Backslash

\v Vertical Tab

\a Alert

C Tokens: The tokens are usually referred as individual text and punctuation in a passage of text. The C

language program contains individual units called the C tokens and has the following

4

Identifiers & Keywords:

In C language, every word is classified into either a keyword or an identifier.

Identifiers: Identifiers are names given to various program elements, such as variables, functions and arrays

etc.

Rules for naming an identifier:

 Identifiers consist of letters and digits in any order.

 The first character must be a letter or character or may begin with underscore.

 An identifier can be of any length while most of the C compiler recognizes only the first 31 characters.

 No space and special symbols are allowed between the identifier.

 The identifier cannot be a keyword.

Valid Identifiers are:

stdname, sub, tot_marks

Invalid Identifiers are:

Return, std name, * say

Keywords: There are certain reserved words called keywords that have standard and predefined meaning

in C language. They are the basic building blocks for program statements.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Data Types:

Data type is the type of the data that are going to access within the program. C supports different data

types; each data type may have predefined memory requirement and storage representation.

C Data Types

Primary / Basic User Defined Derived Empty

char

int

float

double

typedef

structures

union

arrays

pointers

void

5

Primary Data types:

Data type Description Memory Bytes Control String

int Integer Quantity 2 Bytes %d or %i

Char Single Character 1 Byte %c

Float Floating point no. 4 Bytes %f

Double Double precision

floating point nos.

8 Bytes %lf

VARIABLES:

A Variable is an identifier that is used to represent some specified type of information within a

designated portion of the program. A variable may take different values at different times during the execution.

Rules for naming the variables:

1. A variable name can be any combination of 1 to 8 alphabets, digits or underscore.

2. The first character must be an alphabet or an underscore.

3. The length of the variable cannot exceed upto 8 characters long.

4. No commas or blank spaces are allowed within a variable name.

5. No special symbol, an underscore can be used in a variable name.

Variable Declaration:

Any variable to be used in the program is to be declared before it is used in the program.

The declaration of variable is given below:

<datatype> v1,v2,v3,……,vn;

where

datatype – type of data (eg.int, char etc.)

v1,v2,v3,….vn- the list of variables.

Variable definition / Initializing variables:

It means providing an initial value to the variables. It is done using assignment operator.

Description:

Datatype variable=constant; (eg. int b=90)

or

Variable=constant; (eg. a=10, a=b=87)

Hungarian notation

Hungarian notation is a naming convention in computer programming that indicates either the type of object

or the way it should be used. It was originally proposed by Charles Simonyi, a programmer at Xerox PARC

in the early 1980s. There are two variations of Hungarian notation: Systems and Apps. They both involve

using a special prefix as part of the name to indicate an object's nature.

6

Hungarian notation prefixes

The prefix used is up to the programmer, but standard prefixes include:

Prefix Data type

b boolean.

by byte or unsigned char.

c char.

cx / cy short used as size.

dw DWORD, double word or unsigned long.

fn function.

h handle.

i int (integer).

l Long.

n short int.

p a pointer variable containing the address of a variable.

s string.

sz ASCIIZ null-terminated string.

w WORD unsigned int.

x, y short used as coordinates.

Do you know difference between variable declaration & definition?

S.NO VARIABLE DECLARATION VARIABLE DEFINITION

1

Declaration tells the compiler

about data type and size of the

variable.

Definition allocates memory for the

variable.

2
Variable can be declared many

times in a program.

It can happen only one time for a

variable in a program.

3
The assignment of properties and

identification to a variable.

Assignments of storage space to a

variable.

Scope of the variables:

Scope of the variable implies the availability of variables within the program. There are two types.

1. Local Variables: The variables which are defined inside a function is called a local variable.

Eg:

void main()

{

int a,b;

}

Here, a & b are local variables.

7

Integer

Constants

Real

Constants

Character

Constants

String

Constants

Character Constants Numeric Constants

C Constants

Eg:

2. Global / External Variables: The variables that are declared before the main function are called global

variables.

int a =2;

void main()

{

}

Here a is a global variable

Constants:

The data items whose values cannot be changed during the execution of program are called constants. They

are classified as follows:

Numeric Constants:

a. Integer Constants: An integer constant is formed with the sequence of digits.

Eg. 67,90 etc.

b. Real Constants: A real constant is made up of a sequence of numeric digits with presence of a decimal

point.

Eg. 127.90,89.78 etc.

Character Constants:

a. Single Character Constants: The character constant contains a single character enclosed within a pair

of single inverted commas both pointing to the left.

Eg. „s‟, „M‟, etc.

b. String Constants: A string constant is a sequence of characters enclosed in double quotes.

Eg. “hi”, “Hello”, etc.

Delimiters:

Delimiters are special symbols, which have special meaning and got significance. Some of the delimiters are:

8

Symbol Name Meaning

Hash Pre-processor directive

, Comma Separator between variables

: Colon Label

; Semi-colon Statement terminator

() Parenthesis Used in functions & expressions

Statements:

Statements can be defined as set of declaration of sequence of action. Statement causes the system to perform

some action. All statements end with a semi-colon except conditional and control structures.

There are 3 different types of statements. They are:

1. Assignment Statement: Assignment operator is used to assign value to the variables.

Eg: a=6

Sum = 0

2. Null Statement: A statement without any characters and it has only semi colon is called a Null

statement.

Eg. ;

3. Expression Statement: Any statement which contains an expression on right side is called Expression

statement.

Eg: a=b+c

OPERATORS

An operator is a symbol that specifies an operation to be performed on the operands. The data items that

operators act upon are called operands. Some operators require two operands. They are called binary operators.

Some operators require one operand. They are called unary operator.

There are different types of operators. They are:

1. Arithmetic Operator

2. Relational Operator

3. Logical Operator

4. Assignment Operator

5. Increment & decrement Operator

6. Conditional Operator

7. Bitwise Operator

8. Special Operator

9

1. Arithmetic Operator: The basic arithmetic operators are:

Operation Operator Comment Value of Sum

before

Value of sum

after

Multiply * sum= sum* 2; 4 8

Divide / sum= sum/ 2; 4 2

Addition + sum= sum+ 2; 4 6

Subtraction - sum= sum -2; 4 2

Increment ++ ++sum; 4 5

Decrement -- --sum; 4 3

Modulus % sum= sum% 3; 4 1

Example Program:

#include <stdio.h>

void main()

{

int a,b,c,d,e,f;

a=10;

b=7;

c=a+b;

d=a-b;

e=a*b;

f=a/b;

printf(“\n%d”,c);

printf(“\n%d”,d);

printf(“\n%d”,e);

printf(“\n%d”,f);

}

Output:

17

3

70

1

2. Relational Operator: Relational operators are used to compare two or more operands. Operands may

be variables, constants or expressions. The various relational operators are

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

10

The conditions are checked using relational operators. They return either 1 or 0 as true value or false value

respectively.

Example Program

#include<stdio.h>

void main()

{

clrscr();

printf("\nCondition : Return Value");

printf("\n5!=5 : %d",(5!=5));

printf("\n10<11 : %d",(10<11));

printf("\n12>9 : %d",(12>9));

printf("\n55>=90 : %d",(55>=90));

printf("\n45<=91 : %d",(45<=91));

printf("\n78==78 : %d",(78==78));

getch();

}
Output:

Condition

: Return Value

5!=5 : 0

10<11 : 1

12>9 : 1

55>=90 : 0

45<=91 : 1

78==78 : 1

3. Logical Operator: It is used to combine the results of two or more conditions.

Operator Meaning Example Return Value

(Result)

&& Logical AND (4<6)&&(8==9) 0

|| Logical OR (7<9)||(3<1) 1

! Logical NOT !(29>89) 1

Example Program:

#include<stdio.h>

void main()

{

clrscr();
printf("\nCondition : Return Value");

printf("\n5!=5&&6<9 : %d",(5!=5)&&(6<9));

printf("\n10<11||10==10 : %d",(10<11)||(10==10));

printf("\n!(12>9): %d",!(12>9));

getch();

}

Output:

Condition : Return Value

5!=5&&6<9 : 0

10<11||10==10 : 1

!(12>9) : 0

11

4. Assignment Operator: It is used to assign a value or an expression to another variable.

Syntax:

Variable=expression (or) value

Compound Assignment:

Operator Example Meaning

+ = x+=y x=x+y

- = x-=y x=x-y

* = X*=y x=x*y

/ = x/=y x=x/y

Example Program:

#include <stdio.h>

void main()

{
int a,b;

clrscr();

a=10; //Assignment Statement

b=6;

a+=b; // Compound Statement

b-=a;

printf("\nThe value of a is %d",a);

printf("\nThe value of b is %d",b);

getch();

}

Output:

The value of a is 16

The value of b is -10

5. Increment & Decrement Operators: These operators are called Unary operators. They are used for

incrementation & decrementation operation.

Operator Meaning

++x Pre-increment

X++ Post increment

--y Pre-decrement

Y-- Post decrement

Example Program:

#include <stdio.h>

void main()

{

12

int a,b;

clrscr();

a=10;

b=6;

printf("\nThe value of a is %d",a++);

printf("\nThe value of a is %d",++a);

printf("\nThe value of b is %d",b--);

printf("\nThe value of b is %d",--b);

getch();

}

Output:

The value of a is 10

The value of a is 12

The value of b is 6

The value of b is 4

6. Conditional Operator: It checks the condition and executes the statements depending on the

condition.

Syntax: condition? exp1: exp2

The ? Operator acts as a ternary operator. If the condition is true, it evaluate the first expression otherwise it

evaluates the second expression.

Sample Program:

#include <stdio.h>

void main()

{

int a,b,big;

clrscr();

a=10;

b=6;

big=a>b?a:b;
printf("\nThe biggest value is %d",big);

getch();

}

Output:

The biggest value is 10

7. Bitwise Operators: They are used to manipulate the data at bit level. They operate on integers only.

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ One‟s Complement

13

>> Right Shift

<< Left Shift

Example Program:

#include <stdio.h>

void main()

{
int a,b,c,d,e;

clrscr();

a=10;

b=6;

c=a&b;

printf("\nThe value of c(AND) is %d",c);

d=a|b;

printf("\nThe value of d(OR) is %d",d);

e=a^b;

printf("\nThe value of e(XOR) is %d",e);

getch();

}

Output:

The value of c(AND) is 2

The value of d(OR) is 14

The value of e(XOR) is 12

8. Special Operator: C Language supports some special operators. They are:

Operator Meaning

, Comma operator

Sizeof Size of the Operands

& and * Pointer operator

The comma operator is used to separate the variables.

The size of operator is used to get the size of every operands.

The pointer operator is used to get the address of the operand.

Example Program:

#include <stdio.h>

void main()

{
int a;

char b;

clrscr();
printf("\nThe size of a is %d",sizeof(a));

printf("\nThe size of b is %d",sizeof(b));

getch();

}

14

Output:

The size of a is 2

The size of b is 1

Operator Precedence & Associativity of Operators

The Arithmetic Operators are evaluated from the left to right using the precedence of operators, when the

expression is written without the parenthesis.

Rules for evaluation of expression:

1. Any expression within the parenthesis is evaluated first.

2. Arithmetic expression is evaluated from left to right using the rule of precedence.

3. Within the parenthesis, highest precedence operator is evaluated first.

4. If the operators have the same precedence, associativity is to be applied.

5. If the parenthesis is nested, the innermost sub-expression is evaluated first.

Example:

Given expression 45 + 8 – 5 * 7

Step 1: 45 + 8 – 5 * 7

15

Step 2: 45 + 8 – 35

Step 3: 53 – 35

Step 4: 18

The result is 18

1

UNIT-III I /O AND CONTROL FLOW

Standard I/O, Formatted Output – Printf, Variable-length argument lists- Formatted Input – Scanf,

Statements and Blocks, If-Else-If, Switch, Loops – while, do, for, break and continue, GoTo Labels.

Basics of Formatted Input/Output in C

Concepts

 I/O is essentially done one character (or byte) at a time

 stream -- a sequence of characters flowing from one place to another

o input stream: data flows from input device (keyboard, file, etc) into memory

o output stream: data flows from memory to output device (monitor, file,

printer, etc)

 Standard I/O streams (with built-in meaning)

o stdin: standard input stream (default is keyboard)

o stdout: standard output stream (defaults to monitor)

o stderr: standard error stream

 stdio.h -- contains basic I/O functions

o scanf: reads from standard input (stdin)

o printf: writes to standard output (stdout)

o There are other functions similar to printf and scanf that write to and read from

other streams

o How to include, for C or C++ compiler

o #include <stdio.h> // for a C compiler

o #include <cstdio> // for a C++ compiler

 Formatted I/O -- refers to the conversion of data to and from a stream of characters,

for printing (or reading) in plain text format

o All text I/O we do is considered formatted I/O

o The other option is reading/writing direct binary information (common with

file I/O, for example)

Output with printf

 The basic format of a printf function call is:

 printf (format_string, list_of_expressions);

where:

 format_string is the layout of what's being printed

 list_of_expressions is a comma-separated list of variables or

expressions yielding results to be inserted into the output

To output string literals, just use one parameter on printf, the string itself

 printf("Hello, world!\n");

 printf("Greetings, Earthling\n\n");

2

Conversion Specifiers

A conversion specifier is a symbol that is used as a placeholder in a formatting string. For

integer output (for example), %d is the specifier that holds the place for integers.

Here are some commonly used conversion specifiers (not a comprehensive list):

 %d int (signed decimal integer)

 %u unsigned decimal integer

 %f floating point values (fixed notation) - float, double

 %e floating point values (exponential notation)

 %s string

 %c character

Printing Integers

 To output an integer, use %d in the format string, and an integer expression in

the list_of_expressions.

 int numStudents = 35123;

 printf("FSU has %d students", numStudents);

 // Output:

 // FSU has 35123 students

 We can specify the field wicth (i.e. how many 'spaces' the item prints in). Defaults to

right-justification. Place a number between the % and the d. In this example, field

width is 10:

 printf("FSU has %10d students", numStudents);

 // Output:

 // FSU has 35123 students

 To left justify, use a negative number in the field width:

 printf("FSU has %-10d students", numStudents);

 // Output:

 // FSU has 35123 students

 If the field width is too small or left unspecified, it defaults to the minimum number

of characters required to print the item:

 printf("FSU has %2d students", numStudents);

 // Output:

 // FSU has 35123 students

 Specifying the field width is most useful when printing multiple lines of output that

are meant to line up in a table format

3

Printing Floating-point numbers

 Use the %f modifer to print floating point values in fixed notation:

 double cost = 123.45;

 printf("Your total is $%f today\n", cost);

 // Output:

 // Your total is $123.450000 today

 Use %e for exponential notation:

 printf("Your total is $%e today\n", cost);

 // Output:

 // Your total is $1.234500e+02 today

Note that the e+02 means "times 10 to the 2nd power"

 You can also control the decimal precision, which is the number of places after the

decimal. Output will round to the appropriate number of decimal places, if necessary:

 printf("Your total is $%.2f today\n", cost);

 // Output:

 // Your total is $123.45 today

 Field width can also be controlled, as with integers:

 printf("Your total is $%9.2f today\n", cost);

 // Output:

 // Your total is $ 123.45 today

In the conversion specifier, the number before the decimal is field width, and the

number after is the precision. (In this example, 9 and 2).

o %-9.2 would left-justify in a field width of 9, as with integers

Printing characters and strings

 Use the formatting specifier %c for characters. Default field size is 1 character:

 char letter = 'Q';

 printf("%c%c%c\n", '*', letter, '*');

 // Output is: *Q*

 Use %s for printing strings. Field widths work just like with integers:

4

 printf("%s%10s%-10sEND\n", "Hello", "Alice", "Bob");

 // Output:

 // Hello AliceBob END

scanf

 To read data in from standard input (keyboard), we call the scanf function. The basic

form of a call to scanf is:

 scanf(format_string, list_of_variable_addresses);

o The format string is like that of printf

o But instead of expressions, we need space to store incoming data, hence the

list of variable addresses

 If x is a variable, then the expression &x means "address of x"

 scanf example:

 int month, day;

 printf("Please enter your birth month, followed by the day: ");

 scanf("%d %d", &month, &day);

 Conversion Specifiers

o Mostly the same as for output. Some small differences

o Use %f for type float, but use %lf for types double and long double

 The data type read, the conversion specifier, and the variable used need to match in

type

 White space is skipped by default in consecutive numeric reads. But it is not skipped

for character/string inputs.

Example

#include <stdio.h>

int main()

{

 int i;

 float f;

 char c;

 printf("Enter an integer and a float, then Y or N\n> ");

 scanf("%d%f%c", &i, &f, &c);

 printf("You entered:\n");

 printf("i = %d, f = %f, c = %c\n", i, f, c);

 return 0;

}

5

Sample run #1

User input underlined, to distinguish it from program output

Enter an integer and a float, then Y or N

> 34 45.6Y

You entered:

i = 34, f = 45.600, c = Y

Sample Run #2

Enter an integer and a float, then Y or N

> 12 34.5678 N

You entered:

i = 12, f = 34.568, c =

Note that in this sample run, the character that was read was NOT the letter 'N'. It was the

space. (Remember, white space not skipped on character reads).

This can be accounted for. Consider if the scanf line looked like this:

 scanf("%d%f %c", &i, &f, &c);

There's a space betwen the %f and the %c in the format string. This allows the user to type a

space. Suppose this is the typed input:

 12 34.5678 N

Then the character variable c will now contain the 'N'.

Interactive Input

You can make input more interactive by prompting the user more carefully. This can be

tedious in some places, but in many occasions, it makes programs more user-friendly.

Example:

 int age;

 double gpa;

 char answer;

 printf("Please enter your age: ");

 scanf("%d", &age);

 printf("Please enter your gpa: ");

 scanf("%lf", %gpa);

 printf("Do you like pie (Y/N)? ");

 scanf("%c", %answer);

printf/scanf with C-strings

An entire C-style string can be easily printed, by using the %s formatting symbol, along with

the name of the char array storing the string (as the argument filling in that position):

 char greeting[] = "Hello";

 printf("%s", greeting); // prints the word "Hello"

6

Be careful to only use this on char arrays that are being used as C-style strings. (This means,

only if the null character is present as a terminator).

Similarly, you can read a string into a char array with scanf. The following call allows the

entry of a word (up to 19 characters and a terminating null character) from the keyboard,

which is stored in the array word1:

 char word1[20];

 scanf("%s", word1);

Characters are read from the keyboard until the first "white space" (space, tab, newline)

character is encountered. The input is stored in the character array and the null character is

automatically appended.

Note also that the & was not needed in the scanf call (word1 was used, instead of &word1).

This is because the name of the array by itself (with no index) actually IS a variable that

stores an address (a pointer).

VARIABLE LENGTH ARGUMENTS

 Variable length arguments is an advanced concept in C language offered by c99

standard. In c89 standard, fixed arguments only can be passed to the functions.

 When a function gets number of arguments that changes at run time, we can go for

variable length arguments.

 It is denoted as … (3 dots)

 stdarg.h header file should be included to make use of variable length argument

functions.

 Here we use macros to implement the functionality of variable arguments.

Use va_list type variable in the function definition.

 int a_function(int x, ...)

{

 va_list a_list;

 va_start(a_list, x);

}

 Use int parameter and va_start macro to initialize the va_list variable to an argument

list. The macro va_start is defined in stdarg.h header file.

 Use va_arg macro and va_list variable to access each item in argument list.

 macro va_end to clean up the memory assigned to va_list variable.

Example 1:

#include <stdio.h>

#include <stdarg.h>

7

int add(int num,...);

int main()

{

 printf("The value from first function call = " \

 "%d\n", add(2,2,3));

 printf("The value from second function call= " \

 "%d \n", add(4,2,3,4,5));

 /*Note - In function add(2,2,3),

 first 2 is total number of arguments

 2,3 are variable length arguments

 In function add(4,2,3,4,5),

 4 is total number of arguments

 2,3,4,5 are variable length arguments

 */

 return 0;

}

int add(int num,...)

{

 va_list valist;

 int sum = 0;

 int i;

 va_start(valist, num);

 for (i = 0; i < num; i++)

 {

 sum += va_arg(valist, int);

 }

 va_end(valist);

 return sum;

}

OUTPUT:

The value from first function call = 5

The value from second function call= 14

In the above program, function “add” is called twice. But, number of arguments passed to the

function gets varies for each. So, 3 dots (…) are mentioned for function „add” that indicates

that this function will get any number of arguments at run time.

Example 2:

Example, to find minimum of given set of integers.

// C program to demonstrate use of variable

8

// number of arguments.

#include <stdarg.h>

#include <stdio.h>

// this function returns minimum of integer

// numbers passed. First argument is count

// of numbers.

int min(int arg_count, ...)

{

 int i;

 int min, a;

 // va_list is a type to hold information about

 // variable arguments

 va_list ap;

 // va_start must be called before accessing

 // variable argument list

 va_start(ap, arg_count);

 // Now arguments can be accessed one by one

 // using va_arg macro. Initialize min as first

 // argument in list

 min = va_arg(ap, int);

 // traverse rest of the arguments to find out minimum

 for (i = 2; i <= arg_count; i++)

 if ((a = va_arg(ap, int)) < min)

 min = a;

 // va_end should be executed before the function

 // returns whenever va_start has been previously

 // used in that function

 va_end(ap);

 return min;

}

int main()

{

 int count = 5;

 printf("Minimum value is %d", min(count, 12, 67, 6, 7, 100));

 return 0;

}

Example 3:

// C program to demonstrate working of variable arguments to find average of multiple numbers.

#include <stdarg.h>

9

#include <stdio.h>

int average(int num, ...)

{

 va_list valist;

 int sum = 0, i;

 va_start(valist, num);

 for (i = 0; i < num; i++)

 sum += va_arg(valist, int);

 va_end(valist);

 return sum / num;

}

int main()

{

 printf("Average of {2, 3, 4} = %d\n",

 average(2, 3, 4));

 printf("Average of {3, 5, 10, 15} = %d\n",

 average(3, 5, 10, 15));

 return 0;

}

Output:

Average of {2, 3, 4} = 3

Average of {3, 5, 10, 15} = 10

STATEMENTS

C has three types of statement.

1. assignment

 =

2. selection (branching)

 if (expression)

 else

 switch

3. iteration (looping)

 while (expression)

 for (expression;expression;expression)

 do {block}

BLOCKS

These statements are grouped into blocks, a block is identified by curly brackets...There are

two types of block.

 statement blocks

 if (i == j)

https://www.lix.polytechnique.fr/~liberti/public/computing/prog/c/C/EXAMPLES/if.c
https://www.lix.polytechnique.fr/~liberti/public/computing/prog/c/C/SYNTAX/while.html
https://www.lix.polytechnique.fr/~liberti/public/computing/prog/c/C/SYNTAX/for.html
https://www.lix.polytechnique.fr/~liberti/public/computing/prog/c/C/SYNTAX/do.html

10

 {

 printf("martin \n");

 }

The statement block containing the printf is only executed if the i ==

j expression evaluates to TRUE.

 function blocks

 int add(int a, int b) /* Function definition */

 {

 int c;

 c = a + b;

 return c;

}

DECISION MAKING IN C

Decision making is about deciding the order of execution of statements based on

certain conditions or repeat a group of statements until certain specified conditions are met

C language handles decision-making by supporting the following statements,

 if statement

 switch statement

 conditional operator statement (? : operator)

 goto statement

Decision making with if statement

The if statement may be implemented in different forms depending on the complexity of

conditions to be tested. The different forms are,

1. Simple if statement

2. if....else statement

3. Nested if....else statement

4. Using else if statement

Simple if statement

The general form of a simple if statement is,

if(expression)

{

 statement inside;

}

 statement outside;

If the expression returns true, then the statement-inside will be executed,

otherwise statement-inside is skipped and only the statement-outside is executed.

Example:

#include <stdio.h>

int main()

{

https://www.lix.polytechnique.fr/~liberti/public/computing/prog/c/C/CONCEPT/true_false.html

11

 int x, y;

 x = 15;

 y = 13;

 if (x > y)

 {

 printf("x is greater than y");

 }

 return 0;

}

Output:

x is greater than y

if...else statement

The general form of a simple if...else statement is,

if(expression)

{

 statement block1;

}

else

{

 statement block2;

}

If the expression is true, the statement-block1 is executed, else statement-block1 is skipped

and statement-block2 is executed.

#include <stdio.h>

int main()

{

 int x, y;

 x = 15;

 y = 18;

 if (x > y)

 {

 printf("x is greater than y");

 }

 else

 {

 printf("y is greater than x");

 }

 return 0;

}

output:

y is greater than x

Nested if....else statement

The general form of a nested if...else statement is,

if(expression)

12

{

 if(expression1)

 {

 statement block1;

 }

 else

 {

 statement block2;

 }

}

else

{

 statement block3;

}

if expression is false then statement-block3 will be executed, otherwise the execution

continues and enters inside the first if to perform the check for the next if block, where if

expression 1 is true the statement-block1 is executed otherwise statement-block2 is executed.

Example:

#include <stdio.h>

int main()

{

 int a, b, c;

 printf("Enter 3 numbers...");

 scanf("%d%d%d",&a, &b, &c);

 if(a > b)

 {

 if(a > c)

 {

 printf("a is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

 else

 {

 if(b > c)

 {

 printf("b is the greatest");

 }

 else

 {

 printf("c is the greatest");

 }

 }

 return 0;

}

13

else-if ladder

The general form of else-if ladder is,

if(expression1)

{

 statement block1;

}

else if(expression2)

{

 statement block2;

}

else if(expression3)

{

 statement block3;

}

else

 default statement;

The expression is tested from the top(of the ladder) downwards. As soon as a truecondition is

found, the statement associated with it is executed.

Example

#include <stdio.h>

int main()

{

 int a;

 printf("Enter a number...");

 scanf("%d", &a);

 if(a%5 == 0 && a%8 == 0)

 {

 printf("Divisible by both 5 and 8");

 }

 else if(a%8 == 0)

 {

 printf("Divisible by 8");

 }

 else if(a%5 == 0)

 {

 printf("Divisible by 5");

 }

 else

 {

 printf("Divisible by none");

 }

 return 0;

}

14

Points to Remember

In if statement, a single statement can be included without enclosing it into curly braces { ... }

int a = 5;

if(a > 4)

 printf("success");

No curly braces are required in the above case, but if we have more than one statement inside

if condition, then we must enclose them inside curly braces.

== must be used for comparison in the expression of if condition, if you use = the expression

will always return true, because it performs assignment not comparison.

Other than 0(zero), all other values are considered as true.

if(27)

 printf("hello");

In above example, hello will be printed.

Switch statement in C

When you want to solve multiple option type problems, for example: Menu like program,

where one value is associated with each option and you need to choose only one at a time,

then, switch statement is used.

Switch statement is a control statement that allows us to choose only one choice

among the many given choices. The expression in switch evaluates to return an integral

value, which is then compared to the values present in different cases. It executes that block

of code which matches the case value. If there is no match, then default block is executed(if

present). The general form of switch statement is,

switch(expression)

{

 case value-1:

 block-1;

 break;

 case value-2:

 block-2;

 break;

 case value-3:

 block-3;

 break;

 case value-4:

 block-4;

 break;

 default:

 default-block;

 break;

}

Rules for using switch statement

15

1. The expression (after switch keyword) must yield an integer value i.e the expression

should be an integer or a variable or an expression that evaluates to an integer.

2. The case label values must be unique.

3. The case label must end with a colon(:)

4. The next line, after the case statement, can be any valid C statement.

Points to Remember

1. We don't use those expressions to evaluate switch case, which may return floating

point values or strings or characters.

2. break statements are used to exit the switch block. It isn't necessary to use break after

each block, but if you do not use it, then all the consecutive blocks of code will get

executed after the matching block.

int i = 1;

switch(i)

{

 case 1:

 printf("A"); // No break

 case 2:

 printf("B"); // No break

 case 3:

 printf("C");

 break;

}

output:

A B C

1. The output was supposed to be only A because only the first case matches, but as

there is no break statement after that block, the next blocks are executed too, until it

a break statement in encountered or the execution reaches the end of the switch block.

2. default case is executed when none of the mentioned case matches

the switchexpression. The default case can be placed anywhere in the switch case.

Even if we don't include the default case, switch statement works.

3. Nesting of switch statements are allowed, which means you can

have switchstatements inside another switch block. However,

nested switch statements should be avoided as it makes the program more complex

and less readable.

Example of switch statement

#include<stdio.h>

int main()

{

 int a, b, c, choice;

 while(choice != 3)

 {

 /* Printing the available options */

 printf("\n 1. Press 1 for addition");

16

 printf("\n 2. Press 2 for subtraction");

 printf("\n Enter your choice");

 /* Taking users input */

 scanf("%d", &choice);

 switch(choice)

 {

 case 1:

 printf("Enter 2 numbers");

 scanf("%d%d", &a, &b);

 c = a + b;

 printf("%d", c);

 break;

 case 2:

 printf("Enter 2 numbers");

 scanf("%d%d", &a, &b);

 c = a - b;

 printf("%d", c);

 break;

 default:

 printf("you have passed a wrong key");

 printf("\n press any key to continue");

 }

 }

 return 0;

}

Difference between switch and if,

 if statements can evaluate float conditions. switch statements cannot

evaluate float conditions.

 if statement can evaluate relational operators. switch statement cannot evaluate

relational operators i.e they are not allowed in switch statement.

How to use Loops in C

In any programming language including C, loops are used to execute a set of statements

repeatedly until a particular condition is satisfied.

How it Works

The below diagram depicts a loop execution,

17

As per the above diagram, if the Test Condition is true, then the loop is executed, and

if it is false then the execution breaks out of the loop. After the loop is successfully executed

the execution again starts from the Loop entry and again checks for the Test condition, and

this keeps on repeating.

The sequence of statements to be executed is kept inside the curly braces { } known

as the Loop body. After every execution of the loop body, condition is verified, and if it is

found to be true the loop body is executed again. When the condition check returns false, the

loop body is not executed, and execution breaks out of the loop.

Types of Loop

There are 3 types of Loop in C language, namely:

1. while loop

2. for loop

3. do while loop

while loop

while loop can be addressed as an entry control loop. It is completed in 3 steps.

Variable initialization.(e.g int x = 0;)

condition(e.g while(x <= 10))

Variable increment or decrement (x++ or x-- or x = x + 2)

Syntax :

variable initialization;

18

while(condition)

{

 statements;

 variable increment or decrement;

}

Example: Program to print first 10 natural numbers

#include<stdio.h>

int main()

{

 int x;

 x = 1;

 while(x <= 10)

 {

 printf("%d\t", x);

 /* below statement means, do x = x+1, increment x by 1*/

 x++;

 }

 return 0;

}

output

1 2 3 4 5 6 7 8 9 10

do while loop

In some situations it is necessary to execute body of the loop before testing the

condition. Such situations can be handled with the help of do-while loop. do statement

evaluates the body of the loop first and at the end, the condition is checked

using whilestatement. It means that the body of the loop will be executed at least once, even

though the starting condition inside while is initialized to be false. General syntax is,

do

{

}

while(condition);

Example: Program to print first 10 multiples of 5.

#include<stdio.h>

int main()

{

 int a, i;

 a = 5;

 i = 1;

19

 do

 {

 printf("%d\t", a*i);

 i++;

 }

 while(i <= 10);

 return 0;

}

Output:

5 10 15 20 25 30 35 40 45 50

for loop

for loop is used to execute a set of statements repeatedly until a particular condition is

satisfied. We can say it is an open ended loop.. General format is,

for(initialization; condition; increment/decrement)

{

 statement-block;

}

The for loop is executed as follows:

1. It first evaluates the initialization code.

2. Then it checks the condition expression.

3. If it is true, it executes the for-loop body.

4. Then it evaluate the increment/decrement condition and again follows from step 2.

5. When the condition expression becomes false, it exits the loop.

Example: Program to print first 10 natural numbers

#include<stdio.h>

int main()

{

 int x;

 for(x = 1; x <= 10; x++)

 {

 printf("%d\t", x);

 }

 return 0;

}

output

1 2 3 4 5 6 7 8 9 10

Jumping Out of Loops

Sometimes, while executing a loop, it becomes necessary to skip a part of the loop or to leave

the loop as soon as certain condition becomes true. This is known as jumping out of loop.

1) break statement

20

When break statement is encountered inside a loop, the loop is immediately exited and the

program continues with the statement immediately following the loop.

Example:

#include<stdio.h>

int main ()

{

 int i;

 for(i = 0; i<10; i++)

 {

 printf("%d ",i);

 if(i == 5)

 break;

 }

 printf("came outside of loop i = %d",i);

 return 0;

}

output:

0 1 2 3 4 5 came outside of loop i = 5

2) continue statement

It causes the control to go directly to the test-condition and then continue the loop process.

On encountering continue, cursor leave the current cycle of loop, and starts with the next

cycle.

21

#include<stdio.h>

int main ()

{

 int i = 0;

 while(i!=10)

 {

 printf("%d", i);

 continue;

 i++;

 }

 return 0;

}

1 2 3 4 6 7 8 9 10

As you can see, 5 is not printed on the console because loop is continued at i==5.

goto labels

A goto statement in C programming provides an unconditional jump from the 'goto'

to a labeled statement in the same function.

NOTE − Use of goto statement is highly discouraged in any programming language because

it makes difficult to trace the control flow of a program, making the program hard to

understand and hard to modify. Any program that uses a goto can be rewritten to avoid

them.

Syntax

The syntax for a goto statement in C is as follows −

goto label;

..

22

.

label: statement;

here label can be any plain text except C keyword and it can be set anywhere in the C

program above or below to goto statement.

#include <stdio.h>

 int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 LOOP:do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 goto LOOP;

 }

 printf("value of a: %d\n", a);

 a++;

 }while(a < 20);

 return 0;

}

When the above code is compiled and executed, it produces the following result –

value of a: 10

value of a: 11

value of a: 12

23

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

1. AREA AND CIRCUMFERENCE OF

A CIRCLE

#include<stdio.h>

int main()

{

float r,a,c;

printf("enter the radius of the circle");

scanf("%f",&r);

a=3.14*r*r;

c=2*3.14*r;

printf("area %f",a);

printf("circumference %f",c);

return 0;

}

Output :

area 78.500000

circumference 31.400000

2. CONVERSION BETWEEN CELSIUS

AND FAHRENHEIT

#include<stdio.h>

main ()

{

float f, c;

printf("enter Celsius\n");

scanf("%f",&c);

f= (1.8*c) +32;

printf("\n Fahrenheit value %f", f);

printf("enter the Fahrenheit\n");

scanf("%f",&f);

c= (f-32)/1.8;

printf("celcius %f ",c);

return 0;

}

Output : Enter Celsius 5

 Fahrenheit value 41.000000

 Enter the Fahrenheit 20

 Celsius is -6.666667

3. ODD OR EVEN NUMBER

#include<stdio.h>

int main()

{

int n ;

printf("Enter a number ");

scanf("%d", &n);

if(n%2==0)

printf("the number is even");

else

printf("the number is odd");

return 0;

4. LEAP YEAR CACLULATION

 #include<stdio.h>

int main()

{

int n ;

printf("Enter a year ");

scanf("%d", &n);

if(n%4==0)

printf("Leap year");

else

printf("Not a leap year");

return 0;

24

}

Output :

Enter a number 10

the number is even

}

Output :

Enter a year 1996

Leap year

5. SWAPPING TWO NUMBERS

#include<stdio.h>

int main()

{

 int a,b,temp;

 printf(“Enter a, b”);

 scanf(“%d%d”,&a,&b);

 printf(“Before swap %d %d”, a, b);

 temp = a;

 a = b;

 b = temp;

printf(“After swap %d %d”, a, b);

return 0;

}

Output :

Enter a, b 10 20

Before swap 10 20

After swap 20 10

6. SWAPPING WITHOUT TEMPORARY

VARIABLES

#include<stdio.h>

int main()

{

 int a,b;

 printf(“Enter a, b”);

 scanf(“%d%d”,&a,&b);

 printf(“Before swap %d %d”, a, b);

 a=a+b;

b=a-b;

a=a-b;

printf(“After swap %d %d”, a, b);

return 0;

}

Output :

Enter a, b 10 20

Before swap 10 20

After swap 20 10

7. GREATEST OF THREE NUMBERS

#include<stdio.h>

int main()

{

int a,b,c;

printf("enter the three numbers");

scanf("%d%d%d",&a,&b,&c);

if(a>b && a>c)

printf("%d is biggest",a);

else if(b>c)

printf("%d is biggest",b);

else

printf("%d is biggest",c);

8. PROGRAM TO CHECK PRIME

NUMBER

 int main()

{

int n,i=2;

printf("Enter the number\n");

scanf("%d",&n);

while(i<n)

{

 if(n% i = = 0)

 { printf”It not a prime number");

 break; }

 i++;

}

25

}

Output:

Enter the three numbers 20 10 15

20 is biggest

if(i= = n)

 printf("Prime number",);

}

Output : Enter the number 7

 Prime number

9. ARITHMETIC OPERATORS

int main()

{

int a,b, choice;

printf("enter two numbers:");

scanf("%d%d",&a,&b);

printf("1.add\n2.subtract\n3.multiply

\n4.division\n5.modulo");

printf("enter your choice");

scanf("%d",&choice);

switch(choice)

{

case 1:

 printf("sum is %d",a+b); break;

case 2:

 printf("difference is %d",a-b); break;

case 3:

 printf("product is %d",a*b); break;

case 4:

 printf("quotient is %d",a/b); break;

case 5:

 printf("modulo is %d",a%b); break;

default:

 printf("invalid operation");

break;

}

return 0;

}

Output :

Enter two numbers: 10 20

1.add

2.subtract

3.multiply

10. PROGRAM TO REVERSE A

NUMBER & TO CHECK

PALINDROME NUMBER

#include <stdio.h>

 int main()

{

int n,a,rev=0,rem;

printf("Enter the number \n");

scanf("%d",&n);

a=n;

while(n>0)

{

 rem=n%10;

 rev=(rev*10)+rem;

 n=n/10;

}

printf("The reverse number of the %d is

 %d\n",a, rev);

if(a= =rev)

 printf("%d is palindrome\n",a);

else

 printf("%d is not a palindrome\n",a);

return 0;

}

Output:

Enter the number 121

The reverse number of the 121 is 121

121 is a palindrome

26

4.division

5.modulo

enter your choice 1

sum is 30

11. PROGRAM TO SUM OF N

NATURAL NUMBERS

#include<stdio.h>

int main()

{

int i,n,sum;

i=1;

sum=0;

printf("Enter the value of n \n");

scanf("%d",&n);

while(i<=n)

{

 sum=sum+i;

 i = i+1;

}

printf("The sum of numbers is %d ",sum);

return 0;

}

Output :

Enter the value of n : 5

The sum of numbers is 15

12. PROGRAM TO CALCULATE

FACTORIAL OF A NUMBER

#include<stdio.h>

int main()

{

int n, fact=1,i;

printf("Enter the number");

scanf("%d",&n);

for(i=1;i<=n;i++)

{

fact=fact*i;

}

printf("The factorial of %d is %d",n,fact);

 return 0;

}

Output :

Enter the number 5

The factorial of 5 is 120

13. PROGRAM TO CALCULATE SUM

OF INDIVIDUAL DIGITS OF A

NUMBER

#include<stdio.h>

int main()

{

int n,rem,sum=0;

printf("Enter n :");

scanf("%d" ,&n);

while(n>0)

14. PROGRAM TO CALCULATE SUM OF

SQUARE OF INDIVIDUAL DIGITS

OF A NUMBER

#include<stdio.h>

int main()

{

int n,rem,sum=0;

printf("Enter n :");

scanf("%d" ,&n);

while(n>0)

27

{

rem=n%10;

sum=sum+rem;

n=n/10;

}

printf("\nsum of digits is %d",sum);

return 0;

}

Output :

Enter n 123

sum of digits is 6

{

rem=n%10;

sum=sum+(rem+rem);

n=n/10;

}

printf("\nsum of square of digits is %d",sum);

return 0;

}

Output :

Enter n 123

sum of square of digits is 14

15. PROGRAM TO CHECK

ARMSTRONG NUMBER

#include<stdio.h>

int main()

{

int n,a,rem,sum=0;

printf("Enter n :");

scanf("%d",&n);

a=n;

while(n>0)

{

rem=n%10;

sum=sum+(rem*rem*rem);

n=n/10;

}

if(a = = sum)

 printf("\n It is an Armstrong

number");

else

 printf("\n It is not an Armstrong

number");

return 0;

}

Output :

Enter n 153

It is an Armstrong number

16. PROGRAM TO GENERATE

FIBONACCI SERIES

#include<stdio.h>

int main()

{

 int a=-1,b=1,c=0,n,i;

 printf("Enter the number");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 c=a+b;

 printf("\n %d",c);

 a=b;

 b=c;

 }

return 0;

 }

Output :

Enter the number: 6

0 1 1 2 3 5

28

UNIT 4: FUNCTIONS AND PROGRAM STRUCTURE 9

Basics of functions, parameter passing and returning type, External, Auto, Local, Static, Register

Variables, Scope Rules, Block structure, Initialisation, Recursion, C Preprocessor, Standard Library

Functions and return types.

BASICS OF FUNCTIONS

A C program is nothing but a combination of one or more functions. Every C program starts with a user

defined function main().

The C language supports two types of functions. They are:

1. Library Functions.

2. User defined functions

Library functions are pre-defined set of functions. The users can use the functions but cannot modify or

change them.

User defined functions are defined by the user according to his/her requirements. The user can modify the

functions. The user understands the internal working of the functions.

Definition of Function:

A function is a self-contained block or a sub program of one or more statements that performs a specific

task when called.

The general syntax is as follows:

<data type of the return value> function name(argument/parameter list)

{

variable declaration;

statement 1;

statement 2;

return(value);

}

Working of a Function

The working of a function is given below:

int abc(int l, int k); Function Declaration

void main()

{

 -----;

 -----;

 abc(x,y); Function call

 x, y are actual arguments

}

int abc(int l, int k) Function Definition

{ l, k are formal or dummy arguments

 return(); return value

}

1. Function Declaration: A function declaration tells the compiler about a function name and how to

call the function. Function declaration contains,

a. Return Type: A function may return a value. The return type is the data type of the value the

function returns.

b. Function Name: A name given to the function similar to a name given to a variable.

c. Argument/Parameter List: The variable name enclosed within the parenthesis is the argument

list.

General Form :

return_type function_name(parameter list);

2. Function Definition: A function definition provides the actual body of the function. A function

definition in C programming consists of a function header and a function body.

a. Function Header: Function Header contains Return Type, Function Name, and

Argument/Parameter List similar to Function Declaration.

b. Function Body: The function body contains a collection of statements that define what the

function does. Function Body also has a return statement.

c. Return value: The result obtained by the function is sent back by the function to the function call

through the return statement. It returns one value per call.

General Form :

return_type function_name(parameter list)

{

 body of the function

 return();

}

3. Function call: To use a function, you will have to call that function to perform the defined task. To

call a function, you simply need to pass the required parameters(actual) along with the function

name, and if the function returns a value, then you can store the returned value.

General Form:

function_name(parameters);

4. Arguments: There are two types of arguments. They are

a. Actual arguments: The arguments of calling functions are called actual arguments.

b. Formal/Dummy arguments: The arguments of called functions are called formal or dummy

arguments.

5. Variables: There are two kinds of variables. They are

a. Local variables: The variables which are declared inside the function definition is called local

variable.

b. Global Variable: Variables which are declared outside the main function is called global

variable.

SCOPE RULES IN C

A scope in any programming is a region of the program where a defined variable can have its

existence and beyond that variable it cannot be accessed. There are three places where variables can be

declared in C programming language.

 Inside a function or a block which is called local variables.

 Outside of all functions which is called global variables.

 In the definition of function parameters which are called formal parameters.

(a) Local Variables :

Variables that are declared inside a function or block are called local variables. They can be used

only by statements that are inside that function or block of code. Local variables are not known to

functions outside their own.

Example:

#include <stdio.h>

int main ()

{

/* local variable declaration */

int a, b;

int c;

/* actual initialization */

a = 10;

b = 20;

c = a + b;

printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

return 0;

}

Here all the variables a, b, and c are local to main() function.

(b) Global Variables :

Global variables are defined outside a function, usually on top of the program. Global variables

hold their values throughout the lifetime of your program and they can be accessed inside any of

the functions defined for the program. A global variable can be accessed by any function. That is, a

global variable is available for use throughout your entire program after its declaration.

Example:

#include <stdio.h>

/* global variable declaration */

int g;

int main ()

{

/* local variable declaration */

int a, b;

/* actual initialization */

a = 10;

b = 20;

g = a + b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

return 0;

 }

A program can have same name for local and global variables but the value of local variable inside

a function will take preference.

Example:

#include <stdio.h>

/* global variable declaration */

int g = 20;

int main ()

{

/* local variable declaration */

int g = 10;

printf ("value of g = %d\n", g);

return 0;

}

Output:

value of g = 10

(c) Formal Parameters :

Formal parameters, are treated as local variables with-in a function and they take precedence over

global variables.

int a = 20;

int main ()

{

/* local variable declaration in main function */

int a = 10;

int b = 20;

int c = 0;

printf ("value of a in main() = %d\n", a);

c = sum(a, b);

printf ("value of c in main() = %d\n", c);

return 0;

}

/* function to add two integers */

int sum(int a, int b)

{

/*formal parameters */

printf ("value of a in sum() = %d\n", a);

printf ("value of b in sum() = %d\n", b);

return a + b;

}

Output:

value of a in main() = 10

value of a in sum() = 10

value of b in sum() = 20

value of c in main() = 30

INITIALIZATION OF LOCAL AND GLOBAL VARIABLES

When a local variable is defined, it is not initialized by the system, you must initialize it yourself.

Global variables are initialized automatically by the system when you define them as follows,

Data Type Initial Default Value

int 0

char ‘\0’

float 0

double 0

pointer NULL

It is a good programming practice to initialize variables properly; otherwise your program may

produce unexpected results, because uninitialized variables will take some garbage value already

available at their memory location.

RETURNING FUNCTION RESULTS

This is done by the use of the keyword return, followed by a data variable or constant value. The

datatype of the data variable or constant value must match with that of the declared

return_data_type for the function.

float add_numbers(floatn1,floatn2)
{
return n1+n2; /*legal*/
return 6; /*illegal, not the same datatype*/
return 6.0; /*legal*/
}

It is possible for a function to have multiple return statements, provided only one return statement will

be executed. In the below example, based on user input only one return statement will be executed.

int validate_input(char command)

{

switch(command)

{
case'+':
case'-':return 1;

case'*':

case'/':return 2;
default :return 0;

}
 }

PARAMETER PASSING

Example:

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main ()

{

/* local variable definition */

int a = 100;

int b = 200;

int ret;

/* calling a function to get max value */

ret = max(a, b);

printf("Max value is : %d\n", ret);

return 0;

}

/* function definition for returning the max between two numbers */

int max(int num1, int num2)

{

 /* local variable declaration */

int result;

if (num1 > num2)

 result = num1;

 else

 result = num2;

 /* Return Statement of the function max() */

 return result;

 }

FUNCTION PROTOTYPES

 The Function prototypes are classified into four types. They are:

1. Function with no argument and no return value.

2. Function with no argument and with return value.

3. Function with argument and no return value.

4. Function with argument and with return value.

1. Function with no argument and no return value:

 Neither data is passed through the calling function nor the data is sent back from the

called function.

 There is no data transfer between calling and the called function.

 The function is only executed and nothing is obtained.

 The Function acts independently. It reads data values and print result in the same block.

Example program:

#include<stdio.h>

void add(); /* No parameter-list No return type*/

void main()

{

clrscr();

add();

getch();

}

void add()

{

int a,b,c;

a=10;

b=5;

c=a+b;

printf("\nThe sum=%d",c);

}

OUTPUT:

The sum=15

2. Function with no argument and with return value

 In this type of function, no arguments are passed through the main function. But

the called function returns the value.

 The called function is independent. It reads values from the keyboard and returns

value to the function call.

 Here both the called and calling functions partly communicate with each other.

Example program:

#include<stdio.h>

int add(); /* No parameter-list but only return type*/

void main()

{

int a,b,c;

clrscr();

c=add();

printf("\nThe sum=%d",c);

getch();

}

int add()

{

int a,b,c;

a=10;

b=5;

c=a+b;

return(c);

}

OUTPUT:

The sum=15

3. Function with argument and no return value

 In this type of function, arguments are passed through the calling function. The called

function operates on the values. But no result is sent back.

 The functions are partly dependent on the calling function. The result obtained is

utilized by the called function.

Example program;

#include<stdio.h>

void add(int,int); /* parameter-list is given but no return type*/

void main()

{

int a,b;

clrscr();

a=10;b=5;

add(a,b);

getch();

}

void add(int a,int b)

{

int c;

c=a+b;

printf("\nThe sum=%d",c);

}

OUTPUT:

The sum=15

4. Function with argument and with return value

 In this type of function, data is transferred between calling and called function.

 Both communicate with each other by passing parameters to the called function and

return values to the called function.

Example Program:

#include<stdio.h> /* parameter-list and return type both are given*/

int add(int,int);

void main()

{

int a,b,c;

clrscr();

a=10;b=5;

c=add(a,b);

printf("\nThe sum=%d",c);

getch();

}

void add(int a,int b)

{

int c;

c=a+b;

return(c);

}

OUTPUT:

The sum=15

PARAMETER PASSING METHODS

 There are two ways by which arguments are passed in the function. They are:

1. Call by value.

2. Call by reference.

1. Call by value:

In this type, values of actual arguments are passed to the formal arguments and the operation

is done on the dummy arguments. Any change made in the formal arguments does not affect the

actual arguments because formal arguments are photocopies of actual arguments.

Example Program:

#include<stdio.h>

void swap(int,int);

void main()

{

int a,b;

clrscr();

a=10;

b=5;

swap(a,b);

printf("\nAfter swapping\n");

printf("Actual Arguments\n");

printf("a=%d",a);

printf("\nb=%d",b);

getch();

}

void swap(int a,int b)

{

int c;

c=a;

a=b;

b=c;

printf("After swapping\n");

printf("Formal Arguments\n");

printf("a=%d",a);

printf("\nb=%d",b);

}

OUTPUT:

After swapping

Formal Arguments

a=5

b=10

After swapping

Actual Arguments

a=10

b=5

2. Call by Reference:

In this type, addresses are passed. Function operates on addresses rather than values. Here, the

formal arguments are pointers to the actual arguments. Here changes are made in the arguments

as permanent. So, ant change made to the formal arguments reflects actual arguments.

Example Program:

#include<stdio.h>

void swap(int*,int*);

void main()

{

int a,b;

clrscr();

a=10;b=5;

swap(&a,&b);

printf("\nAfter swapping\n");

printf("Actual Arguments\n");

printf("\na=%d",a);

printf("\nb=%d",b);

getch();

}

void swap(int *x,int *y)

{

int c;

c=*x;

*x=*y;

*y=c;

}

OUTPUT:

After swapping

Actual Arguments

a=5

b=10

C – STORAGE CLASS SPECIFIERS

Storage Classes are used to describe the features of a variable/function. The features basically

include lifetime, visibility, memory location, and initial value of a variable. It helps us to trace

the existence of a particular variable during the runtime of a program.

SYNTAX: storage_specifier data-type variable _name

TYPES OF C – STORAGE CLASS SPECIFIERS:

There are 4 storage class specifiers available in C language.

1. auto

2. static

3. extern

4. register

S.No.
Storage

Specifier

Storage

place

Initial /

default

value

Scope Life

1 Auto
CPU

Memory

Garbage

value
local Within the function

2

static

CPU

memory
Zero local

Retains the value of the variable

between different function calls.

3 Extern
CPU

memory
Zero Global

Till end of the main program.

Variable definition might be anywhere

in the C program

4 register
Register

memory

Garbage

value
local Within the function

NOTE:

 For faster access of a variable, it is better to go for register specifiers rather than auto

specifiers.

 Because, register variables are stored in register memory whereas auto variables are stored in

main CPU memory.

 Only few variables can be stored in register memory. So, we can use variables as register that

are used very often in a C program.

EXAMPLE PROGRAM FOR C AUTO VARIABLE:

The scope of this auto variable is within the function only. It is equivalent to local variable. All

local variables are auto variables by default. Hence, the keyword auto is rarely used while

writing programs in C language. The memory assigned to automatic variables gets freed upon

exiting from the block.

#include<stdio.h>

void increment(void);

 int main()

{

increment();

increment();

increment();

increment();

}

void increment(void)

{

auto int i = 0 ;

printf ("%d \n", i) ;

i++;

 }

OUTPUT

0

0

0

0

EXAMPLE PROGRAM FOR C STATIC VARIABLE:

In static variables retain the value of the variable between different function calls. They are

initialized only once and exist till the termination of the program. Thus, no new memory is

allocated because they are not re-declared.

#include<stdio.h>

void increment(void);

int main()

{

increment();

increment();

increment();

increment();

}

 void increment(void)

{

static int i = 0 ;

printf ("%d \n", i) ;

i++;

 }

OUTPUT

0

1

2

3

EXAMPLE PROGRAM FOR EXTERN VARIABLE:

The scope of this extern variable is throughout the main program. It is equivalent to global

variable. Definition for extern variable might be anywhere in the C program. The main purpose

of using extern variables is that they can be accessed between two different files which are part

of a large program.

#include<stdio.h>

int x = 10 ;

int main()

{

extern int y ;

printf ("The value of x is %d \n", x) ;

printf ("The value of y is %d", y) ;

}

int y = 50 ;

OUTPUT

The value of x is 10

The value of y is 50

EXAMPLE PROGRAM FOR REGISTER VARIABLE:

Register variables are also local variables, but stored in register memory. Whereas auto variables

are stored in main CPU memory. Register variables will be accessed very faster than the normal

variables since they are stored in register memory rather than main memory. But, only limited

variables only can be used as register since register size is very low. (16bits, 32 bits or 64 bits).

An important and interesting point to be noted here is that we cannot obtain the address of a

register variable using pointers.

#include<stdio.h>

int main()

{

register int i, arr[5]; // declaring array

arr[0] = 10; // Initializing array

arr[1] = 20;

arr[2] = 30;

arr[3] = 40;

arr[4] = 50;

for (i=0;i<5;i++)

{

 // Accessing each variable

 printf("value of arr[%d] is %d \n", i, arr[i]);

 }

}

OUTPUT

value of arr[0] is 10

value of arr[1] is 20

value of arr[2] is 30

value of arr[3] is 40

value of arr[4] is 50

RECURSION

The process in which a function calls itself directly or indirectly is called recursion and the

corresponding function is called as recursive function. Using recursive algorithm, certain

problems can be solved quite easily. Examples of such problems are Towers of Hanoi

http://quiz.geeksforgeeks.org/c-program-for-tower-of-hanoi/

(TOH), Inorder/Preorder/Postorder Tree Traversals, DFS of Graph, etc.

Consider the calculation of 6!(factorial)

i.e.,6!=6*5*4*3*2*1

This is computed as,

6! = 6 * 5! i.e., 6! = 6*(6-1)!

5! = 5 * 4! i.e., 5! = 5*(5-1)!

:

:

1! = 1 * 0!

So,

n!=n*(n-1)!

Example:

/* example for demonstrating recursion*/

#include<stdio.h>

int factorial(int); /*function declaration/prototype*/

/*function definition*/

int factorial(int n)

{

int result;

if(n==0)

 result=1;

else

 result = n * factorial(n-1); /* Recursive Call Factorial Call Itself*/

return result;

}

main()

{

int j;

printf("Enter Number to find factorial");

scanf("%d",&j);

http://quiz.geeksforgeeks.org/c-program-for-tower-of-hanoi/
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

printf("%d",factorial(j));

}

C PREPROCESSOR:

The C preprocessor is a macro preprocessor (allows you to define macros) that transforms your

program before it is compiled. These transformations can be inclusion of header file, macro

expansions etc.

All preprocessing directives begins with a # symbol. For example,

#define PI 3.14

Some of the common uses of C preprocessor are:

Including Header Files

The #include preprocessor is used to include header files to a C program. For example,

#include <stdio.h>

Here, "stdio.h" is a header file. The #include preprocessor directive replaces the above line with

the contents of stdio.h header file which contains function and macro definitions.

That's the reason why you need to use #include <stdio.h> before you can use functions like

scanf() and printf().

You can also create your own header file containing function declaration and include it in your

program using this preprocessor directive.

#include "my_header.h"

Visit this page to learn on using header files.

Macros using #define

You can define a macro in C using #define preprocessor directive.

A macro is a fragment of code that is given a name. You can use that fragment of code in your

program by using the name. For example,

#define c 299792458 // speed of light

Here, when we use c in our program, it's replaced with 299792458.

Example 1: #define preprocessor

#include <stdio.h>

#define PI 3.1415

int main()

{

 float radius, area;

 printf("Enter the radius: ");

 scanf("%d", &radius);

 // Notice, the use of PI

 area = PI*radius*radius;

 printf("Area=%.2f",area);

 return 0;

}

You can also define macros that works like a function call, known as function-like macros. For

example,

#define circleArea(r) (3.1415*(r)*(r))

Every time the program encounters circleArea(argument), it is replaced by

(3.1415*(argument)*(argument)).

Suppose, we passed 5 as an argument then, it expands as below:

circleArea(5) expands to (3.1415*5*5)

Example 2: Using #define preprocessor

#include <stdio.h>

#define PI 3.1415

#define circleArea(r) (PI*r*r)

int main()

{

 int radius;

 float area;

 printf("Enter the radius: ");

 scanf("%d", &radius);

 area = circleArea(radius);

 printf("Area = %.2f", area);

 return 0;

}

Conditional Compilation

In C programming, you can instruct preprocessor whether to include certain chuck of code or

not. To do so, conditional directives can be used. It's similar like a if statement. The if statement

is tested during the execution time to check whether a block of code should be executed or not

whereas, the conditionals is used to include (or skip) certain chucks of code in your program

before execution.

Uses of Conditional

use different code depending on the machine, operating system

compile same source file in two different programs

to exclude certain code from the program but to keep it as reference for future purpose

How to use conditional?

To use conditional, #ifdef, #if, #defined, #else and #elseif directives are used.

#ifdef Directive

#ifdef MACRO

 conditional codes

#endif

Here, the conditional codes are included in the program only if MACRO is defined.

#if, #elif and #else Directive

#if expression

 conditional codes

#endif

Here, expression is a expression of integer type (can be integers, characters, arithmetic

expression, macros and so on). The conditional codes are included in the program only if the

expression is evaluated to a non-zero value.

The optional #else directive can used with #if directive.

#if expression

 conditional codes if expression is non-zero

#else

 conditional if expression is 0

#endif

You can also add nested conditional to your #if...#else using #elif

#if expression

 conditional codes if expression is non-zero

#elif expression1

 conditional codes if expression is non-zero

#elif expression2

 conditional codes if expression is non-zero

...

else

 conditional if all expressions are 0

#endif

#defined

The special operator #defined is used to test whether certain macro is defined or not. It's often

used with #if directive.

#if defined BUFFER_SIZE && BUFFER_SIZE >= 2048

 conditional codes

Predefined Macros

There are some predefined macros which are readily for use in C programming.

Predefined macro Value

__DATE__ String containing the current date

__FILE__ String containing the file name

__LINE__ Integer representing the current line number

__STDC__ If follows ANSI standard C, then value is a nonzero integer

__TIME__ String containing the current date.

Example 3: Get current time using __TIME__

The following program outputs the current time using __TIME__ macro.

#include <stdio.h>

int main()

{

 printf("Current time: %s",__TIME__); //calculate the current time

}

Output

Current time: 19:54:39

C STANDARD LIBRARY FUNCTIONS

C Standard library functions or simply C Library functions are inbuilt functions in C

programming. The prototype and data definitions of the functions are present in their respective

header files, and must be included in your program to access them.

For example: If you want to use printf() function, the header file <stdio.h> should be

included.

There is at least one function in any C program, i.e., the main() function (which is also a library

function). This function is automatically called when your program starts.

Advantages of using C library functions

1. Easy to use: These functions have gone through multiple rigorous testing and are easy to use.

2. The functions are optimized for performance: Since, the functions are "standard library"

functions, a dedicated group of developers constantly make them better. In the process, they are

able to create the most efficient code optimized for maximum performance.

3. It saves considerable development time: It saves valuable time and your code may not

always be the most efficient.

4. The functions are portable : With ever changing real world needs, your application is

expected to work every time, everywhere. And, these library functions help you in that they do

the same thing on every computer. This saves time, effort and makes your program portable.

C Library Functions Under Different Header File

C Header Files

<assert.h> Program assertion functions

<ctype.h> Character type functions

<locale.h> Localization functions

<math.h> Mathematics functions

<setjmp.h> Jump functions

<signal.h> Signal handling functions

<stdarg.h> Variable arguments handling functions

<stdio.h> Standard Input/Output functions

<stdlib.h> Standard Utility functions

<string.h> String handling functions

<time.h> Date time functions

C <ctype.h> header

Header file <ctype.h> includes numerous standard library functions to handle characters

(especially test characters).

Function Description

isalnum() checks alphanumeric character

isalpha() checks whether a character is an alphabet or not

iscntrl() checks control character

https://www.programiz.com/c-programming/library-function/ctype.h
https://www.programiz.com/c-programming/library-function/math.h
https://www.programiz.com/c-programming/library-function/string.h
https://www.programiz.com/c-programming/library-function/ctype.h/isalnum
https://www.programiz.com/c-programming/library-function/ctype.h/isalpha
https://www.programiz.com/c-programming/library-function/ctype.h/iscntrl

Function Description

isdigit() checks numeric character

isgraph() checks graphic character

islower() checks lowercase alphabet

isprint() checks printable character

ispunct() checks punctuation

isspace() check white-space character

isupper() checks uppercase alphabet

isxdigit() checks hexadecimal digit character

tolower() converts alphabet to lowercase

toupper() converts to lowercase alphabet

C <math.h> header

There are various standard library functions and a macro defined under <math.h> to perform

mathematical operations in C programming.

Function Description

acos() computes arc cosine

acosh() computes arc hyperbolic cosine

asin() computes arc sine

asinh() computes the hyperbolic of arc sine of an argument

atan() computes the arc tangent of an argument

atan2() computes the arc tangent of an argument.

https://www.programiz.com/c-programming/library-function/ctype.h/isdigit
https://www.programiz.com/c-programming/library-function/ctype.h/isgraph
https://www.programiz.com/c-programming/library-function/ctype.h/islower
https://www.programiz.com/c-programming/library-function/ctype.h/isprint
https://www.programiz.com/c-programming/library-function/ctype.h/ispunct
https://www.programiz.com/c-programming/library-function/ctype.h/isspace
https://www.programiz.com/c-programming/library-function/ctype.h/isupper
https://www.programiz.com/c-programming/library-function/ctype.h/isxdigit
https://www.programiz.com/c-programming/library-function/ctype.h/tolower
https://www.programiz.com/c-programming/library-function/ctype.h/toupper
https://www.programiz.com/c-programming/library-function/math.h/acos
https://www.programiz.com/c-programming/library-function/math.h/acosh
https://www.programiz.com/c-programming/library-function/math.h/asin
https://www.programiz.com/c-programming/library-function/math.h/asinh
https://www.programiz.com/c-programming/library-function/math.h/atan
https://www.programiz.com/c-programming/library-function/math.h/atan2

Function Description

atanh() computes arc hyperbolic tangent

cbrt() computes cube root of a number

ceil() computes the nearest integer greater than argument

cos() computes the cosine of an argument.

cosh() computer hyperbolic cosine.

exp() computes the exponential raised to the argument

fabs() computes absolute value

floor() calculates the nearest integer less than argument

hypot() computes hypotenuse

log() computes natural logarithm of an argument.

 log10() computes the base 10 logarithm of an argument.

pow() Computes power of a number

 sin() compute sine of a number

sinh() computes the hyperbolic sine of an argument.

sqrt() computes square root of a number

tan() computes tangent

tanh() computes the hyperbolic tangent of an argument

C <string.h> header

There are various standard library functions and a macro defined under <string.h> to manipulate

and perform operations on strings and array of characters in C programming.

Function Description

https://www.programiz.com/c-programming/library-function/math.h/atanh
https://www.programiz.com/c-programming/library-function/math.h/cbrt
https://www.programiz.com/c-programming/library-function/math.h/ceil
https://www.programiz.com/c-programming/library-function/math.h/cos
https://www.programiz.com/c-programming/library-function/math.h/cosh
https://www.programiz.com/c-programming/library-function/math.h/exp
https://www.programiz.com/c-programming/library-function/math.h/fabs
https://www.programiz.com/c-programming/library-function/math.h/floor
https://www.programiz.com/c-programming/library-function/math.h/hypot
https://www.programiz.com/c-programming/library-function/math.h/log
https://www.programiz.com/c-programming/library-function/math.h/log10
https://www.programiz.com/c-programming/library-function/math.h/pow
https://www.programiz.com/c-programming/library-function/math.h/sin
https://www.programiz.com/c-programming/library-function/math.h/sinh
https://www.programiz.com/c-programming/library-function/math.h/sqrt
https://www.programiz.com/c-programming/library-function/math.h/tan
https://www.programiz.com/c-programming/library-function/math.h/tanh

Function Description

strcat() Concatenates two strings

strcmp() compares two strings

strcpy() copies string

strlen() calculates the length of a string

strrev() Finds the reverse of a string

https://www.programiz.com/c-programming/library-function/string.h/strcat
https://www.programiz.com/c-programming/library-function/string.h/strcmp
https://www.programiz.com/c-programming/library-function/string.h/strcpy
https://www.programiz.com/c-programming/library-function/string.h/strlen

UNIT – V

Pointers and addresses, Pointers and Function Arguments, Pointers and Arrays, Address Arithmetic,

character Pointers and Functions, Pointer Arrays, Pointer to Pointer, Multi-dimensional arrays, Strings,

Initialisation of Pointer Arrays, Command line arguments, Pointers to functions, complicated declarations.

Basic Structures, Structures and Functions, Array of structures, Pointer of Structures, Self-referential

Structures, Table look up, typedef, Unions, Bit-fields, File Access -Error Handling, Line I/O,

Miscellaneous Functions.

POINTER

A pointer is a variable that contains the address of a variable. Pointers are much used in C, partly, because

they are sometimes the only way to express a computation, and partly because they usually lead to more

compact and efficient code than can be obtained in other ways.

POINTERS AND ADDRESSES

Let us begin with a simplified picture of how memory is organized. A typical machine has an array of

consecutively numbered or addressed memory cells that may be manipulated individually or in contiguous

groups.

One common situation is that any byte can be a char, a pair of one-byte cells can be treated as a short

integer, and four adjacent bytes form a long.

A pointer is a group of cells (often two or four) that can hold an address. So if c is a char and p is a pointer

that points to it, we could represent the situation this way:

p = &c;

assigns the address of c to the variable p, and p is said to "point to" c. The & operator only applies to

objects in memory: variables and array elements. It cannot be applied to expressions, constants, or register

variables.

The unary operator * is the indirection or dereferencing operator; when applied to a pointer, it accesses the

object the pointer points to. Suppose that x and yare integers and ip is a pointer to into this artificial

sequence shows how to declare a pointer and how to use & and *:

The declarations of x, y, and z are what we've seen all along. The declaration of the pointer ip,

int *ip;

is intended as a mnemonic; it says that the expression *ip is an into The syntax of the declaration for a

variable mimics the syntax of expressions in which the variable might appear. This reasoning applies to

function declarations as well. For example,

double *dp, atof(char *);

says that in an expression *dp and atof (s) have values of type double, and that the argument of atof is a

pointer to char.

You should also note the implication that a pointer is constrained to point to a particular kind of object:

every pointer points to a specific data type. (There is one exception: a "pointer to void" is used to hold any

type of pointer but cannot be dereferenced itself.

If ip points to the integer x, then *ip can occur in any context where x could, so

POINTERS AND FUNCTION ARGUMENTS

Since C passes arguments to functions by value, there is no direct way for the called function to alter a

variable in the calling function. For instance, a sorting routine might exchange two out-of-order elements

with a function called swap. It is not enough to write

swap(a, b);

where the swap function is defined as

Because of call by value, swap can't affect the arguments a and b in the routine that called it. The function

above only swaps copies of a and b.

The way to obtain the desired effect is for the calling program to pass pointers to the values to be changed

swap(&a, &b);

Since the operator &produces the address of a variable, &a is a pointer to a. In swap itself, the parameters

are declared to be pointers, and the operands are accessed indirectly through them.

Pictorially,

Pointer arguments enable a function to access and change objects in the function that called it. As an

example, consider a function getint that performs free-format input conversion by breaking a stream of

characters into integer values, one integer per call. getint has to return the value it found and also signal end

of file when there is no more input.

These values have to be passed back by separate paths, for no matter what value is used for EOF, that could

also be the value of an input integer.

One solution is to have getint return the end of file status as its function value, while using a pointer

argument to store the converted integer back in the calling function.

The following loop fills an array with integers by calls to getint:

int n, array[SIZE], getint(int *);

for (n = 0; n < SIZE && getint(&array[n]) 1= EOF; n++);

Each call sets array[n] to the next integer found in the input and increments n. Notice that it is essential to

pass the address of array[n] to getint.

Otherwise there is no way for getint to communicate the converted integer back to the caller.

Our version of getint returns EOF for end of file, zero if the next input is not a number, and a positive value

if the input contains a valid number.

Throughout getint, *pn is used as an ordinary int variable. so the one extra character that must be read can

be pushed back onto the input.

POINTERS AND ARRAYS

In C, there is a strong relationship between pointers and arrays, strong enough that pointers and arrays

should be discussed simultaneously. Any operation that can be achieved by array subscripting can also be

done with pointers.

The pointer version will in general be faster but, at least to the uninitiated, somewhat harder to understand.

The declaration

ADDRESS ARITHMETIC

If p is a pointer to some element of an array, then p++ increments p to point to the next element, and p+=i

increments it to point i elements beyond where it currently does. These and similar constructions are the

simplest forms of pointer or address arithmetic.

C is consistent and regular in its approach to address arithmetic; its integration of pointers, arrays, and

address arithmetic is one of the strengths of the language.

Let us illustrate by writing a rudimentary storage allocator. There are two routines. The first, a110c (n),

returns a pointer p to n .consecutive character positions, which can be used by the caller of a110c for

storing characters.

The second, afree (p), releases the storage thus acquired so it can be re-used later. The routines are

"rudimentary" because the calls to a free must be made in the opposite order to the calls made on a110c.

That is, the storage managed by alloc and a free is a stack, or last-in, first-out list.

The standard library provides analogous functions called malloc and free that have no such restrictions;

The easiest implementation is to have alloc hand out pieces of a large character array that we will call

allocbuf. This array is private to alloc and afree. Since they deal in pointers, not array indices, no other

routine need know the name of the array, which can be declared static in the source file containing alloc

and afree, and thus be invisible outside it.

In practical implementations, the array may well not even have a name; it might instead be obtained by

calling malloc or by asking the operating system for a pointer to some unnamed block of storage.

The other information needed is how much of allocbuf has been used. We use a pointer, called allocp that

points to the next free element. When alloc is asked for n characters, it checks to see if there is enough

room left in allocbuf. If so, alloc returns the current value of allocp (i.e., the beginning of the free block),

then increments it by n to point to the next free area. If there is no room, alloc returns zero. afree (p) merely

sets allocp to p if p is inside allocbuf.

In general a pointer can be initialized just as any other variable can, though normally the only meaningful

values are zero or an expression involving the addresses of previously defined data of appropriate type. The

declaration

static char *allocp = allocbuf;

defines allocp to be a character pointer and initializes it to point to the beginning of allocbuf, which is the

next free position when the program starts. This could have also been written

static char *allocp = &allocbuf[O];

since the array name is the address of the zeroth element. The test

if (allocbuf + ALLOCSIZE - allocp >= n)

checks if there's enough room to satisfy a request for n characters. If there is, the new value of al10cp

would be at most one beyond the end of al1ocbuf.

If the request can be satisfied, al10c returns a pointer to the beginning of a block of characters (notice the

declaration of the function itself). If not, alloc must return some signal that no space is left. C guarantees

that zero is never a valid address for data, so a return value of zero can be used to signal an abnormal event,

in this case, no space.

Pointers and integers are not interchangeable. Zero is the sole exception: the constant zero may be assigned

to a pointer, and a pointer may be compared with the constant zero. The symbolic constant NULL is often

used in place of zero, as a mnemonic to indicate more clearly that this is a special value for a pointer.

NULL is defined in <stdio. h>. We will use NULL henceforth.

Tests like

if (allocbuf + ALLOCSIZE - allocp >= n)

and

if (p >= allocbuf && p < allocbuf + ALLOCSIZE)

show several important facets of pointer arithmetic. First, pointers may be compared under certain

circumstances. If p and q point to members of the same array, then relations like ==, 1=, <, >=, etc., work

properly. For example,

p < q

is true if p points to an earlier member of the array than q does. Any pointer can be meaningfully compared

for equality or inequality with zero. But the behavior is undefined for arithmetic or comparisons with

pointers that do not point to members of the same array.

Second, we have already observed that a pointer and an integer may be added or subtracted. The

construction

p + n

means the address of the n-th object beyond the one p currently points to. This is true regardless of the kind

of object p points to; n is scaled according to the size of the objects p points to, which is determined by the

declaration of p. If an int is four bytes, for example, the int will be scaled by four.

Pointer subtraction is also valid: if p and q point to elements of the same array, and p<q, then q-p+ 1 is the

number of elements from p to q inclusive. This fact can be used to write yet another version of strlen:

In its declaration, p is initialized to s, that is, to point to the first character of the string. In the while loop,

each character in turn is examined until the, '0' at the end is seen. Because p points to characters, p++

advances p to the next character each time and p- s gives the number of characters advanced over, that is,

the string length.

Pointer arithmetic is consistent: if we had been dealing with floats, which occupy more storage than chars,

and if p were a pointer to floa t, p++ would advance to the next float. Thus we could write another version

of alloc that maintains floats instead of chars, merely by changing char to float throughout alloc and afree.

All the pointer manipulations automatically take into account the size of the object pointed to.

The valid pointer operations are assignment of pointers of the same type, adding or subtracting a pointer

and an integer, subtracting or comparing two pointers to members of the same array, and assigning or

comparing to zero. All other pointer arithmetic is illegal. It is not legal to add two pointers, or to multiply

or divide or shift or mask them, or to add float or double to them, or even, except for void *, to assign a

pointer of one type to a pointer of another type without a cast.

CHARACTER POINTERS AND FUNCTIONS

A string constant, written as

"I am a string"

is an array of characters. In the internal representation, the array is terminated with the null character '\0' so

that programs can find the end. The length in storage is thus one more than the number of characters

between the double quotes.

Perhaps the most common occurrence of string constants is as arguments to functions, as in

printf("hello, world\n");

When a character string like this appears in a program, access to it is through a character pointer; printf

receives a pointer to the beginning of the character array. That is, a string constant is accessed by a pointer

to its first element.

String constants need not be function arguments. If pmessaqe is declared as

char *pmessage;

then the statement

pmessage = "now is the time";

assigns to pmessaqe a pointer to the character array. This is not a string copy; only pointers are involved. C

does not provide any operators for processing an entire string of characters as a unit.

There is an important difference between these definitions

char amessage[] = "now is the time"; //an array

char *pmessage = "now is the time"; //a pointer

amessaqe is an array, just big enough to hold the sequence of characters and ,\0' that initializes it.

Individual characters within the array may be changed but amessaqe will always refer to the same storage.

On the other hand, pmessaqe is a pointer, initialized to point to a string constant; the pointer may

subsequently be modified to point elsewhere, but the result is undefined if you try to modify the string

contents

The first function is strcpy (s , t), which copies the string t to the string s. It would be nice just to say s=t

but this copies the pointer, not the characters. To copy the characters, we need a loop. The array version is

first

Because arguments are passed by value, strcpy can use the parameters s and t in any way it pleases. Here

they are conveniently initialized pointers, which are marched along the arrays a character at a time, until

the ' \0' that terminates t has been copied to s.

In practice, strcpy would not be written as we showed it above. Experienced C programmers would prefer

This moves the increment of sand t into the test part of the loop. The value of *t++ is the character that t

pointed to before t was incremented; the postfix ++ doesn't change t until after this character has been

fetched. In the same way, the character is stored into the old s position before s is incremented. This

character is also the value that is compared against ' \0' to control the loop. The net effect is that characters

are copied from t to s, up to and including the terminating' \0'.

As the final abbreviation, observe that a comparison against ' \0' is redundant, since the question is merely

whether the expression is zero. So the function would likely be written as

Although this may seem cryptic at first sight, the notational conveniences considerable, and the idiom

should be mastered, because you will see it frequently in C programs.

The strcpy in the standard library «string. h» returns the target string as its function value. The second

routine that we will examine is strcmp(s,t), which compares the character strings sand t, and returns

negative, zero or positive if s is lexicographically less than, equal to, or greater than t. The value is obtained

by subtracting the characters at the first position where s and t disagree

The header <string. h> contains declarations for the functions mentioned in this section, plus a variety of

other string-handling functions from the standard library.

POINTER ARRAYS; POINTERS TO POINTERS

Since pointers are variables themselves, they can be stored in arrays just as other variables can. Let us

illustrate by writing a program that will sort a set of text lines into alphabetic order, a stripped-down

version of the UNIX program sort.

This is where the array of pointers enters. If the lines to be sorted are stored end-to-end in one long

character array, then each line can be accessed by a pointer to its first character. The pointers themselves

can be stored in an array.

The sorting process has three steps

 read all the lines of input

 sort them

 print them in order

As usual, it's best to divide the program into functions that match this natural division, with the main

routine controlling the other functions. Let us defer the sorting step for a moment, and concentrate on the

data structure and the input and output.

The input routine has to collect and save the characters of each line, and build an array of pointers to the

lines. It will also have to count the number of input lines, since that information is needed for sorting and

printing. Since the input function can only cope with a finite number of input lines, it can return some

illegal line count like -1 if too much input is presented. .

The output routine only has to print the line in the order in which they appear in the array of pointers.

Initially *lineptr points to the first line; each increment advances it to the next line pointer while nlines is

counted down. With input and output under control, we can proceed to sorting.

MULTI-DIMENSIONAL ARRAYS

C provides rectangular multi-dimensional arrays, although in practice they are much less used than arrays

of pointers. In this section, we will show some of their properties

Consider the problem of date conversion, from day of the month to day of the year and vice versa. For

example, March 1 is the 60th day of a non-leap year, and the 61st day of a leap year. Let us define two

functions to do the conversions: day_of _year_ converts the month and day into the day of the year, and

month_day converts the day of the year into the month and day.

Since this latter function computes two values, the month and day arguments will be pointers:

month_day(1988, 60, &m, &d)

sets m to 2 and d to 29 (February 29th).

These functions both need the same information, a table of the number of days in each month ("thirty days

hath September ..."). Since the number of days per month differs for leap years and non-leap years, it's

easier to separate them into two rows of a two-dimensional array than to keep track of what happens to

February during computation. The array and the functions for performing the transformations are as

follows:

Recall that the arithmetic value of a logical expression, such as the one for leap, is either zero (false) or one

(true), so it can be used as a subscript of the array day tab.

The array day tab has to be external to both day _of_year and month_day, so they can both use it. We made

it char to illustrate a legitimate use of char for storing small non-character integers.

day tab is the first two-dimensional array we have dealt with. In C, a two-dimensional array is really a one-

dimensional array, each of whose elements is an array. Hence subscripts are written as

day tab[i][j]

rather than

day tab[i,j]

Other than this notational distinction, a two-dimensional array can be treated in much the same way as in

other languages. Elements are stored by rows, so the rightmost subscript, or column, varies fastest as

elements are accessed in storage order.

An array is initialized by a list of initializers in braces; each row of a two dimensional array is initialized by

a corresponding sub-list. We started the array day tab with a column of zero so that month numbers can run

from the natural 1 to 12 instead of 0 to 11. Since space is not at a premium here, this is clearer than

adjusting the indices.

If a two-dimensional array is to be passed to a function, the parameter declaration in the function must

include the number of columns; the number of rows is irrelevant, since what is passed is, as before, a

pointer to an array of rows, where each row is an array of 13 ints. In this particular case, it is a pointer to

objects that are arrays of 13 ints. Thus if the array day tab is to be passed to a function f, the declaration of f

would be

INITIALISATION OF POINTER ARRAYS

Consider the problem of writing a function month_name (n), which returns a pointer to a character string

containing the name of the n-th month. This is an ideal application for an internal static array. month_name

contains a private array of character strings, and returns a pointer to the proper one when called. This

section shows how that array of names is initialized.

The syntax is similar to previous initializations

The declaration of name, which is an array of character pointers, is the same as 1ineptr in the sorting

example. The initializer is a list of character strings; each is assigned to the corresponding position in the

array. The characters of the i-th string are placed somewhere, and a pointer to them is stored in name [i].

Since the size of the array name is not specified, the compiler counts the initializers and fills in the correct

number.

COMMAND LINE ARGUMENTS

In environments that support C, there is a way to pass command-line arguments or parameters to a program

when it begins executing. When main is called, it is called with two arguments. The first (conventionally

called argc, for argument count) is the number of command-line arguments the program was invoked with;

the second (argv, for argument vector) is a pointer to an array of character strings that contain the

arguments, one per string.

We customarily use multiple levels of pointers to manipulate these character strings. The simplest

illustration is the program echo, which echoes its command line arguments on a single line, separated by

blanks. That is, the command

echo hello, world

prints the output

hello, world

By convention, argv [0] is the name by which the program was invoked, so argc is at least 1. If argc is 1,

there are no command-line arguments after the program name. In the example above, argc is 3, and argv [0

I, argv [1], and argv[2] are "echo", "hello, ", and "world" respectively. The first optional argument is argv[

1] and the last is argv[argc-1]; additionally, the standard requires that argv[argc] be a null pointer.

Since argv is a pointer to an array of pointers, we can manipulate the pointer rather than index the array.

This next variation is based on incrementing argv, which is a pointer to pointer to char, while argc is

counted down. Since argv is a pointer to the beginning of the array of argument strings, incrementing it by

1 (++argv) makes it point at the original argv [1] instead of argv [0]. Each successive increment moves it

along to the next argument; *argv is then the pointer to that argument.

At the same time, argc is decremented; when it becomes zero, there are no arguments left to print.

Alternatively, we could write the printf statement as

printf ((argc > 1) ? ""s " : ""s", *++arqv);

This shows that the format argument of printf can be an expression too. As a second example, let us make

some enhancements to the pattern-finding program from Section 4.1. If you recall, we wired the search

pattern deep into the program, an obviously unsatisfactory arrangement. Following the lead of the UNIX

program grep, let us change the program so the pattern to be matched is specified by the first argument on

the command line.

POINTERS TO FUNCTIONS

In C, a function itself is not a variable, but it is possible to define pointers to functions, which can be

assigned, placed in arrays, passed to functions, returned by functions, and so on. We will illustrate this by

modifying the sorting procedure written earlier in this chapter so that if the optional argument -n is given; it

will sort the input lines numerically instead of lexicographically.

A sort often consists of three parts-a comparison that determines the ordering of any pair of objects, an

exchange that reverses their order, and a sorting algorithm that makes comparisons and exchanges until the

objects are in order. The sorting algorithm is independent of the comparison and exchange operations, so

by passing different comparison and exchange functions to it, we can arrange to sort by different criteria.

This is the approach taken in our new sort.

Lexicographic comparison of two lines is done by strcmp, as before; we will also need a routine numcmp

that compares two lines on the basis of numeric value and returns the same kind of condition indication as

strcmp does. These functions are declared ahead of main and a pointer to the appropriate one is passed to

qsort. We have skimped on error processing for arguments, so as to concentrate on the main issues.

In the call to qsort, strcmp and numcmp are addresses of functions. Since they are known to be functions,

the & operator is not necessary, in the same way that it is not needed before an array name.

We have written qsort so it can process any data type, not just character strings. As indicated by the

function prototype, qsort expects an array of pointers, two integers, and a function with two pointer

arguments. The generic pointer type void * is used for the pointer arguments. Any pointer can be cast to

void * and back again without loss of information, so we can call qsort by casting arguments to void *. The

elaborate cast of the function argument casts the arguments of the comparison function. These will

generally have no effect on actual representation, but assure the compiler that all is well.

comp is a function returning a pointer to an int, which is very different. We have already shown strcmp,

which compares two strings. Here is numcmp, which compares two strings on a leading numeric value,

computed by calling atof:

The swap function, which exchanges two pointers, is identical to what we presented earlier in the chapter,

except that the declarations are changed to void *.

COMPLICATED DECLARATIONS

C is sometimes castigated for the syntax of its declarations, particularly ones that involve pointers to

functions. The syntax is an attempt to make the declaration and the use agree; it works well for simple

cases, but it can be confusing for the harder ones, because declarations cannot be read left to right, and

because parentheses are over-used. The difference between

int *f();

and

int (*pf)();

illustrates the problem: * is a prefix operator and it has lower precedence than (), so parentheses are

necessary to force the proper association.

Although truly complicated declarations rarely arise in practice, it is important to know how to understand

them, and, if necessary, how to create them. One good way to synthesize declarations is in small steps with

typedef.

 As an alternative, in this section we will present a pair of programs that convert from valid C to a word

description and back again. The word description reads left to right. The first, del, is the more complex. It

converts a C declaration into a word description, as in these examples:

BASIC STRUCTURES

Structure Definition

Rules for declaring a structure

Array Vs Structure:

Accessing structure elements

Structure Initialization

 STRUCTURE DEFINITION

The structure can be declared with the keyword struct following the name and opening brace with data

elements of different type then closing brace with semicolon.

The general format of a structure definition is as follows:

struct structure _ name

{

structure_element 1;

structure_element 2;

structure_element 3;

--------- -----

--------- -----

};

struct structure_name v1,v2…vn;

v1,v2….vn are structure variable.

Example:

struct book

{

char title[20];

char author[15];

int pages;

float price;

};

Struct book b1,b2,b3;

Rules for declaring a structure

The template is terminated with a semicolon.

While the entire definition is considered as a statement, each member is declared independently for its

name and type in a separate statement inside the template.

The tag name such as book _ bank can be used to declare structure variables of its type, later in the

program.

ARRAY VS STRUCTURE

ARRAY STRUCTURE

An array is a collection of related datatypes Structure can have elements of different types

An array is derived data type Structure is a user-defined datatype

Any array behaves like a built-in data type It must be declared and defined

An array can be increased or decreased A structure element can be added if necessary.

Accessing structure elements

After declaring the structure type, variables and members, the member of the structure can be accessed by

using the structure variable along with the dot(.) operator.

struct std

{

int no;

char name[10];

int marks;

};

struct std s;

for accessing the structure members from the above example.

s.no; s.name; s.marks;

where s is the structure variable

STRUCTURE INITIALIZATION
 Like any other data type, a structure variable can be initialized at compile time.

main()

{

struct

{

int weight;

float height;

}

student ={60, 180.75};

………

………

}

This assigns the value 60 to student. weight and 180.75 to student. height. There is a one-to-one

correspondence between the members and their initializing values.

struct st _ record

{

int weight;

float height;

};

main()

{

struct st_record student1 ={60, 180.75};

struct st_record student2 ={53, 170.60};

………

………

}

C language does not permit the initialization of individual structure member within the template. The

initialization must be done only in the declaration of the actual variables.

#include<stdio.h>

#include<conio.h>

struct student

{

int rno;

char name[20];

int m1;

int m2;

int m3;

int total;

float avg;

}

struct std s;

void main()

{

printf("Enter the roll no,name,mark1,mark2,mark3”);

scanf("%d%s%d%d%d",&s.rno,&sk.name,&s.m1,&s.m2,s.m3); total=s.m1+s.m2+s.m3;

avg=total/3;

printf("%d\t%s\t%f\t%f\t",s.no,s.name,total,avg);

}

OUTPUT
Enter the roll no,name,mark1,mark2,mark3

1 raja 99 95 97

1 raja 291.00 97.00

UNION:
Union is user defined data type used to stored data under unique variable name at single memory location.

Union is similar to that of structure. Syntax of union is similar to structure. But the major

Difference between structure and union is 'storage.'

Syntax:
union union_name

{

<data-type> element 1;

<data-type> element 2;

<data-type> element 3;

}union_variable;

Example:
union techno

{

int comp_id;

char nm;

float sal;

}

tch;

In above example, it declares tch variable of type union. The union contains three members as data type of

int, char, float. We can use only one of them at a time.

Memory allocation:

Memory allocation for union
To access union members, we can use the following syntax.

tch.comp_id

tch.nm

tch.sal

Program :
#include <stdio.h>

#include <conio.h>

union techno

{

int a;

char b[2];

};

void main()

{

clrscr();

union name c;

c.a=99

printf("\n\t c.a value is :%d\n ",c.a);

printf("\n\t c.b[0] value is :%d\n ",c.b[0]);

printf("\n\t c.b[1] value is :%d\n ",c.b[1]);

getch();

}

Output :
c.a value is :99

c.b[0] value is :0

c.b[1] value is :1

ARRAY OF STRUCTURES

When database of any element is used in huge amount, we prefer Array of structures.

Example: suppose we want to maintain data base of 200 students, Array of structures is used.

#include<stdio.h>

#include<string.h>

 struct student

{

char name[30]; char branch[25]; int roll;

};

void main()

{

struct student s[200]; int i;

s[i].roll=i+1;

printf("\nEnter information of students:"); for(i=0;i<200;i++)

{

printf("\nEnter the roll no:%d\n",s[i].roll); printf("\nEnter the name:"); scanf("%s",s[i].name);

printf("\nEnter the branch:"); scanf("%s",s[i].branch); printf("\n");

}

printf("\nDisplaying information of students:\n\n"); for(i=0;i<200;i++)

{

printf("\n\nInformation for roll no%d:\n",i+1);

printf("\nName:");

puts(s[i].name); printf("\nBranch:"); puts(s[i].branch);

}

}

In Array of structures each element of array is of structure type as in above example

POINTER OF STRUCTURES

The pointer is a variable which points to the address of another variable of any data type

like int, char, float etc. Similarly, we can have a pointer to structures, where a pointer variable can point to

the address of a structure variable. Here is how we can declare a pointer to a structure variable.

struct dog

{

 char name[10];

 char breed[10];

 int age;

 char color[10];

};

struct dog spike;

// declaring a pointer to a structure of type struct dog

struct dog *ptr_dog

This declares a pointer ptr_dog that can store the address of the variable of type struct dog. We can now

assign the address of variable spike to ptr_dog using & operator.

ptr_dog = &spike;

Now ptr_dog points to the structure variable spike.

Accessing members using Pointer

There are two ways of accessing members of structure using pointer:

Using indirection (*) operator and dot (.) operator.

Using arrow (->) operator or membership operator.

Using Indirection (*) Operator and Dot (.) Operator

At this point ptr_dog points to the structure variable spike, so by dereferencing it we will get the contents

of the spike. This means spike and *ptr_dog are functionally equivalent. To access a member of structure

write *ptr_dog followed by a dot(.) operator, followed by the name of the member. For example:

(*ptr_dog).name – refers to the name of dog

(*ptr_dog).breed – refers to the breed of dog

Parentheses around *ptr_dog are necessary because the precedence of dot(.) operator is greater than that of

indirection (*) operator.

Using arrow operator (->)

The above method of accessing members of the structure using pointers is slightly confusing and less

readable, that‟s why C provides another way to access members using the arrow (->) operator. To access

members using arrow (->) operator write pointer variable followed by -> operator, followed by name of the

member.

ptr_dog->name - refers to the name of dog

ptr_dog->breed - refers to the breed of dog

Here we don‟t need parentheses, asterisk (*) and dot (.) operator. This method is much more readable and

intuitive.

We can also modify the value of members using pointer notation.

strcpy(ptr_dog->name, "new_name");

Here we know that the name of the array (ptr_dog->name) is a constant pointer and points to the 0th

element of the array. So we can‟t assign a new string to it using assignment operator (=), that‟s

why strcpy() function is used.

--ptr_dog->age;

In the above expression precedence of arrow operator (->) is greater than that of prefix decrement operator

(--), so first -> operator is applied in the expression then its value is decremented by 1.

The following program demonstrates how we can use a pointer to structure.

#include<stdio.h>

struct dog

{

 char name[10];

 char breed[10];

 int age;

 char color[10];

};

int main()

{

 struct dog my_dog = {"tyke", "Bulldog", 5, "white"};

 struct dog *ptr_dog;

 ptr_dog = &my_dog;

 printf("Dog's name: %s\n", ptr_dog->name);

 printf("Dog's breed: %s\n", ptr_dog->breed);

 printf("Dog's age: %d\n", ptr_dog->age);

 printf("Dog's color: %s\n", ptr_dog->color);

 // changing the name of dog from tyke to jack

 strcpy(ptr_dog->name, "jack");

 // increasing age of dog by 1 year

 ptr_dog->age++;

 printf("Dog's new name is: %s\n", ptr_dog->name);

 printf("Dog's age is: %d\n", ptr_dog->age);

 // signal to operating system program ran fine

 return 0;

}

Expected Output:

Dog's name: tyke

Dog's breed: Bulldog

Dog's age: 5

Dog's color: white

After changes

Dog's new name is: jack

Dog's age is: 6

SELF REFERENTIAL STRUCTURES

Structures pointing to the same type of structures are self-referential in nature.

Example:

struct node {

 int data1;

 char data2;

 struct node* link;

};

int main()

{

 struct node ob;

 return 0;

}

TYPEDEF in C

„link‟ is a pointer to a structure of type „node‟. Hence, the structure „node‟ is a self-referential structure

with „link‟ as the referencing pointer.

An important point to consider is that the pointer should be initialized properly before accessing, as by

default it contains garbage value.

The C programming language provides a keyword called typedef, which you can use to give a type a new

name. Following is an example to define a term BYTE for one-byte numbers −

typedef unsigned char BYTE;

After this type definition, the identifier BYTE can be used as an abbreviation for the type unsigned char,

for example..

BYTE b1, b2;

By convention, uppercase letters are used for these definitions to remind the user that the type name is

really a symbolic abbreviation, but you can use lowercase, as follows −

typedef unsigned char byte;

You can use typedef to give a name to your user defined data types as well. For example, you can use

typedef with structure to define a new data type and then use that data type to define structure variables

directly as follows –

#include <stdio.h>

#include <string.h>

 typedef struct Books {

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

} Book;

int main() {

 Book book;

 strcpy(book.title, "C Programming");

 strcpy(book.author, "Nuha Ali");

 strcpy(book.subject, "C Programming Tutorial");

 book.book_id = 6495407;

 printf("Book title : %s\n", book.title);

 printf("Book author : %s\n", book.author);

 printf("Book subject : %s\n", book.subject);

 printf("Book book_id : %d\n", book.book_id);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

typedef vs #define

#define is a C-directive which is also used to define the aliases for various data types similar to typedef but

with the following differences −

typedef is limited to giving symbolic names to types only where as #define can be used to define alias for

values as well, q., you can define 1 as ONE etc.

typedef interpretation is performed by the compiler whereas #define statements are processed by the pre-

processor.

The following example shows how to use #define in a program −

#include <stdio.h>

#define TRUE 1

#define FALSE 0

 int main() {

 printf("Value of TRUE : %d\n", TRUE);

 printf("Value of FALSE : %d\n", FALSE);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of TRUE : 1

Value of FALSE : 0

TABLE LOOK UP

Table-lookup package, to illustrate more aspects of structures. This code is typical of what might be found

in the symbol table management routines of a macro processor or a compiler. For example, consider

the #define statement. When a line like

 #define IN 1

is encountered, the name IN and the replacement text 1 are stored in a table. Later, when the

name IN appears in a statement like

 state = IN;

it must be replaced by 1.

There are two routines that manipulate the names and replacement texts. install(s,t) records the name sand

the replacement text t in a table; s and t are just character strings. lookup(s) searches for s in the table, and

returns a pointer to the place where it was found, or NULL if it wasn't there.

The algorithm is a hash-search - the incoming name is converted into a small non-negative integer, which

is then used to index into an array of pointers. An array element points to the beginning of a linked list of

blocks describing names that have that hash value. It is NULL if no names have hashed to that value.

A block in the list is a structure containing pointers to the name, the replacement text, and the next block in

the list. A null next-pointer marks the end of the list.

 struct nlist { /* table entry: */

 struct nlist *next; /* next entry in chain */

 char *name; /* defined name */

 char *defn; /* replacement text */

 };

BIT FIELDS

In C, we can specify size (in bits) of structure and union members. The idea is to use memory efficiently

when we know that the value of a field or group of fields will never exceed a limit or is withing a small

range.

For example, consider the following declaration of date without use of bit fields.

#include <stdio.h>

// A simple representation of date

struct date

{

 unsigned int d;

 unsigned int m;

 unsigned int y;

};

int main()

{

 printf("Size of date is %d bytes\n", sizeof(struct date));

 struct date dt = {31, 12, 2014};

 printf("Date is %d/%d/%d", dt.d, dt.m, dt.y);

}

Output:

Size of date is 12 bytes

Date is 31/12/2014

The above representation of „date‟ takes 12 bytes on a compiler where an unsigned int takes 4 bytes. Since

we know that the value of d is always from 1 to 31, value of m is from 1 to 12, we can optimize the space

using bit fields.

#include <stdio.h>

// A space optimized representation of date

struct date

{

 // d has value between 1 and 31, so 5 bits

 // are sufficient

 unsigned int d: 5;

 // m has value between 1 and 12, so 4 bits

 // are sufficient

 unsigned int m: 4;

 unsigned int y;

};

int main()

{

 printf("Size of date is %d bytes\n", sizeof(struct date));

 struct date dt = {31, 12, 2014};

 printf("Date is %d/%d/%d", dt.d, dt.m, dt.y);

 return 0;

}

Output:

Size of date is 8 bytes

Date is 31/12/2014

Following are some interesting facts about bit fields in C.
1) A special unnamed bit field of size 0 is used to force alignment on next boundary. For example consider

the following program.

#include <stdio.h>

// A structure without forced alignment

struct test1

{

 unsigned int x: 5;

 unsigned int y: 8;

};

// A structure with forced alignment

struct test2

{

 unsigned int x: 5;

 unsigned int: 0;

 unsigned int y: 8;

};

int main()

{

 printf("Size of test1 is %d bytes\n", sizeof(struct test1));

 printf("Size of test2 is %d bytes\n", sizeof(struct test2));

 return 0;

}

Output:

Size of test1 is 4 bytes

Size of test2 is 8 bytes

2) We cannot have pointers to bit field members as they may not start at a byte boundary.

#include <stdio.h>

struct test

{

 unsigned int x: 5;

 unsigned int y: 5;

 unsigned int z;

};

int main()

{

 struct test t;

 // Uncommenting the following line will make

 // the program compile and run

 printf("Address of t.x is %p", &t.x);

 // The below line works fine as z is not a

 // bit field member

 printf("Address of t.z is %p", &t.z);

 return 0;

}

Output:

 error: attempt to take address of bit-field structure member 'test::x'

3) It is implementation defined to assign an out-of-range value to a bit field member.

#include <stdio.h>

struct test

{

 unsigned int x: 2;

 unsigned int y: 2;

 unsigned int z: 2;

};

int main()

{

 struct test t;

 t.x = 5;

 printf("%d", t.x);

 return 0;

}

Output:

Implementation-Dependent

4) In C, we can have static members in a structure/class, but bit fields cannot be static.

// The below C program compiles and runs fine

struct test1 {

 static unsigned int x;

};

int main() { }

// cannot be static

struct test1 {

 static unsigned int x: 5;

};

int main() { }

// error: static member 'x' cannot be a bit-field

5) Array of bit fields is not allowed. For example, the below program fails in compilation.

struct test

{

 unsigned int x[10]: 5;

};

int main()

{

}

Output:

error: bit-field 'x' has invalid type

File Access

File Operation opening a file:

Before performing any type of operation, a file must be opened and for this fopen() function is used.

syntax:

file-pointer=fopen(“FILE NAME ”,”Mode of open”); example:

FILE *fp=fopen(“ar.c”,”r”);

If fopen() unable to open a file than it will return NULL to the file pointer.

File-pointer: The file pointer is a pointer variable which can be store the address of a special file that

means it is based upon the file pointer a file gets opened.

Declaration of a file pointer:-

FILE* var;

Modes of open

The file can be open in three different ways as

Read mode ‟ r‟/rt Write mode ‟w‟/wt Appened Mode ‟a‟/at

Reading a character from a file

getc() is used to read a character into a file Syntax:

character_variable=getc(file_ptr);

Writing acharacter into a file

putc() is used to write a character into a file

puts(character-var,file-ptr);

ClOSING A FILE

fclose() function close a file. fclose(file-ptr);

fcloseall () is used to close all the opened file at a time

File Operation

The following file operation carried out the file (1)creation of a new file

(3)writing a file (4)closing a file

Before performing any type of operation we must have to open the file.c, language communicate with file

using a new type called file pointer.

Operation with fopen()

File pointer=fopen(“FILE NAME”,”mode of open”);

If fopen() unable to open a file then it will return NULL to the file-pointer.

Reading and writing a characters from/to a file fgetc() is used for reading a character from the file

Syntax:

character variable= fgetc(file pointer);

fputc() is used to writing a character to a file

Syntax:

fputc(character,file_pointer);

/*Program to copy a file to another*/ #include<stdio.h>

void main()

{

FILE *fs,*fd; char ch;

If(fs=fopen(“scr.txt”,”r”)==0)

{

printf(“sorry….The source file cannot be opened”); return;

}

If(fd=fopen(“dest.txt”,”w”)==0)

{

printf(“Sorry…..The destination file cannot be opened”); fclose(fs);

return;

}

while(ch=fgets(fs)!=EOF) fputc(ch,fd);

fcloseall();

}

Reading and writing a string from/to a file getw() is used for reading a string from the file

Syntax:

gets(file pointer);

putw() is used to writing a character to a file

Syntax:

fputs(integer,file_pointer);

 #include<stdio.h>

 #include<stdlib.h>

void main()

{

FILE *fp;

/*place the word in a file*/ fp=fopen(“dgt.txt”,”wb”); If(fp==NULL)

{

printf(“Error opening file”); exit(1);

}

word=94; putw(word,fp); If(ferror(fp))

printf(“Error writing to file\n”); else

printf(“Successful write\n”); fclose(fp);

/*reopen the file*/ fp=fopen(“dgt.txt”,”rb”); If(fp==NULL)

{

printf(“Error opening file”); exit(1);

}

/*extract the word*/ word=getw(fp);

If(ferror(fp))

printf(“Error reading file\n”);

else

printf(“Successful read:word=%d\n”,word);

/*clean up*/

fclose(fp)

}

Reading and writing a string from/to a file fgets() is used for reading a string from the file Syntax:

fgets(string, length, file pointer);

fputs() is used to writing a character to a file

Syntax:

fputs(string,file_pointer);

#include<string.h>

 #include<stdio.h>

void main(void)

{

FILE*stream;

char string[]=”This is a test”; char msg[20];

/*open a file for update*/ stream=fopen(“DUMMY.FIL”,”w+”);

/*write a string into the file*/ fwrite(string,strlen(string),1,stream);

/*seek to the start of the file*/ fseek(stream,0,SEEK_SET);

/*read a string from the file*/ fgets(msg,strlen(string)+1,stream);

/*display the string*/ printf(“%s”,msg); fclose(stream);

}

ERROR HANDLING

C programming does not provide direct support for error handling but being a system programming

language, it provides you access at lower level in the form of return values. Most of the C or even Unix

function calls return -1 or NULL in case of any error and set an error code errno. It is set as a global

variable and indicates an error occurred during any function call. You can find various error codes defined

in <error.h> header file.

So a C programmer can check the returned values and can take appropriate action depending on the return

value. It is a good practice, to set errno to 0 at the time of initializing a program. A value of 0 indicates that

there is no error in the program.

errno, perror(). and strerror()

The C programming language provides perror() and strerror() functions which can be used to display the

text message associated with errno.

The perror() function displays the string you pass to it, followed by a colon, a space, and then the textual

representation of the current errno value.

The strerror() function, which returns a pointer to the textual representation of the current errno value.

Let's try to simulate an error condition and try to open a file which does not exist. Here I'm using both the

functions to show the usage, but you can use one or more ways of printing your errors. Second important

point to note is that you should use stderr file stream to output all the errors.

#include <stdio.h>

#include <errno.h>

#include <string.h>

extern int errno ;

int main () {

 FILE * pf;

 int errnum;

 pf = fopen ("unexist.txt", "rb");

 if (pf == NULL)

 {

 errnum = errno;

 fprintf(stderr, "Value of errno: %d\n", errno);

 perror("Error printed by perror");

 fprintf(stderr, "Error opening file: %s\n", strerror(errnum));

 }

 else

 {

 fclose (pf);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Value of errno: 2

Error printed by perror: No such file or directory

Error opening file: No such file or directory

Divide by Zero Errors

It is a common problem that at the time of dividing any number, programmers do not check if a divisor is

zero and finally it creates a runtime error.

The code below fixes this by checking if the divisor is zero before dividing −

#include <stdio.h>

#include <stdlib.h>

main() {

 int dividend = 20;

 int divisor = 0;

 int quotient;

 if(divisor == 0){

 fprintf(stderr, "Division by zero! Exiting...\n");

 exit(-1);

 }

 quotient = dividend / divisor;

 fprintf(stderr, "Value of quotient : %d\n", quotient);

 exit(0);

}

When the above code is compiled and executed, it produces the following result −

Division by zero! Exiting...

Program Exit Status

It is a common practice to exit with a value of EXIT_SUCCESS in case of program coming out after a

successful operation. Here, EXIT_SUCCESS is a macro and it is defined as 0.

If you have an error condition in your program and you are coming out then you should exit with a status

EXIT_FAILURE which is defined as -1. So let's write above program as follows −

#include <stdio.h>

#include <stdlib.h>

main() {

 int dividend = 20;

 int divisor = 5;

 int quotient;

 if(divisor == 0) {

 fprintf(stderr, "Division by zero! Exiting...\n");

 exit(EXIT_FAILURE);

 }

 quotient = dividend / divisor;

 fprintf(stderr, "Value of quotient : %d\n", quotient);

 exit(EXIT_SUCCESS);

}

When the above code is compiled and executed, it produces the following result −

Value of quotient : 4

LINE I/O:

The standard library provides an input and output routine fgets that is similar to the getline function"

 char *fgets(char *line, int maxline, FILE *fp)

fgets reads the next input line (including the newline) from file fp into the character array line; at

most maxline-1 characters will be read. The resulting line is terminated with '\0'.

Normally fgets returns line; on end of file or error it returns NULL. (Our getline returns the line length,

which is a more useful value; zero means end of file.)

For output, the function fputs writes a string (which need not contain a newline) to a file:

 int fputs(char *line, FILE *fp)

It returns EOF if an error occurs, and non-negative otherwise.

The library functions gets and puts are similar to fgetsand fputs, but operate on stdin and stdout.

Confusingly, gets deletes the terminating '\n', and putsadds it.

To show that there is nothing special about functions like fgets and fputs, here they are, copied from the

standard library on our system:

 /* fgets: get at most n chars from iop */

 char *fgets(char *s, int n, FILE *iop)

 {

 register int c;

 register char *cs;

 cs = s;

 while (--n > 0 && (c = getc(iop)) != EOF)

 if ((*cs++ = c) == '\n')

 break;

 *cs = '\0';

 return (c == EOF && cs == s) ? NULL : s;

 }

 /* fputs: put string s on file iop */

 int fputs(char *s, FILE *iop)

 {

 int c;

 while (c = *s++)

 putc(c, iop);

 return ferror(iop) ? EOF : 0;

 }

For no obvious reason, the standard specifies different return values for ferror and fputs.

It is easy to implement our getline from fgets:

 /* getline: read a line, return length */

 int getline(char *line, int max)

 {

 if (fgets(line, max, stdin) == NULL)

 return 0;

 else

 return strlen(line);

 }

MISCELLANEOUS FUNCTION IN C

Descriptions and example programs for C environment functions such as getenv(), setenv(), putenv() and

other functions perror(), random() and delay() are given below

Miscellaneous functions Description

getenv()

This function gets the current value of the environment

variable

setenv() This function sets the value for environment variable

putenv() This function modifies the value for environment variable

perror()

Displays most recent error that happened during library

function call

rand() Returns random integer number range from 0 to at least 32767

delay() Suspends the execution of the program for particular time

EXAMPLE PROGRAM FOR GETENV() FUNCTION IN C:

This function gets the current value of the environment variable.

Let us assume that environment variable DIR is assigned to “/usr/bin/test/”. Below program will show you

how to get this value using getenv() function.

C

1

2

3

#include <stdio.h>

#include <stdlib.h>

int main()

4

5

6

7

{

 printf("Directory = %s\n", getenv("DIR"));

 return 0;

}

COMPILE & RUN

OUTPUT:

/usr/bin/test/

EXAMPLE PROGRAM FOR SETENV() FUNCTION IN C:

This function sets the value for environment variable.

Let us assume that environment variable “FILE” is to be assigned “/usr/bin/example.c”. Below program

will show you how to set this value using setenv() function.

C

1

2

3

4

5

6

7

8

#include <stdio.h>

#include <stdlib.h>

int main()

{

 setenv("FILE","/usr/bin/example.c",50);

 printf("File = %s\n", getenv("FILE"));

 return 0;

}

COMPILE & RUN

OUTPUT:

File = /usr/bin/example.c

EXAMPLE PROGRAM FOR PUTENV() FUNCTION IN C:

This function modifies the value of environment variable.

Below example program shows that how to modify an existing environment variable value.

C

#include <stdio.h>

#include <stdlib.h>

int main()

{

 setenv("DIR","/usr/bin/example/",50);

 printf("Directory name before modifying = " \

 "%s\n", getenv("DIR"));

 putenv("DIR=/usr/home/");

 printf("Directory name after modifying = " \

 "%s\n", getenv("DIR"));

 return 0;

}

OUTPUT:

Directory name before modifying = /usr/bin/example/

Directory name after modifying = /usr/home/

https://compilers.fresh2refresh.com/
https://compilers.fresh2refresh.com/

