RAJALAKSHMI ENGINEERING COLLEGE (AN AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY) DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

MINOR DEGREE IN ELECTRIC VEHICLES

S. NO	COURSE CODE	COURSE NAME	Category	L	Т	Р	С
1	MEE1901	Energy Systems and Design of Electric Vehicles	PC	3	0	0	3
2	MEE1902	Fundamentals of Automotive Technology	PC	3	0	0	3
3	MEE1903	Charging Systems for Electric Vehicles	PC	2	0	2	3
4	MEE1904	Power Converters and Motors for Electric Vehicles	PC	2	0	2	3
5	MEE1905	Control of Electric Vehicles	PC	2	0	2	3
6	MEE1906	Grid Integration of Electric Vehicles	PC	3	0	0	3

Sub	ject Code	Subject Name	Category	L	Т	Р	С
ME	E1901	ENERGY SYSTEMS AND DESIGN OF ELECTRIC VEHICLES	PC	3	0	0	3
		(Theory Course)					
Obj	ectives:						
•	To impart k	nowledge on basics of electric and hybrid vehicles					
•	To provide	knowledge on batteries fir traction application					
•	To learn the	concepts of fuel cell and their application in EV and HEV					
•	To understa	nd the design fundamentals of electric and hybrid vehicles					
•	To learn abo	ut the effects of electromagnetic interference and testing					
UN	IT-I IN	TRODUCTION				9	
Elec	ctric vehicles	- need, types, advantages, challenges - Hybrid vehicle - advantages, disa	dvantages, ar	chite	ectu	re a	nd
ener	rgy flow- set	ies, parallel, series-parallel, micro, mild, full and plugin hybrid Drive t	rain for hybri	d ar	d e	lect	ric
vehi	icles-Hybrid	vehicle operating modes. Electronic control system for EV & EHV. Power f	flow control.				
UN	IT-II E	V & HEV BATTERIES				9	
Targ	gets and prop	erties of batteries for EV and HEV. Construction, working principle and pro-	operties of Li-	-Po ł	oatte	ery,	Li
ion	battery, Nicl	tel Metal Hydride Battery, Sodium Sulphur Battery and Aluminium Air	Battery. Bas	ics	of b	atte	ery
man	agement – B	attery capacity calculation, size and weight estimation.					
UN	IT-III FU	EL CELLS				9	
Ope	ration princi	oles of fuel cells – Electrode potential and current-voltage curves. Types –	Proton exchar	nge r	nen	ıbra	ne
fuel	cells, alkali	ne fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, so	olid oxide fue	l ce	lls,	dire	ect
metl	hanol fuel c	ells. Fuel cell hybrid drive train. Control strategy. Power design of fu	el cell system	n -	Fue	el c	ell
char	racteristic cui	una Engenery flow in ECEV Case study. Toyota Minai					
UN	IT-IV EV	ves- Energy flow in FCEV – Case study – Toyota Mirai					
Forc	ces acting on	& HEV DESIGN FUNDAMENTALS				9	
estir	mation of nor		d vehicle spee	ed ca	lcu		on,
	mation of po	& HEV DESIGN FUNDAMENTALS	-			atic	
		& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an	Electric and 1			atic	
driv	e. Maximum	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an ver, range, and energy consumption, Sizing of power train components in 1	Electric and 1			atic	
driv UNI	e. Maximum IT-V EL	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an ver, range, and energy consumption, Sizing of power train components in 1 speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy	Electric and 1 /brid drive.	nybri	id ei	latic lectr 9	ric
driv UNI EMI	e. Maximum IT-V EL I–significanc	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an ver, range, and energy consumption, Sizing of power train components in 1 speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING	Electric and 1 /brid drive. 551- SAE J	nybri 111	id ei 3 -	latic lectr 9 - To	ric est
drive UNI EMI meth	e. Maximum IT-V EL I–significanc hodology- Sa	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an ver, range, and energy consumption, Sizing of power train components in 1 speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING e and control techniques. SAE Automotive EMC standards – SAE J	Electric and h /brid drive. 551- SAE J ent of isolatio	111 nybri	id ei 3 - sista	latic lectr 9 - To ance	ric est
drive UNI EMI meth wate	e. Maximum IT-V EL I–significanc hodology- Sa er tests moto	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an wer, range, and energy consumption, Sizing of power train components in I speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING e and control techniques. SAE Automotive EMC standards – SAE J fety checklist (AIS 038). – significance of isolation resistance - measurem	Electric and h /brid drive. 551- SAE J ent of isolatio	111 nybri	id ei 3 - sista	latic lectr 9 - To ance	ric est
drive UNI EMI meth wate	e. Maximum IT-V EL I–significanc hodology- Sa er tests moto	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an ver, range, and energy consumption, Sizing of power train components in 1 speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING e and control techniques. SAE Automotive EMC standards – SAE J fety checklist (AIS 038). – significance of isolation resistance - measurem power test (AIS 041) – chassis dynamometer– Energy consumption test e test (AIS 040).	Electric and h /brid drive. 551- SAE J ent of isolatio	111 nybri	id ei 3 - sista	latic lectr 9 - To ance	ric est e – ng
drive UNI EMI meth wate (AIS	e. Maximum IT-V EL I-significanc hodology- Sa er tests moto S 048) –Rang	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an ver, range, and energy consumption, Sizing of power train components in 1 speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING e and control techniques. SAE Automotive EMC standards – SAE J fety checklist (AIS 038). – significance of isolation resistance - measurem power test (AIS 041) – chassis dynamometer– Energy consumption test e test (AIS 040).	Electric and 1 /brid drive. 551- SAE J ent of isolatio (AIS 039) – 1	111 nybri	id ei 3 - sista ery t	latic lectr 9 - To ance esti	ric est e – ng
drive UNI EMI meth wate (AIS	e. Maximum IT-V EL I-significanc hodology- Sa er tests moto S 048) –Rang ITSE Outcom	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an wer, range, and energy consumption, Sizing of power train components in I speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING e and control techniques. SAE Automotive EMC standards – SAE J fety checklist (AIS 038). – significance of isolation resistance - measurem power test (AIS 041) – chassis dynamometer– Energy consumption test e test (AIS 040).	Electric and H /brid drive. 551- SAE J ent of isolatio (AIS 039) – 1 ontact Hours	111 nybri	id ei 3 - sista ery t	latic lectr 9 - To ance esti	ric est e – ng
drive UNI EMI meth wate (AIS	e. Maximum IT-V EL I-significance hodology- Sa er tests moto S 048) –Rang Irse Outcom explain abo	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an wer, range, and energy consumption, Sizing of power train components in 1 speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING e and control techniques. SAE Automotive EMC standards – SAE J fety checklist (AIS 038). – significance of isolation resistance - measurem power test (AIS 041) – chassis dynamometer– Energy consumption test e test (AIS 040). Ces: On completion of the course, the students will be able to	Electric and A <i>i</i> brid drive. 551- SAE J ent of isolatio (AIS 039) – 1 ontact Hours gy options	111 111 on re batte	id ei 3 - sista ery t	latic lectr 9 - To ance esti	ric est e – ng
drive UNI EMI meth wate (AIS	e. Maximum IT-V EL I-significanc hodology- Sa er tests moto S 048) –Rang ITSE Outcom explain abou describe abou	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an wer, range, and energy consumption, Sizing of power train components in 1 speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING e and control techniques. SAE Automotive EMC standards – SAE J fety checklist (AIS 038). – significance of isolation resistance - measurem power test (AIS 041) – chassis dynamometer– Energy consumption test e test (AIS 040). Cest: On completion of the course, the students will be able to tt the global pollution, emission standards and modern drive train technolog	Electric and 1 /brid drive. 551- SAE J ent of isolatic (AIS 039) – 1 ontact Hours gy options ze estimation.	111 111 on re batte	id ei 3 - sista ery t	latic lectr 9 - To ance esti	ric est e – ng
drive UNI EMI meth wate (AIS Cou	e. Maximum IT-V EL I-significanc hodology- Sa er tests moto S 048) –Rang Irse Outcom explain abo describe abo explain abo	& HEV DESIGN FUNDAMENTALS a vehicle – Aerodynamic, rolling and gradient resistance. Tractive effort an wer, range, and energy consumption, Sizing of power train components in 1 speed of the vehicle. Gradeability. Vehicle fuel economy estimation in a hy ECTROMAGNETIC INTERFERENCE AND TESTING e and control techniques. SAE Automotive EMC standards – SAE J fety checklist (AIS 038). – significance of isolation resistance - measurem power test (AIS 041) – chassis dynamometer– Energy consumption test e test (AIS 040). Cees: On completion of the course, the students will be able to at the global pollution, emission standards and modern drive train technolog ut various traction batteries, their performance and perform capacity and si	Electric and A /brid drive. 551- SAE J ent of isolatio (AIS 039) – 1 ontact Hours gy options ze estimation. ication.	111 111 on re batte	id ei 3 - sista ery t	latic lectr 9 - To ance esti	ric est e – ng

Tex	at Book (s):
1	Tom denton. "Electric and Hybrid Vehicles" Routledge Publications, 2016
2	Connor, Paul., Bailey, Robert (Bob) D., Rand, D A J., Dell, R M. Understanding Batteries. United
4	Kingdom: Royal Society of Chemistry, 2007.
3	Iqbal Hussain. "Electric and Hybrid Vehicles Design Fundamentals". CRC Press, 2013
Ref	Cerence Books(s) / Web links:
1	MehrdadEhsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel cell Vehicles", CRC press,
1	2017
2	Electric Vehicles: The Benefits and Barriers. Croatia: IntechOpen, 2011.
3	Goodarzi, G. Abas., Hayes, John G. Electric Powertrain: Energy Systems, Power Electronics and Drives for
5	Hybrid, Electric and Fuel Cell Vehicles. United Kingdom: Wiley, 2018.

COs/POs&PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	2	2	1	-	3	3	2	-	1	-	2	3	3	2
CO 2	3	1	1	-	-	3	3	2	-	1	-	2	3	-	2
CO 3	3	1	1	-	-	3	3	2	-	1	-	2	3	-	2
CO 4	3	2	2	1	-	2	3	2	-	1	-	2	3	-	2
CO 5	3	2	2	1	-	2	2	2	-	1	-	2	3	-	2
Average	3	1.6	1.6	1	-	2.6	2.8	2	-	1	-	2	3	3	2

Subj	ject Code	Subject Name(Theory Course)	Category	L	Т	Р	С
ME	E1902	FUNDAMENTALS OF AUTOMOTIVE TECHNOLOGY	PE	3	0	0	3
Obj	ectives:						
•		bout the types of chassis layout and drivetrain systems					
•		tand the basics of front axle types and steering system					
•		bout the loads acting on rear axles and the various types of tyres and whe	els of an automo	bile	•		
•		ne fundamentals of suspension system					
•	To impart	the basic knowledge on brake systems					
UNI	T-I L	AYOUT, FRAME AND DRIVE LINE				9	
Basi	c constructi	on of vehicles, Types of Chassis layout with reference to Power Plant loo	cation and drive,	vario	ous	typ	es
of fi	ames, forc	es acting on a vehicle, introduction to automotive engines- gasoline	and diesel, Univ	vers	al J	oin	ts,
Cons	stant Veloci	ty Universal Joints, Principle and Constructional details of gear box and	differential unit.				
UNI	T-II F	RONT AXLE AND STEERING SYSTEM				9	
Туре	es of Front	Axles and Stub Axles, Front Wheel Geometry. Condition for True Roll	ing Motion. Acke	erma	an '	s ai	nd
Davi	is's Steerin	g Mechanisms, Steering Linkages, Different Types of Steering Gear	boxes, Slip Angl	e, e	ffee	:ts	of
Over	-Steer and	Under-Steer, Electric Power Steering					
UNI	T-III R	EAR AXLES, WHEELS, RIMS AND TYRES				9	
Cons	struction of	rear axles, Types of Loads acting on rear axles, Full -Floating, Three	-Quarter Floatin	g ar	nd S	em	ni–
		Multi axle vehicles and its types. Construction of Wheels and Rim	is, Types of Tyr	es a	and	the	eir
		etails. Optimisation of wheels and selection of tyres					
		USPENSION SYSTEM				9	
		Suspension System, Types of Suspension Springs, Constructional detail					
		af spring, Coil and Torsion bar Springs, Rubber, Pneumatic and Hydro	-			-	-
		endent and dependent Suspension System, Shock Absorber and its type	s, anti-roll bar fo	or st	abil	ity	of
elect	ric vehicles						
UNI		RAKE SYSTEMS				9	
Need	l for Brake	systems, Stopping Distance, Time and Braking Efficiency, Effect of We	ight Transfer du	ing	Bra	kin	ıg,
Clas	sification o	f brakes, Braking Torque, drum brake and disc Brake Theory, Types a	nd Construction	of H	Iydi	aul	lic
Brak	ting System	, Mechanical Braking System, Power–Assisted Braking System,					
		Tota	al Contact Hours	s	:	4	5
Сон	rse Outcon	nes:					
		e course the student will be able to					

•	the steering geometry and derive the condition for true rolling motion of an automobile
•	the knowledge about the working of transmission and components of driveline system.
•	select the appropriate type of rear axle for a given vehicle and know about the various types of wheels and tires.
•	possess knowledge about the deployment of appropriate type of springs for vehicles.
•	realize the importance of braking systems in a vehicle
Tex	t Book(s):
1	Kirpal Singh, "Automobile Engineering Vol.1", Standard Publisher Distributors, 14th Edition, 2017.
2	Fundamentals of Automotive Technology. United States: Jones & Bartlett Learning, 2017.
2	Restoule, Martin., Erjavec, Jack., Playter, Al. Automotive Technology: A Systems Approach. Australia: Nelson
3	Education Limited, 2006.
Ref	erence Books(s) / Web links:
1	Erjavec, Jack., Thompson, Rob. Automotive Technology: A Systems Approach. United States: Cengage
1	Learning, 2014.
2	Duffy, James E., Modern Automotive Technology. United States: Goodheart-Willcox Company, 2004.
_	VanGelder, Kirk T., Fundamentals of Automotive Technology: Principles and Practice. United States: CDX
3	Automotive, Jones & Bartlett Learning, 2013.
3	

COs/POs&PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	2	1	-	-	1	-	-	-	1	1	2	3	3	2
CO 2	3	2	1	-	-	1	-	-	-	1	1	2	3	-	2
CO 3	3	2	1	-	-	1	-	-	-	1	1	2	3	-	2
CO 4	3	2	1	-	-	1	-	-	-	1	1	2	3	1	2
CO 5	3	2	1	-	-	1	-	-	-	1	1	2	3	2	2
Average	3	2	1	-	-	1	-	-	-	1	1	2	3	2	2

Subject Cod	e Subject Name(Lab Oriented Theory Course)	Category	L	Т	Р	С
MEE1903	CHARGING SYSTEMS FOR ELECTRIC VEHICLES	PC	2	0	2	3
Objectives:						
• To imp	art knowledge on general physical mechanism and standards for EV charge	ging systems				
• To exp	ose the concept of battery management systems					
• To fam	iliarize the estimation methods for different battery parameters					
• To tead	h the concept of wireless power transfer in EVs and its standards					
• To pro	vide knowledge on renewable energy powered EV charging systems					
UNIT-I	EV CHARGING METHODS AND STANDARDS				6	
Introduction	Building Blocks of EV charging station, Types of battery chargers - Sl	ow, rapid and DC	ast	char	ger	s -
	nnologies- Conductive charging - Need for inductive charging of EV - In	-			-	
	regulations - Indian standard IS 17017-part-1,2,23-25;	0.0				
UNIT-II	BATTERY MANAGEMENT SYSTEMS				6	
Significance	of Battery Management Systems - Functions of the Battery Management	System – Topology	of t	he I	3MS	3 -
Methods of I	attery Management - Introduction to IoT based Battery Monitoring Syste	em.				
UNIT-III	BATTERY STATE ESTIMATION				6	
-	Series and Parallel combination of Batteries - Characteristic Parameters:			De	pth	of
Discharge (I	oD) and State of Health (SoH) – Estimation methods of SoC and SoH - A	Ampere-hour integra	ıl.			
UNIT-IV	WIRELESS POWER TRANSFER FOR EVs				6	
Introduction	- Types of Wireless Charging - Inductive, Magnetic Resonance and	Capacitive - Benef	ïts o	of V	VPT	
Standards for	EV Wireless Chargers, SAE J2954, IEC 61980, ISO 19363.					
UNIT-V	EV CHARGING USING RENEWABLE ENERGY SYSTEMS				6	
	- EV charging systems for residential and commercial buildings - s	solar PV system –	wir	nd e	ner	gy
conversion s	stems - charging infrastructure with hybrid solar PV, wind and battery.					
		ontact Hours			30	

	List of Experiments	
1	To find the SOH and SOC of the given battery.	
2	To simulate the thermal characteristics of a cell.	
3	To simulate the primary battery monitoring system.	
4	To simulate the charging system of the given battery for a specified time period.	
5	To simulate the charging system of the given battery fed from Photovoltaic panel.	
	Contact Hours 1	15
	TOTAL CONTACT HOURS	: 45
Co	urse Outcomes: On completion of the course, the students will be able to	
•	comprehend the general physical mechanism of EV charging systems and standards	
•	realize the functions of basic battery management system	
•	estimate the different parameters of the battery	
•	analyse the different types of wireless power transfer	
•	realize the challenges and problems associated with the use of various energy sources for EV charging systems	5.
Tex	xt Book (s):	
	Cable Based and Wireless Charging Systems for Electric Vehicles, Technology and control, management and	grid
1	integration", Rajiv Singh, Sanjeevikumar Padmanaban, Sanjeet Dwivedi, Marta Molinas and Frede Blaabjerg,	IET
	2021	
2	Battery Management Algorithm for Electric Vehicles, Rui Xiong Springer; 1st ed. 2020 edition (8 October 201	19)
	Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles , Chitra A. (Editor), Sanjeevikumar	
3	Padmanaban (Editor), Jens Bo Holm-Nielsen (Editor), S. Himavathi (Editor), Wiley-Scrivener; 1st edition (18	8
	September 2020)	
Ref	erence Books(s) / Web links:	
1	Mobile Electric Vehicles Online Charging and Discharging, Miao Wang Ran Zhang Xuemin (Sherman) S	hen,
_	Springer 2016	
2	Alicia Triviño-Cabrera ,José M. González-González,José A. Aguado, Wireless Power Transfer for Ele	ctric
_	Vehicles: Foundations and Design Approach, Springer Publisher 2019	
3	Nil Patel, Akash Kumar Bhoi, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, Electric Vehicles Mo	dern
Ŭ	Technologies and Trends. Springer Publisher 2020	

COs/POs&PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	3	3	3	3	3	3	3	2	3	3	3	2	3
CO 2	3	3	3	3	3	3	3	1	3	2	3	3	3	2	3
CO 3	3	3	3	3	3	3	3	1	3	2	3	3	3	2	3
CO 4	3	3	3	3	3	3	3	3	3	2	3	3	3	2	3
CO 5	3	3	3	3	3	3	3	1	3	2	3	3	3	2	3
Average	3	3	3	3	3	3	3	1.8	3	2	3	3	3	2	3

Sub	oject Code	Subject Name(Lab Oriented Theory Course)	Category	Category L T						
ME	EE1904	POWER CONVERTERS AND MOTORS FOR ELECTRIC	PC	2	0	2	3			
		VEHICLES								
Ob	jectives:									
•	 To familiarise the different types of DC - DC Power Converters used in Electric Vehicles 									
•	To provide knowledge on different types of Inverters used in Electric Vehicles									
•	To inculc	ate knowledge on the construction, principle of operation and design of Induc	tion and PMB	LDO	СM	oto	rs			
	To impar	knowledge on construction, principle of operation and design of Synchron	ous Reluctanc	e M	loto	r ar	nd			
•	Permaner	t Magnet Synchronous Motor								
•	To learn the construction, principle of operation and design of Switched Reluctance Motor and Axial Flux Motor									
UN	IT-I	OWER CONVERTERS FOR ELECTRIC VEHICLES				6				
Intr	Introduction to Components of Electric Vehicles, Non-Isolated DC-DC Converter: Boost Converter, Buck Converter,									

Buck-Boost Converter, Isolated DC- DC Converters: Flyback Converter, Forward Converter- Modes of Operat	ion and
Analysis.	
UNIT-II INVERTERS FOR ELECTRIC VEHICLES	6
Introduction to H Bridge Inverter, Three Phase Voltage and Current source inverters - operation and a	nalysis.
Modulation techniques for VSI – SPWM, SVPWM.	
UNIT-III INDUCTION MOTOR AND PMBLDC MOTOR	6
Induction motor - Construction and operation, torque and power equation, Torque-Speed Characteristics, I	Braking
methods.	
PMBLDC Motor - Constructional features, Operating principle, EMF and torque developed, Torque	-Speed
Characteristics.	
UNIT-IV PERMANENT MAGNET SYNCHRONOUS MOTOR	6
PMSM Motor - Construction and types of PMSM - EMF and torque developed, Torque - Speed Charact	eristics
Phasor diagram, Braking methods.	
UNIT-V AXIAL FLUX MOTOR	6
Axial Flux Motor - Constructional features, Principle of operation, Torque developed and Speed Control. Intro	duction
to Raxial motor.	
Contact Hours :	30
List of Experiments	
1. Simulation of Buck converters with R and RL loads	
2. Simulation of Boost converters with R,RL and RLE loads	
3. Simulation of SPWM inverter with Induction Motor load	
4. Design of PMSM Motor using Matlab	
5. Study of PMBLDC motor/PMSM motor using 'Motor solve' - software	
Contact Hours :	
Total Contact Hours	45
Course Outcomes: On completion of the course, the students will be able to	
• choose and design the appropriate DC - DC Power Converter and Inverter for Electric Vehicle applications	
design and analyse the Induction Motor	
design and analyse the Permanent Magnet Synchronous Motor	
design and analyse PMBLDC motor	
• perform simulation of different types of power converters and motors used in Electric Vehicles using Matla	ıb.
Text Book (s):	
1 Jananardanan, Special electrical machines, Prentice hall India,2013	
2 Philip T Krein, Elements of Power Electronics, Oxford university press,2003	
3 Venkataratnam, Special electrical machines, Oxford university press,2021	
Reference Books(s) / Web links:	
1 M.H.Rashid, Power electronics, Pearson,2014	
2 Electrical Machine Fundamentals with Numerical Simulation using MATLAB/SIMULINK, Atif Iqbal,	Shaikh
Moinoddin, BhimireddyPrathap Reddy, Wiley,2021	
3 Theodore wildi, Electrical machines and drives, pearson, 2015	

COs/POs&PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3
CO 2	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3
CO 3	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3
CO 4	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3
CO 5	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3
Average	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3

Sub	ject Code	Subject Name(Lab Oriented Theory Course)	Category L	Т	P C
ME	E1905	CONTROL OF ELECTRIC VEHICLES	PC 2	0	2 3
bjeo	ctives:				
•	To impart k	nowledge on different control schemes applied to Induction Motors.			
•	To provide	knowledge on different methods of control of synchronous reluctance moto	ors.		
•	To familiari	ze the different control techniques for PMBLDC motor.			
•	To inculcate	knowledge on the various control schemes applied to permanent magnet s	ynchronous moto	rs.	
•	To teach the	different control methods applicable for switched reluctance motors			
UN	IT-I CC	NTROL OF POWER CONVERTERS			6
Nee	d for Closed	Loop Control - Voltage Mode Control (VMC) - Current Mode Control	ol (CMC) – Adva	intaș	ges of
CM	C over VMC	-Cascade Control Strategy - Condition for implementing Cascade Control	ol Strategy - Intro	luct	ion to
		e frequency PWM methods.			
		ONTROL OF INDUCTION MOTOR			6
-		ar Control - v/f Control, Voltage Fed Inverter Control, Current Fed Inve	erter Control, Dire	ect t	orque
con	1				-
		ONTROL OF PERMANENT MAGNET BRUSHLESS DC MOTORS			6
		LDC Motor using 3-pulse Converter and 6 pulse Inverter, Structure of con		p C	urrent
		Microcontroller based implementation of PMBLDC Drive. Control of E-bi NTROL OF PERMANENT MAGNET SYNCHRONOUS MOTORS	ke		6
		control, Direct Torque control, Vector control, Sensorless control, Mi	rocontrollar basa	d D	
Driv		control, Direct Torque control, vector control, Sensoness control, Mil	locontroner base	u r	IVI SIVI
		ONTROL OF AXIAL FLUX MOTORS			6
		Schemes- Hysteresis and PWM control - Embedded control of axial flux m	otor.		Ū
Cui	ioni control i		ontact Hours	:	30
		List of Experiments		Ŀ	
1	Testing of y	/f controller for Induction motor			
2		rol of PMDC motor			
-		ol of BLDC motor			
4		ntrol of SRM motor			
5		PMSM motor			
2	resting of r	Lab Cont	act Hours	:	15
			tact Hours	•	45
Cor	urse Outcom	es: On completion of the course, the students will be able to		•	-10
•		he appropriate control scheme for the speed control of Induction Motors			
•		e suitable control method for the speed control of synchronous reluctance r	notors		
•	11.7	e appropriate control scheme for the control of PMBLDC motor			
_		he suitable control scheme for the control of permanent magnet synchro	nous motors and	SW	itched
•	reluctance n		nous motors una	5	licinea
•		he speed control of various motors used in Electric Vehicles using Matlab/	Simulink software	too	1.
Tex	t Book (s):				
1		d Naganori, S "Permanent Magnet and brushless DC motors ", Clarendon 1	Press, Oxford, 198	9.	
		"Electric Motor Drives – Modeling, Analysis and Control", Prentice-H			New
2	Delhi, 2003			,	
-		"Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, De	sign and Applicati	ons	,,
3	CRC Press,				
Ref		s(s) / Web links:			
1		E. "Brushless permanent magnet and reluctance motor drives ", Clarendon	Press, Oxford. 198	39.	
2		"Modern Power Electronics & AC drives", Prentice-Hall of India Pvt. Ltd.			
3		ahmanyam, "Electric Drives: Concepts & Applications", 2nd Edition, Mcg			
5	. courris ubi	annuary and Directic Directs Concepts & Applications , 2nd Edition, 100			

COs/POs&PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	3	3	3	1	1	1	3	2	3	3	3	2	3
CO 2	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3

Average	3	3	3	3	3	1.8	1.8	1	3	2	3	3	3	2	3
CO 5	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3
CO 4	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3
CO 3	3	3	3	3	3	2	2	1	3	2	3	3	3	2	3

	bject Code	Subject Name(Theory Course)	Category	L	Т	P
ME	E1906	GRID INTEGRATION OF ELECTRIC VEHICLES	PC	3	0	0
Obj	jectives:					
•	To acquire	knowledge on energy exchange between storage element and power grid.				
•	To provid	e knowledge on the benefits of V2G				
•	To learn the	he challenges in V2G integrated power system				
•	To learn th	he impacts of EV and V2G on the power grid				
•	To familia	rize the management of EVs				
UN	IT-I IN	TRODUCTION TO G2V AND V2G				9
Intr	oduction to	power grid and smart grid. Definition of G2V and V2G - History ar	nd Developm	ent	of	V2G
Inco	orporating V	2G for EVs, Types of storage: Short-term and Long-Term.	-			
UN	IT-II BI	ENEFITS OF V2G				9
Ben	efits of V2C	. Technical Benefits: Storage Superiority and Grid Efficiency - Economic	Benefits: EV	Ow	ner	s and
Soc	ietal Savings	- Environment and Health Benefits: Sustainability in Electricity and Transp	ort.			
UN	IT-III CI	IALLENGES IN V2G				9
Tec	hnical Chall	enges- Effect of Battery Degradation, Conversion Efficiency of EV Cha	arger. The Ed	cono	mic	and
Bus	iness Challe	nges of V2G - Evolving Nature of V2G Costs and Benefits. Introduction to I	Regulatory Ch	alle	nge	s and
Frai	meworks.					
UN	IT-IV IN	IPACT OF EV AND V2G ON POWER GRID				9
Imp	act of Electr	ic Vehicles on power quality issues - Load management using Renewable	Energy Source	ces a	nd	EVs
Imp	oacts of EVs	on environment.				
UN	IT-V M	ANAGEMENT OF EVs				9
Intr	oduction to I	Aachine to Machine (M2M) communication- M2M in distributed energy ma	anagement sys	tem	s - 1	M2M
com	nmunication	for EVs - Overview of cloud-based energy management service for Electric	vehicles - Dat	a log	gge	rs foi
EVs	s Charging	Station Discovery Selection and Status Server (CDSSS).				
		Total Cont	act Hours		:	45
Cou	irse Outcon	es: On completion of the course, the students will be able to				
•	analyse the	methods of energy exchange between storage element to power system grid	I.			
•	realise the	benefits of V2G				
•	analyse the	technical and regulatory challenges related to V2G				
•	comprehen	the impact of EV and V2G on power grid				
•	realize the	concept of management of EVs.				
Tex	t Book (s):					
1	Advanced l	Electric Drive Vehicles, Ali Emadi, CRC Press 2017				
2	Plug In El	ectric Vehicles in Smart Grids, Charging Strategies, Sumedha Rajakaru	ına , Farhad	Shał	nnia	and
2	Arindam G	hosh,Springer,2015				
3	ICT for Ele	ctric Vehicle Integration with the Smart Grid, Nand Kishor; Jesus Fraile-Ard	Januy, IET 20	20		
Ref	erence Bool	s(s) / Web links:				
1	Vehicle-to-	Grid: Linking Electric Vehicles to the Smart Grid, Junwei Lu and Jahangir	Hossain, IET	2015	j	
2	Lance Noe	1 · Gerardo Zarazua de Rubens Johannes Kester · Benjamin K. Sov	acool, Vehic	e-to	-Gr	id A
2	Sociotechn	cal Transition Beyond Electric Mobility, 2019				
Ref	ICT for Ele erence Bool Vehicle-to- Lance Noe	ctric Vehicle Integration with the Smart Grid, Nand Kishor; Jesus Fraile-Ard (s(s) / Web links: Grid: Linking Electric Vehicles to the Smart Grid, Junwei Lu and Jahangir 1 · Gerardo Zarazua de Rubens Johannes Kester · Benjamin K. Sov	Hossain, IET	2015		

COs/POs&PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	3	3	-	3	3	3	3	2	3	3	3	3	2

Average	3	3	3	3	2	3	3	3	3	2	3	3	3	3	2
CO 5	3	3	3	3	-	3	3	3	3	2	3	3	3	3	2
CO 4	3	3	3	3	2	3	3	3	3	2	3	3	3	3	2
CO 3	3	3	3	3	-	3	3	3	3	2	3	3	3	3	2
CO 2	3	3	3	3	-	3	3	3	3	2	3	3	3	3	2