

CHOICE BASED CREDIT SYSTEM B. TECH. INFORMATION TECHNOLOGY

Vision

• To be a Department of Excellence in Information Technology Education, Research and Development.

Mission

- To train the students to become highly knowledgeable in the field of Information Technology.
- To promote continuous learning and research in core and emerging areas.
- To develop globally competent students with strong foundations, who will be able to adapt tochanging technologies.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

- PEO 1: To provide essential background in Science, basic Electronics and applied Mathematics.
- **PEO 2:** To prepare the students with fundamental knowledge in programming languages and to develop applications.
- **PEO 3:**To engage the students in life-long learning, and make them to remain current in their profession and obtain additional qualifications to enhance their career positions in IT industries.
- **PEO 4:**To enable the students to implement computing solutions for real world problems and carry out basic and applied research leading to new innovations in Information Technology (IT) and related interdisciplinary areas.
- **PEO 5:** To familiarize the students with the ethical issues in engineering profession, issues related to the worldwide economy, nurturing of current job related skills and emerging technologies.

PROGRAMME OUTCOMES (POs)

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2:** Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6**: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7**: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8:** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9**: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10**: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11:** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12**: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 1: To comprehend and analyze user requirements to design IT based solutions

PSO 2: To identify and assess current technologies and review their applicability to addressindividual and organizational needs.

PSO 3: To engage in the computing profession by working effectively and utilizing professional skills to make a positive contribution to society.

PSO 4: To take on positions as promoters in business and embark on a research career in the field.

CURRICULUM

B.Tech. INFORMATION TECHNOLOGY Regulations 2019 | Total Credits: 163

		SEMESTER I						
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С
THE	ORY COURS	SES	<u> </u>					
1.	HS19151	Technical English	HS	3	2	1	0	3
2.	MA19152	Linear Algebra and Applied Calculus	BS	4	3	1	0	4
LAB	ORIENTED	THEORY COURSES						
3.	CY19143	Applied Chemistry	BS	5	3	0	2	4
4.	GE19141	Programming using C	ES	6	2	0	4	4
5.	GE19122	Engineering Practices- Electrical and Electronics	ES	2	0	0	2	1
NON	CREDIT CO	DURSES						
6.	MC19102	Indian Constitution and Freedom Movement	MC	3	3	0	0	0
			TOTAL	23	13	2	8	16

		SEMESTER II						
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	C
THE	ORY COURS	SES						
1.	MA19252	Differential Equations and Complex Variables	BS	4	3	1	0	4
2.	GE19101	Engineering Graphics	ES	4	2	2	0	4
LAB	ORIENTED	THEORY COURSES						
3.	PH19241	Physics for Information Science	BS	5	3	0	2	4
4.	EE19242	Basic Electrical and Electronics Engineering	ES	5	3	0	2	4
5.	IT19241	Data Structures Fundamentals	PC	7	3	0	4	5
LAB	ORATORY (COURSES						
6.	GE19121	Engineering Practices-Civil & Mechanical	ES	2	0	0	2	1
NON	CREDIT CO	DURSES						
7.	MC19101	Environmental Science and Engineering	MC	3	3	0	0	0
			TOTAL	30	17	3	10	22

		SEMESTER III								
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С		
THEORY COURSES										
1.	MA19354	Transforms and Discrete Mathematics	BS	4	3	1	0	4		
2.	IT19301	Digital Electronics	ES	4	3	0	0	3		
3.	IT19302	Software Engineering Essentials	PC	3	3	0	0	3		
4.	IT19303	Advanced Data Structures	PC	3	3	0	0	3		
LAB	ORIENTED	THEORY COURSES								
5.	CS19341	Design and Analysis of Algorithms	PC	5	3	0	2	4		
6.	IT19341	Introduction to OOP and Java	PC	7	3	0	4	5		
NON	CREDIT CO	URSES								
7.	MC19301	Essence of Indian Traditional Knowledge	MC	3	3	0	0	0		
	TOTAL 29 21 1 6 22									

		SEMESTER IV	7						
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	C	
THE	ORY COURS	SES							
1.	MA19454	Probability, Statistics and Queuing Theory	BS	4	3	1	0	4	
2.	IT19401	Computer Organization	PC	3	3	0	0	3	
3.	GE19304	Fundamentals of Management for Engineers	HS	3	3	0	0	3	
4.	GE19301	Life Science for Engineers	BS	3	3	0	0	3	
LAB	ORIENTED	THEORY COURSES							
5.	IT19441	Operating System Design	PC	7	3	0	4	5	
6.	CS19443	Database Management Systems	PC	7	3	0	4	5	
LAB	ORATORY (COURSES							
7.	GE19421	Soft Skills-I	EEC	2	0	0	2	1	
TOTAL 29 19 1 10 24									

		SEMESTER V						
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С
THE	ORY COURS	SES						
1.	IT19501	Automata Theory & Compiler Design	PC	4	3	1	0	4
2.	EC19505	Analog and Digital Communication	ES	3	3	0	0	3
3.		Open Elective –I	OE	3	3	0	0	3
LAB	ORIENTED	THEORY COURSES						
4.	IT19541	Web Technology	PC	5	3	0	2	4
5.	CS19541	Computer Networks	PC	7	3	0	4	5
6.	EC19443	Principles of Microprocessors and Microcontroller	ES	7	3	0	4	5
LAB	ORATORY (COURSES						
7.	IT19521	Open Source Programming and Tutorial Lab	PC	4	0	0	4	2
8.	GE19521	Soft Skills-II	EEC	2	0	0	2	1
			TOTAL	35	18	1	16	27

		SEMESTER VI						
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С
THE	ORY COURS	SES						
1.		Professional Elective-I	PE	4	2	0	2	3
2.		Open Elective –II	OE	3	3	0	0	3
LAB	ORIENTED	THEORY COURSES	•			1		
3.	IT19641	Mobile Communication	PC	5	3	0	2	4
4.	IT19642	Cryptography and Information Security	PC	5	3	0	2	4
5.	IT19643	Artificial Intelligence and Machine Learning	PC	5	3	0	2	4
6.	IT19644	Innovation and Design Thinking for Information Technology	EEC	5	3	0	2	4
LAB	ORATORY (COURSES						
7.	GE19621	Problem Solving Techniques	EEC	2	0	0	2	1
		•	TOTAL	29	17	0	12	23

		SEMESTER VII								
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С		
THE	ORY COURS	SES								
1.Professional Elective-IIPE33003										
2. Professional Elective-III PE 3 3 0 0 3										
LAB	ORIENTED	THEORY COURSES								
3.	IT19741	Cloud and Big Data Analytics	PC	7	3	0	4	5		
LAB	ORATORY C	COURSES								
4.	IT19711	Industry Practices Lab	PC	4	0	0	4	2		
5.	IT19712	Project Phase I	EEC	8	0	0	8	4		
			TOTAL	25	9	0	16	17		

	SEMESTER VIII										
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С			
THEORY COURSES											
1.		Professional Elective-IV	PE	3	3	0	0	3			
2.		Professional Elective-V	PE	3	3	0	0	3			
LAB	ORATORY (COURSES									
3.	IT19811	Project Phase II	EEC	12	0	0	12	6			
		·	TOTAL	18	6	0	12	12			

TOTAL NO. OF CREDITS: 163

OPEN ELECTIVES Offered by IT

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	OIT1901	Business Intelligence	OE	3	3	0	0	3
2.	OIT1902	Cyber Security	OE	3	3	0	0	3

PROFESSIONAL ELECTIVES (PE)

		Elective – I						
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С
1.	IT19P61	Advanced R and Python Programming	PE	4	2	0	2	3
2.	IT19P62	Game Programming	PE	4	2	0	2	3
3.	IT19P63	Automation Tools	PE	4	2	0	2	3
4.	IT19P64	3D Imaging	PE	4	2	0	2	3
5.	IT19P65	Python for Data Science	PE	4	2	0	2	3

		Elective – II						
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С
1.	IT19P71	Embedded and Realtime Systems	PE	3	3	0	0	3
2.	IT19P72	Digital Image Processing	PE	3	3	0	0	3
3.	IT19P73	Wireless communication	PE	3	3	0	0	3
4.	IT19P74	Internet of Things	PE	3	3	0	0	3
5.	IT19P75	Deep Learning Techniques	PE	3	3	0	0	3

	Elective – III										
SL. NO.	COURSE CODE	COURSE TITLE	Category	Contact Periods	L	Т	Р	С			
1.	IT19P80	Service Oriented Architecture	PE	3	3	0	0	3			
2.	IT19P76	Image processing & Vision Techniques	PE	3	3	0	0	3			
3.	IT19P77	Computational Linguistics	PE	3	3	0	0	3			
4.	CS19P12	Distributed systems	PE	4	2	0	2	3			
5.	IT19P78	Software Testing	PE	3	3	0	0	3			
6	IT19P79	Comprehension	PE	3	3	0	0	3			

	Elective – IV										
SL. NO.	COURSE CODE	COURSE TITLE	Р	С							
1.	IT19P81	Block Chain Architecture and use cases	PE	3	3	0	0	3			
2.	IT19P82	Cyber Forensics	PE	3	3	0	0	3			
3.	IT19P83	Data Warehousing and Mining	PE	3	3	0	0	3			
4.	IT19P84	Parallel Computing	PE	3	3	0	0	3			
5.	IT19P85	Social Networks	PE	3	3	0	0	3			

	Elective – V										
SL. NO.	COURSE CODE	COURSE TITLE	Т	Р	С						
1.	IT19P90	Startup Management	PE	3	3	0	0	3			
2.	IT19P86	Lateral Thinking Techniques	PE	3	3	0	0	3			
3.	IT19P87	Total Quality Management	PE	3	3	0	0	3			
4.	IT19P88	Professional Ethics	PE	3	3	0	0	3			
5.	IT19P89	Software Project Management	PE	3	3	0	0	3			

SUMMARY OF ALL COURSES

	B.Tech Information Technology														
S.NO	Course			Credits per Semester					per Semester						
5.110	Category	Ι	II	III	IV	V	VI	VII	VIII	Total Credits					
1	HS	3	0	0	3	0	0	0	0	6					
2	BS	8	8	4	7	0	0	0	0	27					
3	ES	5	9	3	0	8	0	0	0	25					
4	РС	0	5	15	13	15	12	7	0	67					
5	PE	0	0	0	0	0	3	6	6	15					
6	OE	0	0	0	0	3	3	0	0	6					
7	EEC	0	0	0	1	1	5	4	6	17					
8	MC	0	0	0	0	0	0	0	0	0					
	Total	16	22	22	24	27	23	17	12	163					

Subject Code	Subject Name (Theory course)	Category	L	Т	P	C
HS19151	TECHNICAL ENGLISH	HS	2	1	0	3

Ob	Objectives:						
*	To enable learners to acquire basic proficiency in English reading and listening.						
*	To write in English precisely and effectively.						
*	To speak flawlessly in all kinds of communicative contexts.						

UNIT-I VOCABULARY BUILDING

The concept of word formation - Root words from foreign languages and their use in English - Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives - Synonyms, antonyms, and standard abbreviations. Compound words – abbreviation – single word substitution – Listening: Listening comprehension, listening to motivational speeches, podcasts and poetry. Speaking: Short talks on incidents - place of visit - admiring personalities, etc.

UNIT-II BASIC WRITING SKILLS

Sentence structures - Use of phrases and clauses in sentences - punctuation - coherence - Organizing principles of paragraphs in documents - Techniques for writing precisely. Reading & Writing - Free writing - paragraphs - article reading and writing criticism - change of tense forms in short text or story - inferential reading - rewrite or interpret text - prepare questions based on the text. Speaking: Everyday situations - conversations and dialogues, speakingfor and against.

UNIT-III **GRAMMAR AND LANGUAGE DEVELOPMENT**

Subject-verb agreement- Noun-pronoun agreement - Articles - Prepositions - Redundancies. Reading & Writing: Read from innovation and ideas that changed the world, newspaper column writing - Speaking: Demonstrative speaking practice using visual aids (charts, graphs, maps, pictures, etc.)

WRITING FOR FORMAL PRESENTATION UNIT-IV

Nature and Style of sensible Writing - Describing - Defining - Classifying - Providing examples or evidence - Writing introduction and conclusion. Reading & Writing – Read from Literary pieces – identify different parts text – difference between print and digital writing. Writing: Recommendations - Foreword - Review of book. Speaking- Formal Presentations - Debate on social issues/taboos and solutions. 9

UNIT-V EXTENDED WRITING AND SPEAKING

Writing: Précis writing - Essay writing - workplace communication: Resume - Business letters and emails -Proposals. Speaking: Panel discussion - reporting an event - mock interview - Master Ceremony.

Total Contact Hours :

	e Outcomes: apletion of course students will be able to
CO1	Discuss and respond to the listening content.
CO2	Read and comprehend different texts and appreciate them
CO3	Understand structures and techniques of precise writing
CO4	Analyse different genres of communication and get familiarized with new words, phrases, and sentence structures.
CO5	Write and speak appropriately in varied formal and informal contexts.

Text Book(s):

"English for Technologists & Engineers", Orient BlackSwan Publications, Chennai, 2012. 1

Reference Books(s):

1	"Technical Communication", Meenakshi Raman & Sangeeta Sharma, Oxford University Press.
2	"Effective Communication Skills", Kulbushan Kumar, Khanna Publishing House, Delhi.
3	"Communication Skills", Pushplata, Sanjay Kumar, Oxford University Press.
4	"Practical English Usage", Michael Swan, Oxford University Press, 1995.

0

9

9

0

5	"Remedial English Grammar", F.T. Wood, Macmillan	. 2007.
-	itemetatai English oraninia , 1111 / 000, 1114	,

6 "On Writing Well", William Zinsser, Harper Resource Book, 2001.

7 "Study Writing", Liz Hamp-Lyons and Ben Heasly, Cambridge University Press, 2006.

8 "Exercises in Spoken English", Parts I-III, CIEFL, Hyderabad, Oxford University Press.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	1	-	-	-	-	-	1	-	2	3	1	3	-	-	-	-
CO2	-	3	-	2	-	-	-	-	-	2	1	1	-	-	-	1
CO3	-	-	-	1	-	-	-	-	-	3	-	-	-	-	-	1
CO4	-	1	-	1	-	-	-	-	-	3	-	2	-	-	-	1
CO5	1	1	1	1	1	1	1	1	2	3	1	1	1	-	-	1
CO(Av																
g)	1.00	1.67	1.00	1.25	1.00	1.00	1.00	1.00	2.00	2.80	1.00	1.75	1.00	-	-	1.00

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Subject Code	Subject Name (Theory course)	Category	L	Т	P	С
MA19152	LINEAR ALGEBRA AND APPLIED CALCULUS	BS	3	1	0	4

Objectives:

★ To gain knowledge in using matrix algebra techniques and the concepts of basis and dimension in vector spaces.
 ★ To understand the techniques of calculus which are applied in the Engineering problems.

UNIT-I MATRICES

Symmetric and skew – symmetric matrices, orthogonal matrices – Eigen values and Eigen vectors - Cayley – Hamilton theorem (without proof) and applications - orthogonal transformation and quadratic forms to canonical forms - Nature of quadratic forms.

UNIT-II VECTOR SPACES

Vector space – Linear dependence and independence of vectors, bases, dimensions - range and kernel of a linear map, rank and nullity – matrix of Linear transformation - inverse of a linear transformation - rank nullity theorem – composition of Linear maps – Matrix Associated with Linear Map - inner products and norms – Gram – Schmidt orthogonalisation.

UNIT-III DIFFERENTIAL CALCULUS AND APPLICATIONS

Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes and Envelopes -Partial derivatives: Definitions and Simple problems - Jacobian and properties – Taylor's series for functions of two variables – Lagrange's method of undetermined multipliers.

UNIT-IV APPLICATION OF INTEGRATION AND IMPROPER INTEGRALS

Evaluation of area, surface area and volume of revolution - Centre of Gravity – Moment of inertia – Improper integrals: Beta and Gamma integrals and their properties.

UNIT-V MULTIPLE INTEGRAL

 Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals.

 Total Contact Hours
 :

 60

Cours	Course Outcomes:						
On co	On completion of the course students will be able to:						
CO1	Apply the concept of Eigenvalues and eigenvectors, diagonalization of a matrix for solving problems.						
CO2	Use concepts of basis and dimension in vector spaces in solving problems and to construct orthonormal basis						
	using inner products.						
CO3	Analyze, sketch and study the properties of different curves and to handle functions of several variables and						
	problems of maxima and minima.						
CO4	Apply the techniques of Integration in engineering problems.						
CO5	Evaluate surface area and volume using multiple integrals.						

Te	Text Book(s):						
1	Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.						
2	T Veerarajan, "Linear Algebra and Partial Differential Equations", McGraw Hill Education, 2019						

Re	Reference Books(s):						
1	Ramana. B.V., "Higher Engineering Mathematics ", McGraw Hill Education Pvt Ltd, New Delhi, 2016.						
2	Friedberg, A.H., Insel, A.J. and Spence, L., Linear Algebra, Prentice - Hall of India, New Delhi, 2004.						
3	Erwin Kreyszig," Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016.						
4	Bali, N.P. and Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications Pvt Ltd., New Delhi, 2006.						

12

12

12

12

5 T Veerarajan, Engineering Mathematics –II, McGraw Hill Education, 2018

6 T Veerarajan, Engineering Mathematics –I, McGraw Hill Education, 2018

CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	3	3	3	3	3	1	-	-	-	-	2	2	2	3	3	3
CO2	3	3	3	3	2	1	-	-	-	-	-	2	2	3	3	3
CO3	3	3	3	3	3	1	1	-	-	-	2	3	1	2	1	3
CO4	3	3	3	3	3	1	1	-	-	-	1	3	1	2	1	3
CO5	3	3	3	3	2	1	-	-	-	-	1	3	1	2	1	3
CO(Av g)	3	3	3	3	2.6	1	1	-	-	-	1.5	2.6	1.4	2.4	1.8	3

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

No correlation : "-"

Subject Code	Subject Name (Lab oriented Theory Courses)	Category	L	Т	Р	С
CY19143	APPLIED CHEMISTRY	BS	3	0	2	4

Ob	Objectives:					
*	To acquire theoretical and practical knowledge on water quality parameters					
*	To understand the principles of electrochemistry, corrosion and in turn construction of batteries					
*	To get familiarized with engineering materials including polymers					

UNIT-I WATER TECHNOLOGY

Water quality parameters - physical, chemical &biological significance- BOD, COD- definition significance estimation of hardness by EDTA method - boiler feed water - boiler troubles - softening of water - zeolite process demineralization process - internal treatment methods - specifications for drinking water BIS - WHO standards treatment of water for domestic use - desalination - reverse osmosis -electro dialysis - UASB process.

UNIT-II ELECTROCHEMISTRY AND CORROSION

Electrode potential - electrodes - standard and reference electrodes, glass electrode. Nernst equation - EMF seriesapplications. Galvanic cells and concentration cells-applications-pH measurement, acid-base titration, potentiometric redox titration - conduct metric titrations. Corrosion - causes- effects of corrosion - theories of chemical and electrochemical corrosion - types of corrosion - galvanic, water-line, inter-granular and pitting corrosion - passivity factors affecting rate of corrosion - corrosion control methods -cathodic protection-sacrificial anode and impressed current cathodic protection

UNIT-III BATTERIES AND FUEL CELLS

Batteries- types - characteristics-fabrication and working of lead-acid battery- NICAD battery - lithium ion batteries super capacitors- introduction - types - electrochemical double layer capacitor - activated carbon - carbon aerogels. Fuel cells - classification - principle, working and applications of hydrogen-oxygen fuel cell - solid oxide fuel cell direct methanol fuel cell and proton exchange membrane fuel cells-biofuel cells.

UNIT-IV POLYMERS

Introduction to thermoplastics and thermosetting plastics- phenolic and epoxy resins - silicone polymerspolyelectrolytes - polymers with piezoelectric, pyro electric and ferroelectric properties- photonic polymers -photo resists - conducting polymers - polyaniline, polypyrrole - preparation, structure, properties and applications - liquid crystals-classification, chemical constitution, liquid crystalline polymers-applications in displays-introduction to OLED. 0

UNIT-V ENGINEERING MATERIALS

Composite materials - definition - classification - fibers - types - properties - matrix - properties - applications of composites - advantages and limitations of composites. Lubricants - definition -characteristics of lubricants-theories of lubrication -properties- viscosity, viscosity index, oiliness, pour point and cloud point, flash point and fire point additives to lubricants - solid lubricants.

> **Contact Hours** 45 :

	List of Experiments						
1	Estimation of mixture of acids by conductometry.						
2	Estimation of extent of corrosion of iron pieces by potentiometry.						
3	Estimation of the extent of dissolution of copper / ferrous ions by spectrophotometry.						
4	Estimation of acid by pH metry						
5	Determination of total, temporary and permanent hardness by EDTA method.						
6	Estimation of DO by winkler's method.						
7	Estimation of alkalinity by indicator method.						
8	Estimation of chloride by argentometric method						
9	Estimation of sodium and potassium in water by flame photometry.						
10	Determination of flash and fire point of lubricating oil						
11	Determination of cloud and pour point of lubricating oil						
12	Determination of corrosion rate on mild steel by weight loss method						

9

9

13	etermination of molecular weight of a polymer by viscometry method.								
14	Adsorption of acetic acid by charcoal								
15	etermination of phase change temperature of a solid.								
		Contact Hours	:	30					
		Total Contact Hours	:	75					
Cou	rse Outcomes:								
СО	1 Analyze the quality of water practically.								
CO	² Apply the knowledge of electrochemistry on corrosion and its control.								
CO	Be assertive on types of batteries and fuel cells.								
со	Apply the knowledge of different types of polymers in various fields.								
CO	Be conversant on the types of composites and lubricants used in engineering industry.								

Tex	Text Book(s):						
1	P. C. Jain and Monika Jain, "Engineering Chemistry", DhanpatRai Publishing Company (P) Ltd, New Delhi, 2015						
2	O.G.Palanna, "Engineering Chemistry", McGraw Hill Education (India) Pvt, Ltd, New Delhi, 2017						

Re	Reference Books(s) :						
1	Gowarikar V. R., Viswanathan N.V. and JayadevSreedhar, "Polymer Science", New Age International (P) Ltd, New Delhi, 2011.						
2	Shashi Chawla, "A Text Book of Engineering Chemistry", Dhanpat Rai & Co, New Delhi, 2005.						
3	F.W. Billmayer, "Textbook of Polymer Science", 3rd Edition, Wiley. N.Y. 2007.						

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	3	3	3	2	3	2	3	2	2	3	1	1	2	2
CO2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	2	1
CO3	3	2	2	2	2	2	1	1	2	1	1	1	1	1	1	2
CO4	3	2	2	1	1	2	2	1	1	1	1	1	1	1	1	1
CO5	2	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1
CO(Av																
g)	2.60	2.00	2.00	1.80	2.00	1.80	1.80	1.20	1.60	1.40	1.20	1.40	1.00	1.00	1.40	1.40

Subject Code	Subject Name (Lab oriented Theory Courses)	Category	L	Т	Р	С
GE19141	PROGRAMMING USING C	ES	2	0	4	4

Ob	Objectives:					
*	To develop simple algorithms for arithmetic and logical problems.					
*	To develop C Programs using basic programming constructs					
*	To develop C programs using arrays and strings					
*	To develop applications in C using functions, pointers and structures					
*	To do input/output and file handling in C					

UNIT-I	GENERAL PROBLEM SOLVING CONCEPTS		6				
Computer -	components of a computer system-Algorithm and Flowchart for problem sol	ving with Sequential	Logic				
Structure, D	ecisions and Loops.						
UNIT-II	C LANGUAGE - TYPES OF OPERATOR AND EXPRESSIONS		6				
Introduction	- C Structure- syntax and constructs of ANSI C - Variable Names, Data Typ	e and Sizes, Constant	s,				
Declarations	s - Arithmetic Operators, Relational Operators, Logical Operators, Type Con	version, Increment an	d				
Decrement (Operators, Bitwise Operators, Assignment Operators and Expressions, Precedence	lence and Order of					
Evaluation,	proper variable naming and Hungarian Notation.						
UNIT-III	I/O AND CONTROL FLOW		6				
Standard I/C), Formatted Output – Printf, Variable-length argument lists- Formatted Inpu	t - Scanf, Statements	and				
Blocks, If-E	lse-If, Switch, Loops – while, do, for, break and continue, GoTo Labels.						
UNIT-IV	FUNCTIONS AND PROGRAM STRUCTURE		6				
Basics of fu	nctions, parameter passing and returning type, External, Auto, Local, Static,	Register Variables, Se	cope				
Rules, Block	structure, Initialisation, Recursion, C Pre-processor, Standard Library Func	tions and return types					
UNIT-V	POINTERS, ARRAYS AND STRUCTURES		6				
Pointers and	addresses, Pointers and Function Arguments, Pointers and Arrays, Address	Arithmetic, character	Pointers				
and Functio	and Functions, Pointer Arrays, Pointer to Pointer, Multi-dimensional arrays, Strings, Initialisation of Pointer Arrays,						
Command line arguments, Pointers to functions, complicated declarations. Basic Structures, Structures and Functions,							
	Array of structures, Pointer of Structures, Self-referential Structures, Table look up, Typedef, Unions, Bit-fields, File						
Access -Erro	or Handling, Line I/O, Miscellaneous Functions.						
		Contact Hours	: 30				

	List of Experiments
1	Algorithm and flowcharts of small problems like GCD.
	Structured code writing with:
2	Small but tricky codes
3	Proper parameter passing
4	Command line Arguments
5	Variable parameter
6	Pointer to functions
7	User defined header
8	Make file utility
9	Multi file program and user defined libraries
10	Interesting substring matching / searching programs
11	Parsing related assignments
	Contact Hours : 60
	Total Contact Hours : 90

Cou	Course Outcomes:						
On c	On completion of the course, the students will be able to						
CO	1 To formulate simple algorithms for arithmetic and logical problems.						
CO	2 To implement conditional branching, iteration and recursion.						
CO	³ To decompose a problem into functions and synthesize a complete program using divide and conquer approach.						
CO	To use arrays, pointers and structures to formulate algorithms and programs.						
CO	⁵ To apply programming to solve matrix addition and multiplication problems and searching and sorting problems.						
Text	t Books:						
1	Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education India; 2 nd Edition, 2015.						
2	2 Byron Gottfried, "Programming with C", Second Edition, Schaum Outline Series, 1996.						

Reference Books:

2 YashavantKanetkar, "Let Us C", BPB Publications, 15th Edition, 2016.

1	https://www.tutorialspoint.com/compile_c_online.ph	p

- 2 <u>https://www.codechef.com/ide</u>
- 3 https://www.jdoodle.com/c-online-compiler
- 4 <u>https://rextester.com/l/c_online_compiler_gcc</u>

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	1	2	2	2	1	-	-	-	1	2	1	1	2	-	-	-
CO2	1	1	1	1	1	-	-	-	-	-	1	1	1	-	-	-
CO3	1	1	2	1	1	-	-	-	-	-	1	1	1	-	-	-
CO4	2	2	3	2	1	-	-	-	1	-	2	1	1	-	-	-
CO5	2	2	3	2	1	-	-	-	-	-	2	1	1	-	-	-
CO(Av						-	-	-						-	-	-
g)	1.40	1.60	2.20	1.60	1.00				1.00	2.00	1.40	1.00	1.20			

Correlation levels 1, 2 or 3 are as defined below:

Subject Code	Subject Name (Laboratory Course)	Category	L	Т	P	C
GE19122	ENGINEERING PRACTICES- ELECTRICAL AND	ES	0	0	2	1
	ELECTRONICS					

Ob	jectives:
*	To provide hands on experience on various basic engineering practices in Electrical Engineering.
*	To impart hands on experience on various basic engineering practices in Electronics Engineering.

	List of Experiments						
A.]	A. ELECTRICAL ENGINEERING PRACTICE						
1	Residential house wiring using switches, fuse, indicator, lamp and energy meter.						
2	Fluorescent lamp wiring.						
3	Stair case wiring.						
4	Measurement of electrical quantities - voltage, current, power & power factor	r in RLC circuit.					
5	Measurement of resistance to earth of an electrical equipment.						
B. 1	ELECTRONICS ENGINEERING PRACTICE						
1	1 Study of Electronic components and equipment's – Resistor, colour coding, measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO.						
2	Study of logic gates AND, OR, XOR and NOT.						
3	Generation of Clock Signal.						
4	4 Soldering practice – Components Devices and Circuits – Using general purpose PCB.						
5	Measurement of ripple factor of HWR and FWR.						
		Total Contact Hours :	30				

Course Outcomes:					
On co	On completion of the course, the students will be able to				
CO1	Fabricate electrical and electronic circuits				
CO2	Formulate the house wiring				
CO3	Design the AC-DC converter using diode and passive components				

REFERENCE

1	Bawa H.S., "Workshop Practice", Tata McGraw – Hill Publishing Company Limited, 2007.
2	Jeyachandran K., Natarajan S. &Balasubramanian S., "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
3	Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", Vikas Publishing House Pvt.Ltd, 2006.
4	Rajendra Prasad A. &Sarma P.M.M.S., "Workshop Practice", SreeSai Publication, 2002.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	3	2	-	1	-	-	-	-	1	1	2	-	1	-
CO2	3	3	3	2	1	1	2	-	1	1	1	1	2	2	1	-
CO3	3	3	3	3	2	1	2	-	2	2	3	1	2	1	1	1
CO(Av								-								
$\frac{\mathbf{g}}{\mathbf{G}}$	3	3	3		1.5	1	2		1.5	1.5	1.67	1	2	1.5	1	1

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Sub	bject CodeSubject Name (Theory course)CategoryLTC19102INDIAN CONSTITUTION AND FREEDOM MOVEMENTMC30									
MC	C19102 INDIAN CONSTITUTION AND FREEDOM MOVEMENT MC									
Ob	Objectives:									
То	To inculcate the values enshrined in the Indian constitution									
*	To create a	a sense of responsible and active citizenship								
*	To know about Constitutional and Non- Constitutional bodies									
*	★ To understand sacrifices made by the freedom fighters.									

UNIT-I **INTRODUCTION** 6 Historical Background - Constituent Assembly of India - Philosophical foundations of the Indian Constitution Preamble - Fundamental Rights - Directive Principles of State Policy - Fundamental Duties - Citizenship Constitutional Remedies for citizens. Constitution' meaning of the term, Indian Constitution: Sources and constitutional history, Features: Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy **UNIT-II** STRUCTURE AND FUNCTION OF CENTRAL GOVERNMENT 6 Union Government – Structures of the Union Government and Functions – President – Vice President – Prime Minister - Cabinet - Parliament - Supreme Court of India - Judicial Review. UNIT-III STRUCTURE AND FUNCTION OF STATE GOVERNMENT AND LOCALBODY 6 State Government - Structure and Functions - Governor - Chief Minister - Cabinet - State Legislature - Judicial System in States - High Courts and other Subordinate Courts- Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Panchayat Raj: Introduction, Elected officials and their roles, ,Village level: Role of Elected and Appointed officials, UNIT-IV **CONSTITUTIONAL FUNCTIONS AND BODIES** 6 Indian Federal System - Center - State Relations - President's Rule - Constitutional Functionaries - Assessment of working of the Parliamentary System in India- CAG, Election Commission, UPSC, GST Council and other Constitutional bodies-. NITI Aayog, Lokpal, National Development Council and other Non -Constitutional bodies INDIAN FREEDOM MOVEMENT UNIT-V 6 British Colonialism in India-Colonial administration till 1857- Revolt of 1857- Early Resistance to British Rule-Rise of Nationalism in India-Indian Freedom Struggle under Mahatma Gandhi-Non- Cooperation Movement-Civil Disobedience Movement- Quit India Movement-British Official response to National movement- Independence of India Act 1947-Freedom and Partition. **Total Contact Hours** 30 :

Course Outcomes: On completion of the course, the students will be able to							
CO1	Understand the functions of the Indian government						
CO2	Understand and abide the rules of the Indian constitution.						
CO3	Gain knowledge on functions of state Government and Local bodies						
CO4	Gain Knowledge on constitution functions and role of constitutional bodies and non-constitutional bodies						
CO5	Understand the sacrifices made by freedom fighters during freedom movement						

Tey	xt Book(s):
1	Durga Das Basu, "Introduction to the Constitution of India", Lexis Nexis, New Delhi., 21st edition, 2013.
2	Bipan Chandra, "History of Modern India", Orient Black Swan, 2009.
3	Bipan Chandra, "India's Struggle for Independence", Penguin Books, 2016.
4	Maciver and Page, "Society: An Introduction Analysis", MacMilan India Ltd., New Delhi.2nd edition, 2014.
5	P K Agarwal and K N Chaturvedi ,"Prabhat Prakashan Constitution of India", New Delhi, 1st edition , 2017.

 Reference Books(s) / Web links:

 1
 Sharma, Brij Kishore, "Introduction to the Constitution of India", Prentice Hall of India, New Delhi.

 2
 U.R.Gahai, "Indian Political System", New Academic Publishing House, Jalandhar.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
C01	1	4	5	-	-	1	1	2	1	U	1	4	1	4	5	-
	-	-	-	-	-	1	1		1	-	-	-	-	-	-	1
CO2	-	-	-	-	-	1	1	2	1	-	-	-	-	-	-	1
CO3	-	-	-	-	-	1	1	1	1	-	-	-	-	-	-	1
CO4	-	-	-	-	-	1	1	1	1	-	-	-	-	-	-	1
CO5	-	-	-	-	-	1	1	1	1	-	-	-	-	-	-	-
CO(Av	-	-	-	-	-					-	-	-	-	-	-	1.00
g)						1.00	1.00	1.40	1.00							

Correlation levels 1, 2 or 3 are as defined below:

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
MA19252	DIFFERENTIAL EQUATIONS AND COMPLEX VARIABLES	BS	3	1	0	4

To handle practical problems arising in the field of engineering and technology using differential equations. Image: To solve problems using the concept of Vectors calculus, Complex analysis, Laplace transforms. UNIT-I SECOND AND HIGHER ORDER DIFFERENTIAL EQUATIONS 12 Second and higher order Linear differential equations with constant coefficients - Method of variation of parameters – Legendre's linear equations - Formation of partial differential equations - Solutions of standard types of first order order adrial differential equations - Lagrange's linear equation – Linear homogenous partial differential equations of second and higher order with constant coefficients. 12 UNIT-II VECTOR CALCULUS 12 Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving ubes and rectangular parallelopipeds. 12 MIT-II NALVTIC FUNCTIONS 12 Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions $w = z + c, c, z, \frac{1}{1}, z^2$ - Bilinear transformation. 12 Currence Compression of real definite integrals as contour integrals formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residue theorem (excluding proof) – Application of residue theorem for valuation of real integrals of functions - Derivatives and integrals of functions – Basic propertie	Objectives		
To solve problems using the concept of Vectors calculus, Complex analysis, Laplace transforms. UNIT-I SECOND AND HIGHER ORDER DIFFERENTIAL EQUATIONS 12 Second and higher order Linear differential equations with constant coefficients - Method of variation of parameters – Legendre's linear equations - Formation of partial differential equations - Solutions of standard types of first order artial differential equations - Lagrange's linear equation – Linear homogenous partial differential equations of second and higher order with constant coefficients. 12 Order or with constant coefficients. 12 Order order with constant coefficients. 12 Order ordera developieds. 12 <			
Second and higher order Linear differential equations with constant coefficients - Method of variation of parameters - Legendre's linear equations - Formation of partial differential equations - Solutions of standard types of first order variation differential equations - Lagrange's linear equation - Linear homogenous partial differential equations of second and higher order with constant coefficients. UNIT-II VECTOR CALCULUS 12 Gradient, divergence and curl - Directional derivative - Irrotational and solenoidal vector fields - Vector integration - Green's theorem, Gauss divergence theorem and Stokes' theorem (excluding proofs) - Simple applications involving rubes and rectangular parallelopipeds. 12 UNIT-III ANALYTIC FUNCTIONS 12 Analytic functions - Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties - Harmonic conjugates - Construction of analytic function - Conformal mapping - Mapping by functions $w = z + c, cz, \frac{1}{-z} z^2$ - Bilinear transformation. 12 Cauchy's integral formula (excluding proof) - Taylor's and Laurent's series - Singularities - Residue theorem (excluding proof) - Application of real definite integrals a contour integrals around semi-circle (excluding poles on the real axis). 12 UNIT-V LAPLACE TRANSFORM 12 Laplace transform - Sufficient condition for existence - Transform of elementary functions - Basic properties - Fransforms of derivatives and integrals of transforms - Transforms of unit step functions, periodic functions - Derivatives and integrals of transforms - Transform of unit step function and impulse functions, periodic functions - D			
Second and higher order Linear differential equations with constant coefficients - Method of variation of parameters - Legendre's linear equations - Formation of partial differential equations - Solutions of standard types of first order variation differential equations - Lagrange's linear equation - Linear homogenous partial differential equations of second and higher order with constant coefficients. UNIT-II VECTOR CALCULUS 12 Gradient, divergence and curl - Directional derivative - Irrotational and solenoidal vector fields - Vector integration - Green's theorem, Gauss divergence theorem and Stokes' theorem (excluding proofs) - Simple applications involving rubes and rectangular parallelopipeds. 12 UNIT-III ANALYTIC FUNCTIONS 12 Analytic functions - Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties - Harmonic conjugates - Construction of analytic function - Conformal mapping - Mapping by functions $w = z + c, cz, \frac{1}{-z} z^2$ - Bilinear transformation. 12 Cauchy's integral formula (excluding proof) - Taylor's and Laurent's series - Singularities - Residue theorem (excluding proof) - Application of real definite integrals a contour integrals around semi-circle (excluding poles on the real axis). 12 UNIT-V LAPLACE TRANSFORM 12 Laplace transform - Sufficient condition for existence - Transform of elementary functions - Basic properties - Fransforms of derivatives and integrals of transforms - Transforms of unit step functions, periodic functions - Derivatives and integrals of transforms - Transform of unit step function and impulse functions, periodic functions - D			
Legendre's linear equations - Formation of partial differential equations - Solutions of standard types of first order artial differential equations - Lagrange's linear equation - Linear homogenous partial differential equations of second in the partial differential equations of second integration - Linear homogenous partial differential equations of second integration - Gauss divergence theorem and Stokes' theorem (excluding proofs) - Simple applications involving ubes and rectangular parallelopipeds. 12 ONIT-II ANALYTIC FUNCTIONS 12 Analytic functions - Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties - Construction of analytic function - Conformal mapping - Mapping by functions w = z + c, cz, 1, z ² - Bilinear transformation. 12 Cuntry is integral theorem - Cauchy's integral formula (excluding proof) - Taylor's and Laurent's series - Singularities - Residue theorem (excluding proof) - Application of residue theorem for evaluation of real axis). 12 Cuntry is the paral theorem - Suchy's integral formula (excluding proof) - Taylor's and Laurent's series - Singularities - Residue theorem (excluding for existence - Transform of elementary functions - Basic properties - Fransforms of derivatives and integrals around semi-circle (excluding profmas - Transforms of unit step unction and impulse functions - Inverse Laplace transform - Strafticient condition for existence - Transform of elementary functions - Basic properties - Fransforms of deriv	UNIT-I		
partial differential equations - Lagrange's linear equation – Linear homogenous partial differential equations of second 12 VINT-II VECTOR CALCULUS 12 Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving rubes and rectangular parallelopipeds. 12 VINT-III ANALYTIC FUNCTIONS 12 Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – 12 Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – 12 Counctions $w = z + c, cz, \frac{1}{c}, z^2$ - Bilinear transformation. 2 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - - Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - 12 Cauchy's integral theorem – Cauchy's integrals around semi-circle (excluding poles on the real axis). 12 Laurent's integrals as contour integrals around semi-circle (excluding proofs) – Taylor's and Laurent's series – Singularities - Evaluation of real definite in			
and higher order with constant coefficients. 12 UNTT-II VECTOR CALCULUS 12 Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving rubes and rectangular parallelopipeds. 12 UNIT-III ANALYTIC FUNCTIONS 12 Analytic functions – Necessary and sufficient conditions for analytic function - Conformal mapping – Mapping by functions w = z + c, cz, 1, - z ² - Bilinear transformation. 12 VINT-IV COMPLEX INTEGRATION 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Fransforms of derivatives and integrals of functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transform techniques. 60 Course Untcomes: Total Contact Hours 16 On orotio techniques. 16 16 Oreal definite integrals is solving ordinary differential equation			
UNIT-II VECTOR CALCULUS 12 Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving zubes and rectangular parallelopipeds. 12 VINT-II ANALYTIC FUNCTIONS 12 Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions $w = z + c, cz, \frac{1}{-}, z^2$ - Bilinear transformation. z 12 UNIT-IV COMPLEX INTEGRATION 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Zvaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). 12 UNIT-V LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – fransforms of derivatives and integrals of functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. 60 Course Outcomes: Image: Course outcomes is nolving ordinary differential equations and partial differentia			econd
Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green's theorem, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving ubes and rectangular parallelopipeds. 12 VINT-III ANALYTIC FUNCTIONS 12 Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions $w = z + c, cz, \frac{1}{1}, z^2$ - Bilinear transformation. z UNIT-IV COMPLEX INTEGRATION 12 Cauchy's integral theorem (excluding proof) – Taylor's and Laurent's series – Singularities - Residues heorem (excluding proof) – Taylor's and Laurent's series – Singularities - Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real antiges as contour integrals around semi-circle (excluding poles on the real axis). 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Irransforms of derivatives and integrals of functions - Inverse Laplace transform – Problems using Convolution theorem – Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace - Intial and final value theorems – Solution of linear ODE of second order with constant coefficients u	-		
Green's theorem, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Simple applications involving ubes and rectangular parallelopipeds. 12 Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions $w = z + c$, cz , $\frac{1}{-z}$, z^2 - Bilinear transformation. 12 Complex INTEGRATION 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real difficient condition for existence – Transform of elementary functions – Basic properties – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Inverse Laplace transform – Sufficient condition of linear ODE of second order with constant coefficients using Laplace transformation techniques. 10 Course Outcomes: Total Contact Hours : 60 Course Outcomes: Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. 60 Course Quector of the course, the students will be able to Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. Course Quector of Gradient, divergence and curl to evaluate line, surface and volume integrals. Use the concept of Analytic functions, conformal mapping and bilinear transformation.			
cubes and rectangular parallelopipeds. 12 UNIT-III ANALYTIC FUNCTIONS 12 Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by Intervention of analytic function - Conformal mapping – Mapping by Parmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by Intervention of analytic function - Conformal mapping – Mapping by Parmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by Intervention of analytic function - Conformal mapping – Mapping by Parmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by Intervention - Conformal mapping – Mapping by Parmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by Intervention - Conformal mapping – Mapping by Parmonic conjugates – Cock view – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). Intervention - Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities – Evaluation of real definite integrals of functions - Derivatives and integrals of transforms - Transforms of unit step functions - Senicic functions - Inverse Laplace transform – Problems using Convolution theorem – Initial and final value theorems – Sol			
UNIT-III ANALYTIC FUNCTIONS 12 Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by Analytic functions $w = z + c, cz, \frac{1}{u}, z^2$ - Bilinear transformation. z UNIT-IV COMPLEX INTEGRATION 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). UNIT-IV LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – 12 Laplace transform – Sufficient condition of linear ODE of second order with constant coefficients using Laplace ransformation techniques. 12 Course Outcomes: Total Contact Hours 160 Course techniques in solving ordinary differential equations and partial differential equations 60 Course techniques in solving ordinary differential equations and partial differential equations 60 Course ouccept of Gradient, divergence and curl to evaluate line, surface and volume integrals. 60 Course techniques in solving ordinar			ving
Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by Junctions $w = z + c, cz, \frac{1}{-}, z^2$ - Bilinear transformation. Junctions $w = z + c, cz, \frac{1}{-}, z^2$ - Bilinear transformation. 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities 12 Cauchy's integral theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - 12 Cauchy's integral theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - 12 Cauchy's integral theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - 12 Laplace transform of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – 12 Laplace transform – Sufficient condition of linear ODE of second order with constant coefficients using Laplace ransformation techniques. 12 - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. 60 Course Outcomes: 0			
Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions $w = z + c$, cz , $\frac{1}{-}$, z^2 - Bilinear transformation. z UNIT-IV COMPLEX INTEGRATION 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). UNIT-V LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. Do nompletion of the course, the students will be able to 201 Apply various techniques in solving ordinary differential equations and partial differential equations 202 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. 203 Use the concept of Analytic functions, conformal mapping and bilinear transformation. 204 Use complex integration techniques to solve Engineering problems.			
functions $w = z + c$, cz , $\frac{1}{-}$, z^2 - Bilinear transformation. 12 UNIT-IV COMPLEX INTEGRATION 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities – Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). 12 UNIT-V LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step function and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. 60 Course Outcomes: Total Contact Hours 60 Course the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. 50 Course Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. 50 Course Out complex integration techniques to solve Engineering problems. 50			erties –
Z 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). 12 UNIT-V LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step 12 Course on the course, periodic functions – Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques. 60 Course Outcomes:	Harmonic	conjugates – Construction of analytic function - Conformal mapping – Mappin	ng by
Z 12 Complex INTEGRATION 12 Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). 12 UNIT-V LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step 12 Cuntion and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques. 60 Course Outcomes:	6		
Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). UNIT-V LAPLACE TRANSFORM Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Fransforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step Control and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. Total Contact Hours Course Outcomes: Imply various techniques in solving ordinary differential equations and partial differential equations Cool Apply various techniques in solving ordinary differential equations and partial differential equations Cool Use the concept of Analytic functions, conformal mapping and bilinear transformation. Cool Use complex integration techniques to solve Engineering problems.	functions w	$z = z + c, cz, -, z^2$ - Bilinear transformation.	
Cauchy's integral theorem – Cauchy's integral formula (excluding proof) – Taylor's and Laurent's series – Singularities - Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). UNIT-V LAPLACE TRANSFORM Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step Total Contact Hours : 60 Course Outcomes: On completion of the course, the students will be able to Col Apply various techniques in solving ordinary differential equations and partial differential equations Col Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. Coose Use complex integration techniques to solve Engineering problems.	LINIT IN		10
- Residues – Residue theorem (excluding proof) – Application of residue theorem for evaluation of real integrals - Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). UNIT-V LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step Contrast or and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. Total Contact Hours : 60 Course Outcomes: Imply various techniques in solving ordinary differential equations and partial differential equations Cool Apply various techniques in solving ordinary differential equations and partial differential equations Cool Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. Cool Use the concept of Analytic functions, conformal mapping and bilinear transformation. Cool Use complex integration techniques to solve Engineering problems.			
Evaluation of real definite integrals as contour integrals around semi-circle (excluding poles on the real axis). 12 UNIT-V LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step 12 Contrast form – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step - Function and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. Total Contact Hours : 60 Course Outcomes: 0 - - On completion of the course, the students will be able to - - Cool Apply various techniques in solving ordinary differential equations and partial differential equations - Cool Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. - Cool Use the concept of Analytic functions, conformal mapping and bilinear transformation. - Cool Use complex integration techniques to solve Engineering probl			
UNIT-V LAPLACE TRANSFORM 12 Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Fransforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step Function and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace formation techniques. Course Outcomes: Total Contact Hours : 60 Con completion of the course, the students will be able to - - - Co1 Apply various techniques in solving ordinary differential equations and partial differential equations - - Co2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. - - Co3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. - - Co4 Use complex integration techniques to solve Engineering problems. - - -			-
Laplace transform – Sufficient condition for existence – Transform of elementary functions – Basic properties – Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step Function and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. Total Contact Hours : 60 Course Outcomes: On completion of the course, the students will be able to Col Q1 Apply various techniques in solving ordinary differential equations and partial differential equations CO2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. CO3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. Use complex integration techniques to solve Engineering problems.			12
Transforms of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of unit step Function and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. Total Contact Hours : 60 Course Outcomes: Total Contact Hours On completion of the course, the students will be able to Col Apply various techniques in solving ordinary differential equations and partial differential equations Co2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. Co3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. Use complex integration techniques to solve Engineering problems.			
Concernment Function and impulse functions, periodic functions - Inverse Laplace transform – Problems using Convolution theorem - Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. Total Contact Hours : 60 Course Outcomes: On completion of the course, the students will be able to Col Apply various techniques in solving ordinary differential equations and partial differential equations Co2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. Co3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. Use complex integration techniques to solve Engineering problems.			
 Initial and final value theorems – Solution of linear ODE of second order with constant coefficients using Laplace ransformation techniques. Total Contact Hours : 60 Course Outcomes: On completion of the course, the students will be able to Co1 Apply various techniques in solving ordinary differential equations and partial differential equations Co2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. Co3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. Co4 Use complex integration techniques to solve Engineering problems. 			
Total Contact Hours : 60 Total Contact Hours : 60 Course Outcomes: On completion of the course, the students will be able to 50 CO1 Apply various techniques in solving ordinary differential equations and partial differential equations CO2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. CO3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. CO4 Use complex integration techniques to solve Engineering problems.			
Total Contact Hours : 60 Course Outcomes: On completion of the course, the students will be able to Image: Course Outcomes in solving ordinary differential equations and partial differential equations Image: Course Outcomes in solving ordinary differential equations and partial differential equations CO1 Apply various techniques in solving ordinary differential equations and partial differential equations Image: Course Outcomes integrals CO2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. Image: Course Outcomes integrals CO3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. Image: Course Outcomes integration techniques to solve Engineering problems.			Laplace
Course Outcomes: On completion of the course, the students will be able to CO1 Apply various techniques in solving ordinary differential equations and partial differential equations CO2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. CO3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. CO4 Use complex integration techniques to solve Engineering problems.	transformat		(0
On completion of the course, the students will be able to CO1 Apply various techniques in solving ordinary differential equations and partial differential equations CO2 Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals. CO3 Use the concept of Analytic functions, conformal mapping and bilinear transformation. CO4 Use complex integration techniques to solve Engineering problems.	<u>C</u>		00
Apply various techniques in solving ordinary differential equations and partial differential equationsCO1Apply various techniques in solving ordinary differential equations and partial differential equationsCO2Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals.CO3Use the concept of Analytic functions, conformal mapping and bilinear transformation.CO4Use complex integration techniques to solve Engineering problems.			
CO2Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals.CO3Use the concept of Analytic functions, conformal mapping and bilinear transformation.CO4Use complex integration techniques to solve Engineering problems.	1		
CO3Use the concept of Analytic functions, conformal mapping and bilinear transformation.CO4Use complex integration techniques to solve Engineering problems.			
Use complex integration techniques to solve Engineering problems.			
205 Use Laplace transform and inverse transform techniques in solving differential equations	$CO^4 = U$	e complex integration techniques to solve Engineering problems.	

Text Book (s):							
1	Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.						
2	T Veerarajan"Transforms and Partial Differential Equations" Mc Graw Hill Education, 2018						
3	T Veerarajan, "Engineering Mathematics –II", Mc Graw Hill Education, 2018						

	Refe	erence Books(s):
	1	Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
Γ	2	Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
	3	Bali, N.P. and Manish Goyal, "A Text Book of Engineering Mathematics", Lakshmi Publications Pvt. Ltd., New Delhi, 2006.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	-	-	-	-	-	1	1	2	1	-	-	-	-	-	-	1
CO2	-	-	-	-	-	1	1	2	1	-	-	-	-	-	-	1
CO3	-	-	-	-	-	1	1	1	1	-	-	-	-	-	-	1
CO4	-	-	-	-	-	1	1	1	1	-	-	-	-	-	-	1
CO5	-	-	-	-	-	1	1	1	1	-	-	-	-	-	-	-
CO(Av	-	-	-	-	-					-	-	-	-	-	-	1.00
g)						1.00	1.00	1.40	1.00							

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
GE19101	ENGINEERING GRAPHICS	ES	2	2	0	4

Ob	Objectives:						
*	To understand the importance of the drawing in engineering applications						
*	To develop graphic skills for communication of concepts, ideas and design of engineering products						
*	To expose them to existing national standards related to technical drawings.						
*	To improve their visualization skills so that they can apply these skill in developing new products.						
*	To improve their technical communication skill in the form of communicative drawings						

CONCEPTS AND CONVENTIONS (Not for Examin	ation)	1
ImportanceofgraphicsinEngineering Applications-Useof	drafting Instruments-BIS conventions and specifications	5-
Size, layout and folding of drawing sheets- Lettering and	d dimensioning. Basic Geometrical constructions.	
UNIT-I PLANECURVES AND FREE HAND SE	KETCH	11
	uction of ellipse, parabola and hyperbola by eccent	
method- Construction of cycloids, Construction of inve	olutes of square and circle drawing of tangents and norm	nal to
the above curves.		
Visualization concepts and Free Hand sketching: Visu objects – Layout of views- Freehand sketching of multip	ualization principles –Representation of Three Dimensi le views from pictorial views of objects	onal
UNIT-II PROJECTION OFPOINTS, LINESAN	D PLANESURFACE	12
Orthographic projection- principles-Principal planes- prostraight lines inclined to both the principal planes – Dete	rmination of true lengths and true inclinations by	
5 1 1 50	d circular surfaces) inclined to both the principal planes by	У
rotating line method- Projection of planes (polygonal and rotating object method. UNIT-III PROJECTIONOFSOLIDS	l circular surfaces) inclined to both the principal planes by	y 12
rotating object method. UNIT-III PROJECTIONOFSOLIDS	er and cone when the axis is inclined to one of the principal	12
rotating object method. UNIT-III PROJECTIONOFSOLIDS Projection of simple solids like prisms, pyramids, cylinder planes by rotating object method.		12
rotating object method. UNIT-III PROJECTIONOFSOLIDS Projection of simple solids like prisms, pyramids, cylinder planes by rotating object method. Image: Colspan="2">UNIT-IV UNIT-IV PROJECTION OF SECTIONED SOLID	er and cone when the axis is inclined to one of the princip DS AND DEVELOPMENTOF SURFACES cutting plane is inclined to the one of the principal planes ection.	12 al 12
rotating object method. UNIT-III PROJECTIONOFSOLIDS Projection of simple solids like prisms, pyramids, cylinde planes by rotating object method. Image: Colspan="2">UNIT-IV PROJECTION OF SECTIONED SOLID Sectioning of solids in simple vertical position when the perpendicular to the other – obtaining true shape of the s	er and cone when the axis is inclined to one of the princip DS AND DEVELOPMENTOF SURFACES cutting plane is inclined to the one of the principal planes ection. solids – Prisms, pyramids cylinders and cones.	12 al 12
rotating object method. UNIT-III PROJECTIONOFSOLIDS Projection of simple solids like prisms, pyramids, cylinder planes by rotating object method. PROJECTION OF SECTIONED SOLID UNIT-IV PROJECTION OF SECTIONED SOLID Sectioning of solids in simple vertical position when the perpendicular to the other – obtaining true shape of the s Development of lateral surfaces of simple and sectioned UNIT-V ISOMETRIC AND PERSPECTIVEPRO	er and cone when the axis is inclined to one of the princip DS AND DEVELOPMENTOF SURFACES cutting plane is inclined to the one of the principal planes ection. solids – Prisms, pyramids cylinders and cones. DJECTIONS ptric projections of simple solids and truncated solids - Pri	12 al 12 and 12

Cours	se Outcomes:								
On co	On completion of the course, the students will be able to								
CO1	To construct different plane curves and free hand sketching of multiple views from pictorial objects.								
CO2	To comprehend the theory of projection and to draw the basic views related to projection of points, lines and								
	planes								
CO3	To draw the projection of solids in different views								
CO4	To draw the projection of Sectioned solids and development of surfaces of solids								
CO5	To visualize and prepare Isometric and Perspective view of simple solids								

Te	Text Book (s):									
1	Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.									
2	Natrajan K.V., "A Text Book of Engineering Graphics", DhanalakshmiPublishers, Chennai, 2017.									

Re	eference Books(s):										
1	1 Varghese P I., "Engineering Graphics", McGraw Hill Education (I) Pvt.Ltd. 2013.										
2	Venugopal K. and PrabhuRaja V., "Engineering Graphics", New Age International (P) Limited, 2008.										
3	Gopalakrishna K.R., "Engineering Drawing", (Vol. I&II combined), Subhas Stores, Bangalore, 2017.										
4	Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, New Delhi, 2018.										

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	-	-	-	-	-	-	-	-	1	-	2	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	1	-	2	-	-	-	-
CO3	2	-	-	-	-	-	-	-	-	1	-	2	-	-	-	-
CO4	2	-	-	-	-	-	-	-	-	1	-	2	-	-	-	-
CO5	2	-	-	-	-	-	-	-	-	1	-	2	-	-	-	-
CO(Av g)	2.00	-	-	-	-	-	-	-	-	1.00	-	2.00	-	-	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

No correlation : "-"

Subject Code	Subject Name (Lab oriented Theory Courses)	Category	L	Т	Р	С
PH19241	PHYSICS FOR INFORMATION SCIENCE	BS	3	0	2	4

Ob	jectives:
*	To understand the principles of laser and fibre optics in engineering and technology.
*	To understand the advanced concept of quantum theory and applications.
*	To study the properties and applications of semiconducting, magnetic, superconducting and optical materials.

UNIT-I QUANTUM PHYSICS

Introduction- Quantum free electron theory-De Broglie's concept-Schrodinger wave equation-Time independent and time dependent equations-Physical significance of wave function - Particle in a one dimensional box – electrons in metals -degenerate states – Fermi- Dirac statistics – Density of energy states – Size dependence of Fermi energy – Quantum confinement – Quantum structures – Density of states in quantum well, quantum wire and quantumdot structure - Band gap of nanomaterials.

UNIT-II SEMICONDUCTOR PHYSICS

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors - Carrier concentration in N-type and P-type semiconductors – Variation of carrier concentration with temperature – variation of Fermi level with temperature and impurity concentration – Carrier transport in Semiconductor: random motion, drift, mobility and diffusion – Hall effect.

UNIT-III OPTICAL PROPERTIES OF MATERIALS

Classification of optical materials – carrier generation and recombination processes - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – Photo transistor-solar cell - LED – Organic LED- Optical data storage techniques-Non Linear Optical materials-properties and applications.

UNIT-IV LASERS AND FIBRE OPTICS

Lasers: Population of energy levels, Einstein's A and B coefficients derivation – resonant cavity, optical amplification (qualitative) - Semiconductor lasers: homojunction and heterojunction- Applications. Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibers (material, refractive index, and mode) –Double crucible method-splicing technique- losses associated with optical fibers -Fibre optic communication system - fiber optic sensors: pressure and displacement.

UNIT-V MAGNETIC AND SUPERCONDUCTING MATERIALS

Magnetic dipole moment – atomic magnetic moments- magnetic permeability and susceptibility -Magnetic material classification: diamagnetism – paramagnetism – ferromagnetism – antiferromagnetism – ferrimagnetism – Domain Theory- M versus H behaviour – Hard and soft magnetic materials – examples and uses-– Magnetic principle in computer data storage – Magnetic hard disc (GMR sensor). Introduction of Superconductivity, Properties of Superconductors, BCS theory (Qualitative), Type-I and Type II Superconductors -Magnetic Levitation-SQUIDS- An overview of High temperature superconductors.

Contact Hours : 45

List of Experiments (Any 10 experiments)								
1	Determine the wavelength and angle of divergence of laser beam and numerical aperture using fibre cable.							
2	Determine the wavelength of spectrum by using spectrometer.							
3	Determine of refractive index of a given prism by using spectrometer.							
4	Determine specific resistance of the material of given wires using metre bridge.							
5	Verify Ohm's law - series and parallel.							
6	Determine the value of Planck's constant using photo electric effect.							
7	Determine the band gap of given semiconductor.							
8	Determination of Hall coefficient of semiconducting Materials.							

9

0

9	Study the magnetic field produced by current carrying coils by using Helmoltz coil.										
_											
10	Study the resonance frequency in series connected LCR circuits.										
11	Determine the wavelength of given source by using Newton's ring Experiment.										
12	Determine the thickness of the given specimen by using air wedge method.										
	Contact Hours	:	30								
	Total Contact Hours	:	75								
Cour	se Outcomes:										
On c	ompletion of the course, the students will be able to										
CO1	Apply the concepts of electron transport in nanodevices.										
CO2	Analyse the physics of semiconductor devices										
CO3	Analyze the properties of optical materials for optoelectronic applications.										
CO4	Use the concepts of Laser and Fiber optics in communication.										
CO5	Use the properties of magnetic and superconducting materials in data storage devices.										

Te	xt Book(s):
1	Bhattacharya, D.K. & Poonam, T. "Engineering Physics", Oxford University Press, 2015.
2	Jasprit Singh, "Semiconductor Devices: Basic Principles", Wiley 2012.
3	Kasap, S.O. "Principles of Electronic Materials and Devices", McGraw-Hill Education, 2007.
4	Kittel, C. "Introduction to Solid State Physics", Wiley, 2005.

Reference Books(s):

-	
1	Garcia, N. & Damask, A., "Physics for Computer Science Students", Springer Verlag, 2012.
2	Hanson, G.W. "Fundamentals of Nanoelectronics", Pearson Education, 2009.
3	Rogers, B., Adams, J. & Pennathur, S. "Nanotechnology: Understanding Small Systems", CRC Press, 2014.
4	S. O. Pillai, "Solid state physics", New Age International, 2015.
5	Serway, R.A. & Jewett, J.W, "Physics for Scientists and Engineers", Cengage Learning.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	2	2	2	1	-	1	-	1	1	1	-	1	3	3
CO2	3	3	2	2	3	1	1	1	1	1	1	1	-	1	3	3
CO3	3	3	3	2	3	1	1	1	1	1	1	1	-	1	3	3
CO4	3	3	2	2	3	1	1	1	1	1	1	1	-	1	3	3
CO5	3	3	2	2	3	1	1	1	1	1	1	1	-	1	3	3
CO(Av g)	3	3	2.2	2	2.8	1	0.8	1	0.8	1	1	1	-	1	3	3

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

No correlation : "-"

Subject Code	Subject Name (Lab oriented Theory Courses)	Category	L	Т	P	С
EE19242	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	ES	3	0	2	4

Obj	Objectives:					
*	★ To introduce electric circuits and provide knowledge on the analysis of circuits using network theorems.					
*	To impart knowledge on the phenomenon of resonance in RC, RL and RLC series and parallel circuits.					
*	► To provide knowledge on the principles of electrical machines and electronic devices.					
*	To learn the concepts of different types of electrical measuring instruments and transducers.					
*	To teach methods of experimentally analyzing electrical circuits, electrical machines, electronic devices and transducers.					

UNIT-I	DC CIRCUITS		9		
Electrical cire	cuit elements (R, L and C), voltage and current sources, Kirchoff's current a	nd voltage laws, analy	sis of		
simple circuit	s with dc excitation. Superposition, Thevenin and Norton Theorems.				
UNIT-II	AC CIRCUITS		9		
Representatio	n of sinusoidal waveforms, peak and rms values, phasor representation, real	power, reactive powe	r,		
apparent pow	er, power factor. Analysis of single-phase ac circuits consisting of R, L, C, I	RL, RC, RLC combina	ations		
(series and pa	rallel), resonance. Three phase balanced circuits, voltage and current relatio	ns in star and delta			
connections					
UNIT-III	ELECTRICAL MACHINES		9		
Construction	Principles of operation and characteristics of; DC machines, Transformers	single and three phase	e),		
Synchronous	machines, three phase and single phase induction motors.				
UNIT-IV	ELECTRONIC DEVICES & CIRCUITS		9		
Types of Mat	erials – Silicon & Germanium- N type and P type materials – PN Junction –	Forward and Reverse	Bias –		
	or Diodes – Bipolar Junction Transistor – Characteristics – Field Effect Trans				
Introduction	to operational Amplifier –Inverting Amplifier –Non Inverting Amplifier.				
UNIT-V	MEASUREMENTS & INSTRUMENTATION		9		
Introduction to transducers - Classification of Transducers: Resistive, Inductive, Capacitive, Thermoelectric,					
piezoelectric,	piezoelectric, photoelectric, Hall effect - Classification of instruments - PMMC and MI Ammeters and Voltmeters -				
Multimeter -	Multimeter - Digital Storage Oscilloscope.				
		Contact Hours	: 45		

	List of Experiments		
1	Verification of Kirchhoff's Laws.		
2	Load test on DC Shunt Motor.		
3	Load test on Single phase Transformer.		
4	Load test on Single phase Induction motor.		
5	Characteristics of P-N junction Diode.		
6	Half wave and Full wave Rectifiers.		
7	Characteristics of CE based NPN Transistor.		
8	Inverting and Non- Inverting Op-Amp circuits.		
9	Characteristics of LVDT, RTD and Thermistor.		
	Contact Hours	:	30
	Total Contact Hours	:	75

Course	Course Outcomes:				
On con	On completion of the course, the students will be able to				
CO1	Analyse DC and AC circuits and apply circuit theorems.				
CO2	2 Realize series and parallel resonant circuits.				
CO3	Understand the principles of electrical machines.				
CO4	Understand the principles of different types of electronic devices, electrical measuring instruments and				

	transducers.
CO5	Experimentally analyze the electric circuits, electrical machines, electronic devices, and transducers.

Tex	t Book(s):
1	J.B.Gupta, "Fundamentals of Electrical Engineering and Electronics", S.K.Kataria& Sons Publications, 2002.
2	D P Kothari and I.J Nagarath, "Basic Electrical and Electronics Engineering", McGraw Hill Education(India) Private Limited, Third Reprint, 2016
3	Thereja .B.L., "Fundamentals of Electrical Engineering and Electronics", S. Chand & Co. Ltd., 2008

Ref	Reference Books(s):					
1	Del Toro, "Electrical Engineering Fundamentals", Pearson Education, New Delhi, 2007					
2	John Bird, "Electrical Circuit Theory and Technology", Elsevier, First Indian Edition, 2006					
3	Allan S Moris, "Measurement and Instrumentation Principles", Elsevier, First Indian Edition, 2006					
4	Rajendra Prasad, "Fundamentals of Electrical Engineering", Prentice Hall of India, 2006					
5	A.E.Fitzgerald, David E Higginbotham and Arvin Grabel, "Basic Electrical Engineering", McGraw Hill Education(India) Private Limited, 2009					

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PS O4
CO1	3	3	2	3	2	1	-	-	-	-	1	2	2	-	1	-
CO2	3	3	2	3	3	1	2	-	-	-	1	2	2	-	1	-
CO3	3	3	2	3	3	2	2	-	-	-	2	2	2	-	2	1
CO4	3	3	2	3	3	2	2	-	-	-	2	2	2	-	2	2
CO5	3	3	2	3	3	2	2	-	-	-	2	2	2	-	2	2
CO(Av g)	3	3	2	3	2.80	1.60	2	-	-	-	1.60	2	3	-	1.60	1.67

Subject Code	Subject Name (Lab oriented Theory Courses)	Category	L	Т	Р	С
IT19241	DATA STRUCTURES FUNDAMENTALS	PC	3	0	4	5

Ob	Objectives:				
*	To understand the standard and abstract data representation methods.				
*	To understand the memory requirement for various data structures.				
*	To operate on the various structured data.				
*	To understand various data searching and sorting methods with pros and cons.				
*	To understand various algorithmic strategies to approach the problem solution.				

UNIT-I C	C PROGRAMMING - A REVIEW	9
Conditional sta	atements - Control statements - Functions - Arrays - Pre-processor - Pointers -Function Poi	nters -
Function with	Variable number of arguments-Structures and Unions - Typedef- Structures with pointers -File h	andling
concepts.		
UNIT-II L	LINEAR DATA STRUCTURES – LIST	9
Abstract Data	Types (ADTs) – Types- List ADT – array-based implementation – linked list implementation –	
Comparison of	f sequential and linked organizations- singly linked lists- doubly-linked lists- circularly linked lists-	_
Types: Singly	circular linked list- Doubly circular linked List- applications of lists -Polynomial Manipulation - A	11
operation (Inse	ertion, Deletion, Merge, Traversal).	
UNIT-III L	LINEAR DATA STRUCTURES – STACKS	9
Stack ADT – S	Stacks- concept, Primitive operations, Stack Abstract Data Type, Implementation of Stack using an	ray and
	operations,- Multiple Stacks, Applications of Stack - Evaluating Postfix expressions-Conversions	sion o
Expressions.		
UNIT-IV L	LINEAR DATA STRUCTURES – QUEUES	9
Queue ADT -	Concept - Realization of Queues Using Arrays and List - circular queue implementation - Advanta	ges
of using circula	ar queues - Multi-queues -Double ended Queues - Priority Queue - Array implementation of priorit	ty
queue -applicat	tions of queues.	
UNIT-V S	SORTING, SEARCHING AND HASHING	9
Sorting-Types	of Sorting-Sorting algorithms: Insertion sort - Selection sort - Shell sort - Bubble sort - Quick	sort -
Merge sort - R	Radix sort -Comparison of all Sorting algorithms- Searching: Linear search -Binary Search- Ha	shing:
Hash Functions	s – Separate Chaining – Open Addressing – Rehashing – Extendible Hashing.	
	Contact Hours :	45

	List of Experiments						
1	Pointers						
2	Structures						
3	Array Implementation of List ADT						
4	Linked List Implementation of List ADT						
5	Array Implementation of Stack ADT						
6	Linked List Implementation of Stack ADT						
7	Array Implementation of Queue ADT						
8	Linked List Implementation of Queue ADT						
9	Application of List, Stack and Queue ADT						
10	Array implementation of Circular Queue						
11	Implementation of Searching Techniques						
12	Implementation of Sorting						
13	Implementation of hashing						
	Contact Hours : 60						
	Total Contact Hours : 105						

	Course Outcomes: On completion of the course, the students will be able to							
CO1								
CO2	Understand the different Data Structures for representation.							
CO3	Describe and implement the Stack, Queue and List structure.							
CO4	Implement various sorting and searching Techniques.							
CO5	Analyze the problems and to apply suitable algorithm and data structure.							
Toxt D								

Tex	t Books:
1	Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Pearson Education,
	1988.
2	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 1997.

Ref	ference Books:
1	Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms", Second Edition, Mcgraw Hill, 2002.
2	Reema Thareja, "Data Structures Using C", Oxford University Press, 2011
3	Aho, Hopcroft and Ullman, "Data Structures and Algorithms", Pearson Education, 1983
4	Stephen G. Kochan, "Programming in C", 3rd edition, Pearson Ed.

Web links for virtual lab (if any)

1 http://vlabs.iitb.ac.in/vlab/labscse.html

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
CO1	3	2	2	1	-	-	-	-	-	-	1	-	2	-	2	-
CO2	3	3	2	1	-	-	1	-	-	-	1	-	-		2	2
CO3	3	3	2	1	-	2	-	-	-	-	-	-	-	2	2	-
CO4	3	3	3	2	-	-	1	-	-	-	2	-	-	2	2	2
CO5	2	3	3	3	2	-	-	-	-	-	2	1	2	2	2	2
CO(A								-	-	-						
vg)	2.80	2.80	2.40	1.60	2.00	2.00	1.00				1.50	1.00	2.00	1.50	2.00	2.00

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Subject Code	Subject Name (Laboratory Course)	Category	L	Т	Р	C
GE19121	ENGINEERING PRACTICES – CIVIL&MECHANICAL	ES	0	0	2	1

Objectives:

• To provide exposure to the students with hands on experience on various basic engineering practices in Civil and Mechanical Engineering.

	List of Experiments							
CIVI	L ENGINEERING PRACTICE							
1.	Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, and elbows in household fittings.							
2.	Preparation of basic plumbing line sketches for wash basins, water heaters, etc.							
3.	Hands-on-exercise: Basic pipe connections –Pipe connections with different joining components.							
Carp	entry Works:							
4.	Study of joints in roofs, doors, windows and furniture.							
5.	Hands-on-exercise: Woodwork, joints by sawing, planning and chiseling.							
MEC	HANICAL ENGINEERING PRACTICE							
6.	Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.							
7.	Gas welding practice.							
Basic	Machining:							
8.	Simple Turning and Taper turning							
9.	Drilling Practice							
Sheet	Metal Work:							
10.	Forming & Bending:							
11.	Model making – Trays and funnels							
12.	Different type of joints.							
Mach	ine Assembly Practice:							
13.	Study of centrifugal pump							
14.	Study of air conditioner							
	Total Contact Hours : 30							

	se Outcomes: ompletion of the course, the students will be able to
CO1	Able to perform plumbing activities for residential and industrial buildings considering safety aspects while gaining clear understanding on pipeline location and functions of joints like valves, taps, couplings, unions, reducers, elbows, etc.
CO2	Able to perform wood working carpentry activities like sawing, planning, cutting, etc. while having clear understanding of the joints in roofs, doors, windows and furniture.
CO3	Able to produce joints like L joint, T joint, Lap joint, Butt joint, etc. through arc welding process while acquiring in depth knowledge in the principle of operation of welding and other accessories
CO4	Able to perform operations like Turning, Step turning, Taper turning, etc. in lathe and Drilling operation in drilling machine
CO5	Able to perform sheet metal operations like Forming, Bending, etc. and fabricating models like Trays, funnels, etc.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	1	1	-	2	1	2	-	1	-	1	3	-	-	-	-
CO2	2	1	1	-	2	1	2	-	1	-	1	3	-	-	-	-
CO3	2	1	1	-	2	1	2	-	1	-	1	3	-	-	-	-
CO4	2	1	1	-	2	1	2	-	1	-	1	3	-	-	-	-
CO5	2	1	1	-	2	1	2	-	1	-	1	3	-	-	-	-
CO(Av				-				-	1.00	-	1.00	3.00	-	-	-	-
g)	2.00	1.00	1.00		2.00	1.00	2.00									

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
MC19101	ENVIRONMENTAL SCIENCE AND ENGINEERING	MC	3	0	0	0

Ohi	ectives:
00	ccuves.

★ To understand the importance of natural resources, pollution control and waste management.

 \star To provide the students about the current social issues and environmental legislations.

UNIT-I NATURAL RESOURCES

Environment -definition - scope and importance - forest resources -use and overexploitation -water resources -use and over utilization - dams - benefits and problems - water conservation -energy resources - growing energy needs - renewable and non-renewableenergy sources - use of alternate energy sources -land resources -land degradation - role of an individual in conservation of natural resources

UNIT-II ENVIRONMENTAL POLLUTION

Definition - causes, effects and control measures of air pollution -chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain, and ozone depletion- noise pollution -mitigation procedures - control of particulate and gaseous emission(Control of SO2, NOX, CO and HC).

Water pollution - definition-causes-effects of water pollutants-marine pollution-thermal pollution-radioactive pollution-control of water pollution by physical, chemical and biological processes-waste water treatment-primary, secondary and tertiary treatment.

Soil pollution: definition-causes-effects and control of soil pollution.

UNIT-III SOLID WASTE MANAGEMENT

Solid wastes - sources and classification of solid wastes -solid waste management options - sanitary landfill, recycling, composting, incineration, energy recovery options from wastes

Hazardous waste -definition -sources of hazardous waste-classification (biomedical waste, radioactive waste, chemical waste, household hazardous waste)-characteristics of hazardous waste ignitability (flammable) reactivity, corrosivity, toxicity -effects of hazardous waste -case study- Bhopal gas tragedy - disposal of hazardous waste-recycling , neutralization, incineration, pyrolysis, secured landfill - E-waste management -definition-sources-effects -electronic waste recycling technology.

UNIT-IV SOCIAL ISSUES AND THE ENVIRONMENT

Sustainable development -concept, components and strategies - social impact of growing human population and affluence, food security, hunger, poverty, malnutrition, famine - consumerism and waste products - environment and human health - role of information technology in environment and human health -disaster management– floods, earthquake, cyclone and landslide.

UNIT-V TOOLS FOR ENVIRONMENTAL MANAGEMENT

Environmental impact assessment (EIA) structure -strategies for risk assessment–EIS-environmental audit-ISO 14000precautionary principle and polluter pays principle- constitutional provisions- - pollution control boards and pollution control acts- environmental protection act1986- role of non-government organizations- international conventions and protocols.

Total Contact Hours:45

Cours	Course Outcomes:						
On co	On completion of the course, the students will be able to						
CO1	Be conversant to utilize resources in a sustainable manner.						
CO2	Find ways to protect the environment and play proactive roles.						
CO3	Apply the strategies to handle different wastes						
CO4	Develop and improve the standard of better living.						
CO5	Be conversant with tools of EIA and environmental legislation.						

0

9

9

9

Te	Text Book(s):							
1	Benny Joseph, "Environmental Science and Engineering", 2nd edition, Tata McGraw-Hill, New Delhi, 2008.							
2	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 2 nd edition, Pearson Education, 2004.							

Ref	Reference Books(s):						
1	Dharmendra S. Sengar, "Environmental law", Prentice hall of India Pvt. Ltd, New Delhi, 2007.						
2	ErachBharucha, "Textbook of Environmental Studies", 3rd edition, Universities Press, 2015.						
3	G. Tyler Miller and Scott E. Spoolman, "Environmental Science", 15th edition, Cengage Learning India, 2014.						
4	Rajagopalan, R, "Environmental Studies-From Crisis to Cure", 3 rd edition, Oxford UniversityPress, 2015.						
5	De. A.K., "Environmental Chemistry", New Age International, New Delhi, 1996.						
6	K. D. Wager, "Environmental Management", W. B. Saunders Co., USA, 1998.						

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO	PSO 3	PSO
CO1	2	1	3	1	<u>5</u> 1	6 1	1	o 1	-	-	-	1	2	-	2	1
CO2	2	1	3	2	2	2	1	1	1	-	2	2	2	1	2	1
CO3	2	1	3	2	2	2	1	1	1	-	2	2	2	1	2	1
CO4	2	1	3	2	2	2	1	1	1	-	2	2	2	1	2	1
CO5	2	1	3	1	1	-	1	-	1	-	-	1	2	-	2	1
CO(Av																
g)	2.00	1.00	3.00	1.60	1.60	1.75	1.00	1.00	1.00	-	2.00	1.60	2.00	1.00	2.00	1.00

Subject Code	Subject Name	Category	L	Т	Р	С
MA19354	TRANSFORMS AND DISCRETE MATHEMATICS	BS	3	1	0	4

Ob	Objectives:						
*	To introduce Fourier series and Z transforms to solve problems that arise in the field of Engineering.						
*	To introduce the basic terminologies used in courses of computer science and to solve practical problems.						

UNIT-I	FOURIER SERIES		12
	conditions – General Fourier series – Odd and even functions – Half 1 seval's identity – Harmonic analysis.	range sine series –Half range co	sine
UNIT-II	Z - TRANSFORMS AND DIFFERENCE EQUATIONS		12
	ns - Elementary properties – Inverse Z - transform (using partial fract ormation of difference equations – Solution of difference equations u		1
UNIT-III	MATHEMATICAL LOGIC		12
Proposition Methods an UNIT-IV	al Logic – Propositional equivalences – Rules of inference – normal f d strategy. COMBINATORICS	forms - introduction to Proofs-Pr	roof
Mathematic	al induction-The basic principles of counting-The pigeonhole princip relations-Solving Linear recurrence relations using generating function		ons-
UNIT-V	GROUPS AND BOOLEAN ALGEBRA		12
-	ystems-Groups: Semi Groups, Subgroups - Posets -Lattices-Boolean A (with examples from small circuits).	Algebra - simplification of Bool	ean
		Total Contact Hours :	60

Cours	Course Outcomes:						
On completion of course students will be able to							
CO1	develop skills to construct Fourier series for different periodic functions and to evaluate infinite series.						
CO2	solve difference equations using Z – transforms that arise in discrete time systems.						
CO3	apply the concepts of logic to test the validity of a program.						
CO4	use the counting principles in implementing various programmes.						
CO5	apply the concepts and properties of Boolean algebraic structures.						

Te	xt Books:
1	Grewal B.S., "Higher Engineering Mathematics", 44 th Edition, Khanna Publishers, Delhi, 2018.
2	Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt.Ltd., New Delhi, Second reprint, 2016.
3	Kenneth H.Rosen, "Discrete Mathematics and its Applications", Special Indian edition, Tata McGraw-Hill Pub. Co. Ltd., New Delhi, 7 th edition (2017).

Re	ference Books / Web links:
1	Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company Limited, New Delhi, 2017.
2	Glyn James, "Advanced Modern Engineering Mathematics", 4th Edition, Pearson Education, 2016.
3	Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley India, 2015.
4	Ralph P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introduction", Fifth Edition, Pearson Education Asia, Delhi, (2019).
5	Thomas Koshy, "Discrete Mathematics with Applications", Elsevier Publications, (2006).
6	Seymour Lipschutz and Mark Lipson, "Discrete Mathematics", Schaum's Outlines, Tata McGraw-Hill Pub. Co. Ltd., New Delhi, 3 rd edition, (2017).

PO/PS	0	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	P S O 1	PS O2	PS O3	PS O4
MA193	354.1	3	3	2	2	1	-	-	-	-	-	-	2	-	-	1	2
MA193	354.2	3	3	2	2	1	-	-	-	-	-	-	2	-	-	1	2
MA193	354.3	3	3	3	3	3	-	-	-	-	-	2	2	1	-	1	2
MA19	354.4	3	3	3	3	1	-	-	-	-	-	2	2	1	-	1	2
MA19	354.5	3	3	3	3	3	-	-	-	-	-	2	2	1	-	1	2
Avera	ge	3.00	3.00	2.60	2.60	1.80	-	-	-	-	-	2.00	2.00	1.00	-	1.00	2.00

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	C
IT19301	DIGITAL ELECTRONICS	ES	3	0	0	3

Ob	Objectives:					
*	To introduce basic postulates of Boolean algebra and shows the correlation between Boolean expressions.					
*	To introduce the methods for simplifying Boolean expressions.					
*	To outline the formal procedures for the analysis and design of combinational circuits.					
*	To give outline about sequential circuits.					
*	To introduce the concept of memories and programmable logic devices.					

UNIT I MINIMIZATION TECHNIQUES	9
Boolean postulates and laws – De-Morgan's Theorem – Principle of Duality – Boolean Expression Boolean expressions — Minterm – Maxterm – Sum of Products (SOP) – Product of Sums (POS) Method – Don't care conditions – Quine – Mc Cluskey Method.	
UNIT II LOGIC GATES	9
Basic and Universal Gates - Implementations of Logic Functions using gates, NAND–NOR imple level gate implementations- Multi output gate implementations.	ementations – Multi
UNIT III COMBINATIONAL CIRCUITS	9
Introduction to Combinational Circuits – Adder - Subtractor -Multiplexer/ De multiplexer – Deco Parity Checker – Parity Generator – Code Converters – Magnitude Comparator.	oder – Encoder –
UNIT IV SEQUENTIAL CIRCUITS	9
Introduction to Sequential Circuits - Latches- Flip-flops - Counters - Shift Registers.	
UNIT V MEMORY DEVICES	9
Classification of memories – Programmable Logic Devices(PLD) – Programmable Logic Array (Programmable Array Logic (PAL) - Implementation of Combinational Logic Circuits using ROM	
	TOTAL PERIODS: 45

Cours	Course Outcomes:						
On co	On completion of the course, the students will be able to						
CO1 Learn different methods used for simplification of Boolean expressions.							
CO2	Understand the use of electronic circuits involved in the design of logic gates.						
CO3	Design various Combinational digital circuits using logic gates.						
CO4	Do the analysis and design of sequential circuits.						
CO5	Understand the concept of memory devices and design using PLD.						

Te	xt Books:
1	M. Morris Mano, "Digital Design", 4th Edition, Prentice Hall of India Pvt. Ltd., 2008 / Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.

Refe	erence Books / Web links:
1	John F.Wakerly, "Digital Design", Fourth Edition, Pearson/PHI, 2008
2	John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
3	Charles H.Roth. "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
4	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, TMH, 2006.
5	Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc, 2011
6	Donald D.Givone, "Digital Principles and Design", TMH, 2003.

CO/	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PS
PO	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	04
CO1	3	2	-	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	-	3	3	2	-	-	-	-	-	-	-	-	3	-	3	-
CO3	-	3	3	3	-	-	-	-	-	-	-	-	3	-	3	-
CO4	-	3	2	3	-	-	-	-	-	-	-	-	3	-	-	-
CO5	-	2	3	3	-	-	-	-	-	-	3	1	-	3	-	-
CO (-	-	-	-	-							
Avg)	3.00	2.60	2.75	2.80						-	3.00	1.00	3.00	3.00	3.00	-

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	С
IT19302	SOFTWARE ENGINEERING ESSENTIALS	PC	3	0	0	3

Ob	Objectives:					
*	★ Understand the software development process					
*	Determine requirements to develop software					
*	★ Apply modeling and modeling languages					
*	Develop correct and robust software products					
*	Understand Advanced Engineering Concepts and Tools.					

UNIT-I INTRODUCTION

Introduction to Software Engineering, Software Process, Perspective and Specialized Process Models– The rational unified process-Agile methods- Extreme Programming

UNIT-II REQUIREMENTS ENGINEERING

Software Requirements - Functional and Non-Functional requirements - User Requirements, System Requirements - Requirement Specification Documentation - Requirements elicitation and analysis Requirement Discovery- Developing scenario and use case- Requirements Validation and Management

UNIT-III DESIGN AND CODING

System Modeling – Context, Interaction, Structural, and Behavioral - Architectural patterns - Design patterns - Observer – Modeling Data – Data Flow Diagrams Software Implementation Techniques-Coding Practices-Refactoring.

UNIT-IV TESTING AND QUALITY MANAGEMENT

Software Testing – Software testing strategies – Testing Conventional applications – OO Testing - Development testing - Test-driven development - Release testing - User testing - Software maintenance - Software reengineering- Quality management-Software Standards-CMM -ISO 9000 - Six Sigma-Software measurement and metrics.

UNIT-V ADVANCE SOFTWARE ENGINEERING AND TOOLS

Software Reuse – Component Based Software Engineering- Distributed Software Engineering - Aspect Oriented Software Engineering-Scrum and Agile Methodologies-Reverse Engineering-overview of CASE tools. Software tools and environments: Programming environments; Project management tools; Requirements analysis and design modeling tools; testing tools; Configuration management tools-Case Studies.

TOTAL PERIODS : 45

9

9

9

9

	Course Outcomes: On completion of the course, the students will be able to					
CO1						
CO2	Identifying and Writing functional and non functional requirements					
CO3	Design and implement software project					
CO4	Testing the developed product					
CO5	Understanding reusability and distributed software engineering and tools.					

Text Books: 1 "Software Engineering" by Ian Sommerville, 9th edition, 2010, Pearson Education.

Re	Reference Books / Web links:							
1	Software Engineering – A Practitioner's Approach, Roger SPressman, seventh edition, 2010.							
2	Craig Larman, "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, Third Edition, Pearson Education, 2005.							
3	Pankaj Jalote,"CMM in Practice: Processes for Executing Software Projects at Infosys "Addison-Wesley Professional; 1 edition (November 7, 1999).							

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PS O4
CO1	2	2	3	2	2	2	2	2	2	2	3	2	1	3	-	2
CO2	2	3	1	2	2	1	-	1	1	1	2	-	1	2	-	2
CO3	2	2	1	1	1	1	1	1	1	1	1	1	2	2	1	2
CO4	2	2	3	2	2	2	1	0	2	2	2	1	1	2	1	2
CO5	2	2	2	1	1	1	1	0	2	1	1	1	2	1	-	2
CO(Avg																
<i>,</i>	2.00	2.20	2.00	1.60	1.60	1.40	1.25	0.80	1.60	1.40	1.80	1.25	1.40	2.00	1.00	2.00

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	С
IT19303	ADVANCED DATA STRUCTURES	PC	3	0	0	3

Ob	Objectives:				
*	To apply the basic queue structure and understand the heaps				
*	To demonstrate the concepts of trees and applications				
*	To understand and implement the advanced tree structures				
*	To understand about the balanced search trees				
*	To understand the implementation of graphs and their applications				

UNIT-I PRIORITY QUEUES (HEAPS)

Introduction – Basic Model of Priority Queue - Binary Heap - Properties of Heap – Operations of Heap - Applications of Priority Queues- Fibonacci Heap - Leftist Heap - Skew Heaps - Binomial Queues- Binomial Queue Structure – Binomial Queue Operation- Implementation of Binomial Queues

UNIT-II TREE STRUCTURES

Binary Tree – Binary tree traversals – Expression Trees – Huffman Codes – Operations in Trees - Binary search tree – Operations in BST – Applications of BST - Balanced Trees - AVL Tree – Operations in AVL Trees – Applications of Trees.

UNIT-III MULTI WAY TREES

M-way Search Trees – Properties - B-Trees – Implementation – B-Trees ADT – B+ Trees – Operations in B+ Trees - Lexical Search Trees – Applications of B Trees

UNIT-IV BALANCED SEARCH TREE

Height Balanced Trees – Weight Balanced Trees – Red Back Trees – Top-Down Balancing of Red Black Trees – Finger Trees – Level Thinking - Splay trees – Operation of Splay Trees – Joining of Balanced Search Tree – Splitting of Balanced Search Tree

UNIT-V GRAPHS

Representation of graph - Graph Traversals - Depth-first and breadth-first traversal -Applications of graphs -Topological sort – shortest-path algorithms - Dijkstra''s algorithm –Bellman-Ford algorithm – Floyd's Algorithm minimum spanning tree – Prim's and Kruskal's algorithms

TOTAL PERIODS : 45

9

9

9

9

Cours	Course Outcomes:					
On co	On completion of the course, the students will be able to					
CO1	Analyze and implement the various data structure					
CO2	Implement the tree and heap structures for solving the real world problems					
CO3	Analyze and implement the Multi way search trees					
CO4	Structure the balanced search trees					
CO5	Implement the traversal and graph algorithms to solve complex problems					

Te	Text Books:						
1	Data structures and Algorithm Analysis in C, 2nd Edition, Mark Allen Weiss, Pearson (Chapter 6 & 9).						
2.	Data Structures, a Pseudocode Approach, Richard F Gilberg, Behrouz A Forouzan, Cengage.(Chapter 9,10&11).						

Re	Reference Books / Web links:						
1	Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, 3 rd Edition						
2	C and Data Structures: A Snap Shot oriented Treatise with Live examples from Science and Engineering, NB Venkateswarlu & EV Prasad, S Chand, 2010						

CO /PO	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	P S O 4
C01	3	3	2	2	-	-	-	-	-	-	1	-	2	2	1	-
CO2	3	3	2	3	-	-	1	-	-	-	-	-	-	3	2	-
CO3	1	3	2	3	-	1	-	-	-	-	-	-	1	2	3	-
CO4	2	2	3	2	-	-	-	-	-	-	1	-	2	2	-	-
CO5	2	2	1	3	-	1	1	-	-	-	-	2	-	3	2	2
CO(Avg																
)	2.20	2.60	2.00	2.60	_	1.00	1.00	-	-	-	1.00	2.00	1.67	2.40	2.00	2.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

No correlation : "-"

Subject Code	Subject Name (Lab oriented Theory Courses)	Category	L	Т	Р	С
CS19341	DESIGN AND ANALYSIS OF ALGORITHMS	PC	3	0	2	4

Objectives: The student should be made to:						
*	Learn and understand the algorithm analysis techniques and complexity notations					
*	Become familiar with the different algorithm design techniques for effective problem solving in computing.					
*	Learn to apply the design techniques in solving various kinds of problems in an efficient way.					
*	Understand the limitations of Algorithm power.					
*	Solve variety of problems using different design techniques					

UNIT-I	INTRODUCTION AND ANALYSIS OF ALGORITHMS		9
Introduction	n-Algorithm Specification – Important Problem types- Performance Analysis	s: Space Complexity -	Time
Complexity	- Asymptotic Notations - Using Limits for Comparing Orders of Growth - H	Basic Efficiency Class	es-
Solving Red	currence Relations: Substitution methods and Master Theorem Method		
UNIT-II	BRUTE FORCE AND DIVIDE-AND-CONQUER		9
Brute Force	: Exhaustive Search - Travelling Salesman Problem - Knapsack Problem - A	ssignment problem -	Divide
and Conque	r Method: Analysis of Binary Search, Merge sort and Quick sort Algorithms	, Integer Multiplicatio	on-
Finding Min	nimum and Maximum.		
UNIT-III	GREEDY TECHNIQUE AND DYNAMIC PROGRAMMING		9
	hod – Minimum Spanning Trees: Kruskals Algorithm– Fractional Knapsack		ynamic
Programmi	ng: General Method - String Editing - 0/1 Knapsack - Travelling Salesman P	roblem.	
UNIT-IV	BACKTRACKING AND BRANCH & BOUND		9
	g: General Method - 8 Queen's Problem - Sum of Subsets Problem - Graph		an
Circuit Prob	elem - Branch and Bound: LC branch and bound - 0/1 Knapsack - Travelling	Salesman Problem.	
UNIT-V	STRING MATCHING AND NP COMPLETE & NP HARD		9
String Matc	hing: Naive String Matching - Rabin Karp - Knuth Morris Pratt - NP Compl	ete and NP Hard Prob	lems:
Basic Conc	epts - Non Deterministic Algorithms - Class of NP Complete and NP Hard -	Approximation Algor	rithms ::
Travelling S	Salesman problem.		
		Contact Hours	: 45

	List of Experiments		
1	Finding Time Complexity of algorithms		
2	Design and implement algorithms using Brute Force Technique		
3	Design and implement algorithms using Divide and Conquer Technique		
4	Design and implement algorithms using Greedy Technique		
5	Design and implement algorithms using Dynamic Programming		
6	Design and implement algorithms using Backtracking		
7	Design and implement algorithms using Branch and Bound		
8	Implement String Matching algorithms		
	Contact Hours	:	30
	Total Contact Hours	:	75

	Course Outcomes: On completion of the course, the students will be able to						
CO1	• 1 Analyze the time and space complexity of various algorithms and compare algorithms with respect to complexities.						
CO2	Ability to decide and Apply Brute Force and Divide and Conquer design strategies to Synthesize algorithms for appropriate computing problems.						
CO3	Ability to decide and Apply Greedy and Dynamic Programming techniques to Synthesize algorithms for						

	appropriate computing problems.
CO4	Ability to decide and Apply Backtracking and Branch and Bound techniques to Synthesize algorithms for appropriate computing problems.
\mathbf{CO}	Apply string matching algorithms in vital applications

Te	Text Books:						
1	AnanyLevitin, "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2012.						
2	Ellis Horowitz, Shani, SanguthevarRajasekaran, "Computer Algorithms" Universities Press, Second Edition 2008.						

Re	ference Books:				
1	Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Third Edition, PHI Learning Private Limited, 2012.				
2 Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Edu Reprint 2006.					
3	Donald E. Knuth, "The Art of Computer Programming", Volumes 1& 3 Pearson Education, 2009.				
4	Sara Baase Allen Van Gelder, "Computer Algorithms - Introduction to Analysis" Pearson Education Asia, 2010				
5	Droomey R. G. "How to solve it by Computer", Pearson Education, 2006.				

Web links for Theory& Lab	Lab	Theory&	for	links	Web
---------------------------	-----	---------	-----	-------	-----

https://www.geeksforgeeks.org/fundamentals-of-algorithms/ 1

2 https://www.hackerrank.com/domains/algorithms

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
C01	3	-	-	-	-	-	-	-	-	-	-	1	3	2	2	3
CO2	2	3	2	2	-	-	-	-	-	-	-	1	3	3	1	2
CO3	2	3	2	2	-	-	-	-	-	-	-	1	3	3	1	2
CO4	2	3	2	2	-	-	-	-	-	-	-	1	3	3	1	2
CO5	1	2	2	2	-	-	-	-	-	-	-	1	3	3	1	1
CO(Avg)	2.00	2.75	2.00	2.00	-	-	-	-	-	-	-	1.00	3.00	2.80	1.20	2.00

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Subject Code	Subject Name (Laboratory Oriented Theory Course)	Category	L	Т	Р	С
IT19341	INTRODUCTION TO OOP AND JAVA	PC	3	0	4	5

Ob	Objectives:				
*	To understand Object Oriented Programming concepts and fundamentals of Java				
*	To know the Principles of classes, inheritance and interface				
*	To Learn to create a packages, define exceptions and use strings				
*	To develop a java application with Collections and I/O streams				
*	To design and build simple application using JDBC				

UNIT-I FUNDAMENTALS OF JAVA

Introduction to Object Oriented Programming – Basic concepts of OOP - An overview of Java - Java Architecture - Data Types - Variables- Operators -Flow Control Statements-Arrays - Command Line Arguments.

UNIT-II CLASSES AND INHERITANCE

Defining Classes in Java: Member Variables, Object and reference, Constructors, Static Members-Static Block-Access Specifiers.Inheritance:Association,Aggregation,Composition-Super,Final &This Keyword-Types-Interface-Method Overrriding-Dynamic Method Dispatch-Cosmic Class- Abstract Class-Garbage Collection.

UNIT-III PACKAGES, EXCEPTION HANDLING AND STRINGS

Packages - Exceptions – Exception Hierarchy – Throwing and Catching Exceptions – Built-in Exceptions, User defined Exceptions. Strings - String Buffer.

UNIT-IV I/O AND COLLECTIONS

Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing Files – Wrapper Class-Collection –Hierarchy-Interfaces –Generic Class-Raw Type-Type Erasure-AutoBoxing & UnBoxing-List-Set-Map.

UNIT-V MULTITHREADING AND JDBC

Multithreading: Introduction- Thread Life Cycle- Thread Creation- Thread Synchronization.JDBC:Architecture & Querying with JDBC-Connection-Executing Query& Processing Results-MetaData & Prepared Statement-Event Handling.

TOTAL PERIODS: 45

9

9

9

9

	List of Experiments	
1	Simple programs using command line arguments	
2	Programs using control structures	
3	Programs using arrays	
4	Programs using classes and objects.	
5	Programs using inheritance and interfaces	
6	Programs using packages and abstract class	

7	Programs to handle different types of exceptions		
8	Programs using strings and string buffer		
9	Programs using I/O streams		
10	Programs using files		
11	Programs using collections		
12	Programs using multithreading		
13	Programs using Generics		
14	Simple applications using database connectivity		
15	Develop a mini project for any application using Java Concepts		
		PER	IODS: 60
		Total Contact Hours	: 105
	rse Outcomes:		
On	completion of the course, the students will be able to		
CO	Develop Simple Java programs		
CO	² Develop Java program with the concepts of inheritance and interfaces.		
CO			
CO			
CO	⁵ Develop interactive Java programs using event handling with JDBC.		

Te	xt Books:
1	Herbert Schildt, —Java The complete referencel, 11th Edition, McGraw Hill Education, 2019.
2	Cay S. Horstmann, Gary cornell, —Core Java Volume –I Fundamentals, 9th Edition, Prentice Hall, 2013.

Ref	Reference Books / Web links:					
1	Paul Deitel, Harvey Deitel, —Java SE 8 for programmers, 3rd Edition, Pearson, 2015.					
2	Steven Holzner, —Java 2 Black book, Dreamtech press, 2011.					
3	Timothy Budd, —Understanding Object-oriented programming with Javal, Updated Edition, Pearson Education, 2000.					
4	SCJP Sun Certified Programmer for Java 6 Study Guide. McGrawHill, 6th edition.					

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PS O4
CO1	3	2	1	0	1	-	-	-	1	-	-	1	1	1	1	3
CO2	3	1	1	0	1	-	-	-	1	-	-	1	2	1	1	3
CO3	3	1	1	0	1	-	-	-	2	-	-	1	2	2	2	3
CO4	3	2	1	0	1	-	-	-	2	-	-	2	3	2	2	3
CO5	3	2	2	2	1	-	-	-	3	1	3	2	3	2	3	3
CO (-	-	-								
Avg)	3.00	1.60	1.20	0.40	1.00				1.80	1.00	3.00	1.40	2.20	1.60	1.80	3.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Subject Code		Subject Name (Theory course)	Category	L T P C					
N	AC19301	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	MC	3 0 0 0					
Ob	Objectives:								
*	Indian trad important i focuses on	e aims at imparting basic principles of thought process, reasoning and inferen- itional knowledge system connecting society and nature. Holistic life style o n modern society with rapid technological advancements and societal disrup introduction to Indian knowledge system, Indian perspective of modern science to healthcare system, Indian philosophical, linguistic and artistic traditions.	f yogic scienc tions. The cou	e and wisdom a irse mainly					

Pedagogy: Problem based learning, group discussions, collaborative mini projects.

UNIT-I	Introduction to Indian Knowledge System:	6
	Basic structure of the Indian Knowledge System – Veda – Upaveda - Ayurveda, Dhanurveda-	-
	Gandharvaveda, Sthapathyaveda and Arthasasthra. Vedanga (Six forms of Veda) – Shiksha,	
	Kalpa, Nirukta, Vyakarana, Jyothisha and Chandas- Four Shasthras - Dharmashastra, Mimamsa,	
	Purana and Tharkashastra.	
UNIT-I	Modern Science And Yoga:	6
	Modern Science and the Indian Knowledge System – a comparison - Merits and demerits of	
	Modern Science and the Indian Knowledge System - the science of Yoga-different styles of Yoga	
	- types of Yogaasana, Pranayam, Mudras, Meditation techniques and their health benefits - Yoga	
	and holistic healthcare – Case studies.	
UNIT-I	II Indian Philosophical Tradition: Sarvadharshan/Sadhdharshan – Six systems (dharshans) of	6
	Indian philosophy - Nyaya, Vaisheshika, Sankhya, Yoga, Vedanta-Other systems- Chavarka, Jain	
	(Jainism), Boudh (Buddhism) – Case Studies.	
UNIT-I		6
	Introduction to Linguistics in ancient India – history – Phonetics and Phonology – Morphology –	
	Syntax and Semantics-Case Studies.	
UNIT-V	Indian Artistic Tradition:	6
	Introduction to traditional Indian art forms – Chitrakala (Painting), Murthikala / Shilpakala	
	indoduction to ductional inclusion are forming - Cinductata (Funding), indicandary Simplificata	
	(Sculptures), Vaasthukala, Sthaapathya kala (Architecture), Sangeeth (Music), Nruthya (Dance)	
	and Sahithya (Literature) – Case Studies.	
		26
~	Total Contact Hours :	30
	Outcomes: On completion of the course students will be able to	
	Inderstand basic structure of the Indian Knowledge System	
	Apply the basic knowledge of modern science and Indian knowledge system in practice	
	Inderstand the importance Indian Philosophical tradition	
CO4	Appreciate the Indian Linguistic Tradition.	
CO5 [Inderstand the concepts of traditional Indian art forms	

Tex	xt Book (s):
1	V. Sivaramakrishnan (Ed.), Cultural Heritage of India-course material, Bharatiya Vidya Bhavan, Mumbai. 5th
-	Edition, 2014.
2	Swami Jitatmanand, Modern Physics and Vedant, Bharatiya Vidya Bhavan.
3	Swami Jitatmanand, Holistic Science and Vedant, Bharatiya Vidya Bhavan.
4	Fritzof Capra, Tao of Physics.
5	Fritzof Capra, The Wave of life.
Ref	ference Books(s) / Web links:
1	VN Jha (Eng. Trans.), Tarkasangraha of Annam Bhatta, International Chinmay Foundation, Velliarnad, Arnakulam.
2	Yoga Sutra of Patanjali, Ramakrishna Mission, Kolkata.
3	GN Jha (Eng. Trans.), Ed. RN Jha, Yoga-darshanam with Vyasa Bhashya, Vidyanidhi Prakashan, Delhi 2016.
4	RN Jha, Science of Consciousness Psychotherapy and Yoga Practices, Vidyanidhi Prakashan, Delhi 2016.

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PS O4
CO1	-	-	-	-	-	1	1	3	2	-	-	1	-	-	-	1
CO2	-	-	-	-	-	1	1	3	2	-	-	1	-	-	-	2
CO3	-	-	-	-	-	1	1	3	2	-	-	1	-	-	-	3
CO4	-	-	-	-	-	1	1	3	2	-	-	1	-	-	-	3
CO5	-	-	-	-	-	1	1	3	2	-	-	1	-	-	-	3
CO(-	-	-	-	-					-	-	1	-	-	-	2.4
Avg)						1.00	1.00	3.00	2.00							

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Subject Code	Subject Name	Category	L	Т	Р	С
MA19454	PROBABILITY, STATISTICS AND QUEUEING THEORY	BS	3	1	0	4

Ob	jectives:
*	To provide the required mathematical support in real life problems.
*	To develop probabilistic models which can be used in several areas of Science and Engineering.

UNIT-I ONE – DIMENSIONAL RANDOM VARIABLE

Discrete and continuous random variables - Moments - Moment generating function - Binomial, Poisson,

Geometric, Uniform, Exponential, and Normal distributions.

UNIT-II TWO - DIMENSIONAL RANDOM VARIABLES

Joint distributions - Marginal and conditional distributions - Covariance - Correlation and

Linear regression - Transformation of random variables - Applications of Central Limit Theorem.

UNIT-III TESTING OF HYPOTHESIS

Statistical hypothesis - Large sample test based on Normal distribution for single mean and difference of means -Tests based on t, F and Chi-square test for single sample standard deviation. Chi-square tests for independence of attributes and goodness of fit.

UNIT-IV RANDOM PROCESSES

Classification – Stationary process – Markov process - Poisson process and its properties – Discrete parameter Markov chain – Chapman Kolmogorov Theorem (without proof)– Limiting distributions.

UNIT-V QUEUEING MODELS

Markovian queues – Birth and Death processes – Queueing Models - $(M/M/1):(GD/\infty/\infty), (M/M/1):(GD/k/\infty), (M/M/c):(GD/k/\infty), (M/M/c):(GD/k/\infty), - (M/G/1):(GD/\infty/\infty).$

Total Contact Hours :

Course Outcomes:

On co	On completion of course, students will be able to						
CO1	Apply the basic concepts of probability, one dimensional and two dimensional Random Variables.						
CO2	Apply the concept of correlation and regression in real life situation.						
CO3	Use the concepts of Testing of Hypothesis for industrial problems.						
CO4	Characterize phenomena which evolve with respect to time in a probabilistic manner.						
CO5	Characterize features of a queuing system and analyze different queuing models.						

12

12

12

12

12

Te	xt Books:
1	Veerarajan T, 'Probability and Statistics, Random Processes and Queueing Theory', Mc Graw Hill, First edition, 2018.
2	Gross. D. and Harris. C.M., "Fundamentals of Queueing Theory", Wiley Student edition, 5th edition, 2018.
3	Oliver C ibe., "Fundamentals of Applied Probability and Random Processes"., 2 nd edition, Academic Press, June 2014

Re	ference Books / Web links:
1	Robertazzi, "Computer Networks and Systems: Queueing Theory and performance evaluation", Springer, 3rd Edition, 2013.
2	Taha H.A., "Operations Research", Pearson Education, Asia, 9th Edition, 2014.
3	Trivedi.K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", John Wiley and Sons, 2nd Edition, 2008.
4	Hwei Hsu, "Schaum"s Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2017.
5	Yates R.D. and Goodman. D. J., "Probability and Stochastic Processes", Wiley India Pvt. Ltd., Bangalore, 2nd Edition, 2012.

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	2	2	1	-	-	-	-	-	-	2	1	-	1	2
CO2	3	3	2	2	1	-	-	-	-	-	-	2	1	-	1	2
CO3	3	3	3	3	2	-	-	-	-	-	2	2	2	-	1	2
CO4	3	3	3	3	3	-	-	-	-	-	1	2	1	-	1	2
CO5	3	3	3	3	2	-	-	-	-	-	2	2	2	-	1	2
CO(Avg						-	-	-	-	-				-		
,	3.00	3.00	2.60	2.60	1.80						1.67	2.00	1.40		1.00	2.00

Subject Code	Subject Name	Category	L	Т	Р	C
IT19401	COMPUTER ORGANIZATION	PC	3	0	0	3

Ob	Objectives: The student should be made to:								
*	To understand the structure, function and characteristics of computer systems.								
*	To understand the design of the various functional units and components of computers.								
*	To identify the elements of modern instructions sets and their impact on processor design.								
*	To explain the function of each element of a memory hierarchy.								
*	To identify and compare different methods for computer I/O.								

UNIT-I INTRODUCTION 9 Functions and Structure of a computer - Computer architecture Vs organization - Functional components -Performance measures - Von Neumann architecture - Multiprocessors and Multi computers -Addressing modes (Text Book-1: Chapters 1 and 2) **UNIT-II** INSTRUCTION FORMATS AND BUS STRUCTURES 9 Instructions and Instruction sequencing – Instructions: operations and operands –Bus Organization: Single Bus Organization - Multiple bus organization - Execution of a complete instruction - Hardwired control - Micro programmed control. (Text Book-1: Chapter 2 and 7) UNIT-III PIPELINING 9 Basic concepts - Data hazards - Instruction hazards - Influence on instruction sets - Data path and control considerations - Performance considerations - Case study - UltraSPARC II. (Text Book-1: Chapter 8 and Case study on Processor families) UNIT-IV MEMORY SYSTEM 9 Basic concepts - Semiconductor RAM - ROM - Speed - Size and cost - Cache memories - Improving cache performance -Associative memories - Secondary storage devices - Memory management requirements - Introduction to Virtual Memory. (Text Book-1: Chapter 5) **I/O ORGANIZATION UNIT-V** Accessing I/O devices - Programmed Input/output - Interrupts - Direct Memory Access - Buses - Interface circuits -Standard I/O Interfaces (PCI, SCSI, and USB), I/O devices and processors -RISC - CISC. (Text Book-1: Chapter 4) **Total Hours** : 45

	se Outcomes: mpletion of the course, the students will be able to
	Comprehend the basic structure and operation of digital computer system.
CO2	Understand the design of the various functional units and components of computers
CO3	Understand the Hazards and to design and analyse the pipelined control units.
CO4	Evaluate performance of memory systems.
CO5	Understand the IO devices organization.

Text Books:

1 Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw Hill, 2002.

Re	Reference Books:								
1	David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware / Software interface", Third Edition, Elsevier, 2005.								
2	William Stallings, "Computer Organization and Architecture – Designing for Performance", Sixth Edition, Pearson Education								

3	John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata McGraw Hill, 1998.
4	V.P. Heuring, H.F. Jordan, "Computer Systems Design and Architecture", Second Edition, Pearson Education, 2004.

CO/P	Р	Р	PO	PO	PO	РО	PO7	PO	PO	PO	PO1	PO1	PSO	PSO	PSO3	PS
0	01	02	3	4	5	6		8	9	10	1	2	1	2		04
CO1	3	-	2	-	-	-	-	-	-	-	-	-	1	1	-	-
CO2	-	1	-	2	-	-	-	-	-	-	-	-	1	2	-	-
CO3	-	2	1	2	2	-	1	1	-	-	-	-	1	2	2	-
CO4	-	2	1	1	1	-	-	-	-	-	-	-	2	2	-	-
CO5	3	1	-	1	-	-	-	-	-	1	-	-	1	-	-	-
CO(A vg)						-			-	1.00	-	-				-
	3.00	1.50	1.33	1.50	1.50		1.00	1.00					1.20	1.75	2.00	

Subject Code		Subject Name (Theory course)	Category	L	Т	Р	C
GE19304		FUNDAMENTALS OF MANAGEMENT FOR ENGINEERS	HS	3	0	0	3
Ob	jectives:						
To expose the students to the basic concepts of management in order to aid in understanding how an organization functions, and in understanding the complexity and wide variety of issues managers face in today's business firms.						n	

UNIT-I	Intoduction To Management: Definition, Nature and Scope, Functions, Managerial Roles, Levels of Management, Managerial Skills, Challenges of Management; Evolution of management thought. Organization: Types and environmental factors.	9
UNIT-II	Planning And Decision Making: General Framework for Planning – Planning Process, Types of Plans, Management by Objectives; Decision making and Problem Solving - Steps in Problem Solving and Decision Making.	9
UNIT-III	Organization And HRM: Principles of Organization: Organizational Design & Organizational Structures; Departmentalization, Delegation; Empowerment, Centralization, Decentralization. Human Resource Management & Business Strategy: Talent Management and Strategic Human Resource Planning; Recruitment and Selection; Training and Development; Performance Appraisal.	9
UNIT-IV	Leading And Motivation: Leadership, Power and Authority, Leadership Styles, Leadership Skills, Leader as Mentor and Coach, Team Leadership. Motivation – Types of Motivation; Relationship between Motivation, Performance and Engagement, Content Motivational Theories – Needs Hierarchy Theory, Two Factor Theory, Theory X and Theory Y.	9
UNIT-V	Controlling: Control, Types and Strategies for Control, Steps in Control Process, Budgetary and Non- Budgetary Controls. Characteristics of Effective Controls, Establishing control systems. Managing productivity- Cost control- Purchase control- Maintenance control- Quality control-Planning operations. Managing globally- Strategies for International business.	9
	Total Contact Hours :	45
<u> </u>		
001	terms: After completing the course, the Learners should be able to:	
GQQ	lerstand and apply the basic principles of management.	
Unc	lerstand and apply the planning, organizing and control processes.	
CO3 Wil	l be able to understand and design organization as well as manage and develop human resource.	
CO4 Und wor	lerstand various theories related to the development of leadership skills, motivation techniques and tear k.	m
CO5 Wil	l be able to understand and apply controlling practices in all applications.	
Text Book	(s):	
1 Princip	ples of Management, Prakash Chandra Tripathi, Tata McGraw-Hill Education, 2008.	
2 Funda	mentals of Management, Stephen P. Robbins, Pearson Education, 2009.	
Reference	Books(s) / Web links:	
1 Essent	ials of Management, Koontz Kleihrich, Tata Mc – Graw Hill.	

2

CO/ PO	PO 1	P 0 2	P O 3	P 0 4	PO 5	PO 6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO4
CO1	2	2	-	2	-	2	2	2	3	3	3	3	-	3	3	3
CO2	3	2	-	2	-	2	2	2	3	3	3	3	-	3	3	3
CO3	3	2	-	2	-	3	2	3	3	3	3	3	-	3	3	3
CO4	2	3	-	2	-	2	3	2	3	3	3	3	-	3	3	3
CO5	2	3	-	2	-	2	2	2	3	3	3	3	-	3	3	3
CO(Avg)																
	2.40	2.40	-	2.00	-	2.20	2.20	2.20	3.00	3.00	3.00	3.00	-	3.00	3.00	3.00

Subject Code	Subject Name	Category	L	Т	Р	C
GE19301	LIFE SCIENCE FOR ENGINEERS	BS	3	0	0	3

Ob	jectives: Broad objective of this course is to
*	Give an introduction of life science to engineering students
*	Help students to familiarize with human physiology
*	Learn about life style diseases and their management
-	Introduce basic diagnostic aspects

UNIT-I OVERVIEW OF CELLS AND TISSUES

Introduction to Bacteria, virus, fungi and animal cells. Organisation of cells into tissues and organs. Functions of vital organs.

UNIT-II HEALTH AND NUTRITION

Balanced diet, Importance of RDA, BMR, and diet related diseases. Role of antioxidants PUFA, DHA, Essential amino acids, Essential fatty acids in diet. Water and its significance for human health. Physical and Mental health – Significance of exercise and yoga.

UNIT-III UNHEALTHY PRACTICES AND THEIR IMPACT ON HEALTH

Drug induced toxicity, Unhealthy practices - Drug abuse/Narcotics/Smoking/Alcohol/Self-medication/Undue usage of electronic gadgets.

UNIT-IV COMMON DISEASES AND LIFESTYLE DISORDERS

Prevention and management of food, water and airborne illness (Common cold, dehydration, food poisoning etc). Lifestyle disorders – obesity, diabetes, stroke, heart attack, ulcer, renal calculi, cancer, AIDS, hepatitis- prevention and management.

UNIT-V	DIAGNOSTIC TESTS AND THEIR RELEVENCE	9							
Normal rang	Normal range of biochemical parameters, significance of organ function tests, organ donation.								

Contact Hours : 45

Course	Course Outcomes:								
On com	On completion of the course, the students will be able to								
CO1	CO1 Classify the living organisms and relate the functions of vital organs								
CO2	Demonstrate the importance of balanced diet and plan methods for healthy living								
CO3	Analyse the hazards of unhealthy practices and take preventive measures								
CO4	Categorise the various life style disorders and recommend ways to manage the common diseases								
CO5	CO5 Evaluate and interpret biochemical parameters and their significance								

Te	xt Books:									
1	1.Diseases of human body, Carol D Tamparo, Marcia A Lewis, Marcia A, Lewis, EdD, RN, CMA-AC, F.A									
	Davis Company, 2011.									
2	Textbook of Medical Biochemistry ,Chatterjea ; Rana Shinde.									

Reference Books:

1 Biology for Engineers, Arthur.T., Johnson, CRC Press, Taylor and Francis, 2011.

9

9

9

2 Cell Biology and Genetics, Cecie Starr, Ralph Taggart, Christine Evers and Lisa Starr, Cengage Learning, 2008.

Web links

1 <u>https://nptel.ac.in/courses/122103039/</u>

CO/ PO	P 0 1	PO2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO 1	PSO 2	PS O3	P S O 4
CO1	3	1	2	2	2	3	1	1	1	2	1	3	3	1	2	2
CO2	3	1	2	2	2	3	1	1	1	2	1	3	3	1	2	2
CO3	3	1	2	2	2	3	1	3	1	2	1	3	3	1	2	2
CO4	3	1	2	2	2	3	1	1	1	2	1	3	3	1	2	2
CO5	3	1	2	2	3	3	1	1	1	2	1	3	3	1	2	2
CO(Avg)																
0,	3.00	1.00	2.00	2.00	2.20	3.00	1.00	1.40	1.00	2.00	1.00	3.00	3.00	1.00	2.00	2.00

Subject Code	Subject Name (Lab oriented Theory Courses)	Category	L	Т	Р	C
IT19441	OPERATING SYSTEM DESIGN	PC	3	0	4	5

Ob	Objectives:									
*	To study the basic concepts and functions of operating systems.									
*	To learn about Processes, Threads, Scheduling algorithms and Deadlocks.									
*	To study various Memory Management schemes.									
*	To learn I/O Management and File Systems.									
*	To learn the basics of Distributed operating systems.									

UNIT-I INTRODUCTION

Operating Systems Overview — OS Structure and Operations –Virtualization - System Calls – Types of System Calls-System Programs-System Boot Process – BIOS – POST- Bootstrap Loader

UNIT-II PROCESS MANAGEMENT

Process Concepts– Process Scheduling - Operations - Interprocess Communication- Threads Overview - CPU Scheduling – FCFS – SJF – Priority – RR – Multilevel Queue Scheduling - Multilevel Feedback Queue - Proces Synchronization – Critical Section Problem – Peterson's Solution – Synchronization Hardware –Semaphores- Classic Problems of Synchronization – Monitors – Deadlocks –Characterization-Prevention – Avoidance – Detection – Recovery

UNIT-III MEMORY MANAGEMENT

Main Memory - Swapping - Contiguous Memory Allocation – Paging - Structure of a page table – Segmentation - Virtual Memory – Demand Paging - Page Replacement-FIFO-LRU-Optimal - Allocation of Frames - Thrashing

UNIT-IV I/O MANAGEMENT

File System -Concepts - Access Methods- Directory Structure - Mounting - Protection - File System Implementation – Directory Implementation – Allocation Methods – Free-Space Management - Mass Storage Structure - Disk Scheduling - Disk Management - Swap-Space Management

UNIT-V DISTRIBUTED OPERATING SYSTEMS 8 Introduction to Distributed Systems: Distributed systems: Goals Hardware Concepts Software – design-Communication distributed systems: Layered Protocol: ATM Networks client server model - remote procedure call – group communication. 8 Contact Hours 1 Contact Hours 1 Contact Hours 1

	List of Experiments									
1	Installation and Configuration of Linux in a Virtual Machine									
2	Basic Linux commands									
3	Shell Scripting									
4	System calls based Programs									

9

10

9

5	Inter-process Communication using Shared Memory		
6	Scheduling algorithms		
7	Producer Consumer Problem Solution using Semaphore		
8	Deadlock Avoidance algorithm		
9	Contiguous Memory Allocation		
10	Page Replacement Algorithms		
11	File Allocation Strategy		
12	Study on Customization of Linux Kernel		
	Contact Hours	:	60
	Total Contact Hours	:	105

Course Outcomes:							
On completion of the course, the students will be able to							
CO1 Explain the concepts and structures of Operating Systems.							
CO2 Design various Scheduling algorithms and methods to avoid Deadlock.							
CO3 Compare and contrast various memory management schemes.							
CO4 Summarize the concepts of I/O management and design a prototype file system.							
CO5 Describe the concepts of Distributed operating systems.							

Тех	xt Books:
1	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, Ninth Edition, John Wiley and Sons Inc., 2012.

Ref	erence Books:													
1	NikolayElenkov, "Android Security Internals : An In-Depth Guide to Android's Security Architecture, No Starch													
	Press,2015.													
2	William Stallings, "Operating Systems – Internals and Design Principles", 7th Edition, Pearson, 2013.													
3	Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Addison Wesley, 2001.													
4	Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education", 1996.													
5	D M Dhamdhere, "Operating Systems: A Concept-Based Approach", Second Edition, Tata McGraw-Hill Education, 2007.													
3														
6	Andrew S.Tanenbaum: Distributed Operating System, Prentice Hall International Inc. 1995.													

CO/ PO	P 0 1	PO2	PO3	PO 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO 1	PSO 2	PS O3	P S O 4
CO1	2	-	-	-	3	-	1	-	1	2	2	2	3	-	1	2
CO2	2	2	2	1	2	-	-	-	2	-	2	2	2	3	2	2
CO3	2	2	2	1	2	-	-	-	1	-	2	2	2	3	2	2
CO4	2	2	-	-	2	-	-	-	2	-	2	2	3	2	1	2
CO5	2	-	1	-	2	-	-	1	1	-	2	2	3	-	2	2
CO(Avg)	2.00	2.00	1.67	1.00	2.20	-	1.00	1.00	1.40	2.00	2.00	2.00	2.60	2.67	1.60	2.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Subject Code	Subject Name (Laboratory Oriented Theory Course)	Category	L	Т	Р	C
CS19443	DATABASE MANAGEMENT SYSTEMS	PC	3	0	4	5

Ob	jectives:
*	Understand the role of a database management system, relational data model and successfully apply logical database design principles, including E-R diagrams.
*	Construct simple and moderately advanced database queries using Structured Query Language (SQL).
*	Know the importance of functional dependency and normalization, and what role it plays in the database design process.
*	Understand the concept of a database transaction including concurrency control, backup and recovery, and data object locking and handling deadlocks.
*	Work with the foundation for No SQL technologies.

UNIT-I INTRODUCTION TO DATABASE SYSTEMS

Introduction – Purpose of Database Systems - View of Data –Database Architecture - Relational Databases – Da abase Schema – Keys – Codd's Rule – Relational Algebra – Data Models – Entity Relationship Model – Constraints –Entity Relationship Diagram - Design Issues of ER Model – Extended ER Features – Mapping ER Model to Relational Model.

UNIT-II SQL AND QUERY PROCESSING

SQL: Data Definition – Domain types – Structure of SQL Queries - Modifications of the database – Set Operations – Aggregate Functions – Null Values – Nested Sub queries – Complex Queries – Views – Joined relations – Complex Queries – PL/SQL: Functions, Procedures, Triggers, Cursors -Embedded SQL – Query Processing – Heuristics for Query Optimization

UNIT-III DEPENDENCIES AND NORMAL FORMS

Motivation for Normal Forms – Functional dependencies – Armstrong's Axioms for Functional Dependencies – Closure for a set of Functional Dependencies – Definitions of 1NF-2NF-3NF and BCNF – Multivalued Dependency 4NF - Joint Dependency- 5NF.

UNIT-IV TRANSACTIONS

Transaction Concept – State – ACID Properties – Concurrency control - Serializability – Recoverability – Locking based protocols – Timestamp Based Protocol - Deadlock handling.

UNIT-V NOSQL DATABASE

Introduction to NoSQL - CAP Theorem – Data Models - Key-Value Databases - Document Databases - Column Family Stores – Graph Databases – Working of NOSQL Using MONGODB/CASSANDRA.

Contact Hours: 45

10

10

8

7

	List of Experiments			
1	Introduction to SQL : DDL,DML,DCL,TCL.SQL clause :SELECT FROM WHE Using SQLite/MySQL/Oracle	RE GROUPBY,HAVING,OR	DE	RBY
2	Creation of Views, Synonyms, Sequence, Indexes, Save point.			
3	Creating an Employee database to set various constraints and subqueries.			
4	Optimize a SQL query construct considering time complexity.			
5	Write a PL/SQL block to specify constraints by accepting input from the user.			
6	Implementation of PL/SQL Procedure (IN, OUT, INOUT) with Exception Hand	lling.		
7	Implementation of PL/SQL Function.			
8	Implementation of PL/SQL Cursor.			
9	Implementation of PL/SQL Trigger, Packages.			
10	Implementation of NoSQL basic commands using Cassandra/Mongo DB.			
11	Implementation of Data Model in NoSQL.			
12	Implementation of Aggregation, Indexes in NoSQL.			
13	 MINI PROJECT Database Connectivity with Front End Tools(Python/C/C++/JAVA)and Back End Tools(MySQL/SQLite/CASSANDRA/MONGO DB) For any problem selected, write the ER Diagram, apply ER mapping rules, norm application development process. Make sure that the application should have five or more tables, at least one trigge suitable frontend tool. Indicative areas include a) Inventory Control System. b) Material Requirement Processing. c) Hospital Management System. d) Railway Reservation System. e) Personal Information System. f) Web Based User Identification System. g) Timetable Management System. h) Hotel Management System i)Library Management System 			
		Contact Hours	:	60
		Total Contact Hours	:	105

Course Outcomes:				
On completion of the course, the students will be able to				
CO1 Understand the use of the Relational model, ER diagrams.				
CO2 Apply SQL Queries to define and manipulate the database.				
CO3 Understand the concept of normalization and apply as a case study				
CO4 Understand concurrency control and recovery mechanisms.				
CO5 Apply the different models of NoSQL databases.				

Те	ext Books:
1	Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Sixth Edition, Tata Mc Graw Hill, 2011.
2	P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", Addison-Wesley Professional, 2012.

Re	ference Books:
1	Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, 7th Edition, Pearson Education, 2016.
2	C.J.Date, A.Kannan and S.Swamynathan, "An Introduction to Database Systems", 8th Edition, Pearson Education, 2006.
3	Atul Kahate, "Introduction to Database Management Systems", Pearson Education, New Delhi, 2006.
4	Steven Feuerstein with Bill Pribyl,"Oracle PL/SQL Programming", 6th edition, Publisher: O'Reill 2014.
5	MongoDB: The Definitive Guide, 3rd Edition, by Kristina Chodorow, Shannon Bradshaw, Publisher: O'Reilly Media, 2019

Web Link for Virtual Lab

1. https://livesql.oracle.com/apex

2. https://www.jdoodle.com/online-mongodb-terminal/

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS O3	P S O 4
CO1	2	2	2	-	-	-	-	-	1	-	-	1	2	2	-	2
CO2	2	2	3	3	3	-	-	-	2	1	2	1	2	1	-	2
CO3	2	2	2	2	2	-	-	-	2	1	2	1	1	2	1	2
CO4	2	2	2	2	2	-	-	-	1	1	-	-	1	2	1	2
CO5	2	2	2	4	2	-	-	-	2	-	2	2	1	2	3	2
CO(Avg)						-	-	-								
	3.33	3.33	3.67	11.00	3.00				2.67	-	2.00	1.67	1.75	3.00	2.50	3.33

Subject Code	Subject Name	Category	L	Т	Р	C
GE19421	SOFT SKILLS-I	EEC	0	0	2	1

Course Description:

The course, "VAP" intends to enhance the students' confidence to communicate in front of an audience effectively. The emphasis is on improving the spoken skills of the students so that they can communicate both, in the college and in the corporate setting to deliver their message successfully. In today's technology driven world, communicating with confidence is imperative. Hence, this course aims at providing students with the necessary practice in the form of debates, discussions and role plays.

Program Learning Goals:

This program will help our students to build confidence and improve their English communication in order to face the corporate world as well as providing them with opportunities to grow within an organisation.

Course Objectives:

The major course objectives are:

- a. To help students break out of shyness.
- b. To build confidence
- c. To enhance English communication skills.
- d. To encourage students' creative thinking to help them frame their own opinions,

Learning and Teaching Strategy:

The program is completely student centric where the focus is on activities led by students which include role plays, discussions, debates other games as well. These activities would be supplemented by interactive use of technology and brief trainer input.

Week	Activity Name	Description	Objective
1	Introduction	The trainer and the college facilitator talk to the students about the course and in turn the students introduce themselves.	To set expectations about the course and the students are made aware of the rules and regulations involved in this program
2	If I ruled the world	This is a quick and useful game by getting students to form a circle and provide their point of view. Each student then repeats what the other has said and comes up with their own opinion.	The aim of this activity is to for students to get to know each other and also develop their listening skills as well as learning how to agree and disagree politely.
3	Picture Narrating	This activity is based on several sequential pictures. Students are asked to tell the story taking place in the sequential pictures by paying attention to the criteria provided by the teacher as a rubric. Rubrics can include the vocabulary or structures they need to use while narrating.	The aim of this activity is to make the students develop creative way of thinking.
4	Brainstorming	On a given topic, students can produce ideas in a limited time. Depending on the context, either individual or group brainstorming is effective and learners generate ideas quickly and freely. The good characteristics of brainstorming are that the students are not criticized for their ideas so students will be open to sharing new ideas.	The activity aims at making the students speak freely without the fear of being criticized. It also encourages students to come up with their own opinions.
5	Debate	Is competition necessary in regards to the learning process?	The aim of this activity is to develop the students ability to debate and think out of the box
6	Short Talks	Here the students are given topics for which they take one minute to prepare and two minutes to speak. They can write down points but can't read them out they can only use it as a reference.	The activity aims at breaking the students' shyness and encouraging them to standup in front of the class and speak. It also aims at creating awareness that they are restricted for time so they only speak points that are relevant and important.

7	Debate	Will posting students' grades on bulletin boards publicly motivate them to perform better or is it humiliating?	This activity aims at enhancing the students unbiased thought process when it comes to exams and grades as well as develop their skills to debate
8	The Art of diplomacy	The facilitator proceeds to share multiple concepts of conversation and helps the participants to identify the various methods of being diplomatic and how do deal with misinformation.	The aim of the lesson is to provide an opportunity for the participants to learn about body language and choosing the appropriate words for conversation.
9	Debate	Are humans too dependent on computers?	The aim of this activity is to test the students debating skills and thought process with a topic that affects everybody in daily life.
10	Story Completion	The teacher starts to tell a story but after 2 sentences he/she asks students to work in groups to create the rest of the story which includes the plot and the ending.	This activity aims at building their narrating skills as well as their creativity and ability to work in a team.
11	Role play debate	Students scrutinize different points of view or perspectives related to an issue. For example, a debate about the question "Should students be required to wear uniforms at school?" might yield a range of opinions. Those might include views expressed by a student (or perhaps two students – one representing each side of the issue), a parent, a school principal, a police officer, a teacher, the owner of a clothing store, and others.	The aim of this activity is to get students to speak based on other people's perspective instead of their own. The students take the role of various characters and debate accordingly.
12	I Couldn't Disagree More	This is a game where students practice rebuttal techniques where one student provides a thought or an idea and the other students starts with the phrase I couldn't disagree more and continues with his opinion	The aim of this activity is to improve general communication skills and confidence.
	Feedback	At the end of the session in the final week (12) the trainer would provide feedback to	The aim is to do both give feedback to students as well as

the students on best practices for future	obtain feedback on the course
benefits	from them.

Course Learning Outcome:

On successful completion of the course, students should be able to:

- 1. Be more confident
- 2. Speak in front of a large audience
- 3. Be better creative thinkers
- 4. Be spontaneous
- 5. Know the importance of communicating in English.

Learning Resources:

Kings Learning work sheets.

Subject Code	Subject Name (Theory Course)	Category	L	T	P	С
IT19501	AUTOMATA THEORY AND COMPILER	PC	3	1	0	4
	DESIGN					

Ob	jectives: Broad objective of this course is to
*	Learn the design principles of a Compiler
*	Familiar with the basics of the theory of automata
*	Understand the various parsing techniques and different levels of translation
*	Learn intermediate code generation

Learn code optimization strategies and the process of code generation

UNIT-I INTRODUCTION TO COMPILER

Translators - Compilers and Interpreters - Language processors - The Phases of Compiler – Symbol table – Errors encountered in different phases – Grouping of phases – Compiler Construction tools. (Ref. Book 1: Chapter 1)

UNIT-II AUTOMATA THEORY

Introduction to Finite Automata - Regular Languages – Operations - Regular Expressions – Recognition of Tokens – Transition Diagrams – Converting Regular Expressions to NFA and to DFA – Minimization of DFA – Lex Tool. (Text Book: Chapter 3)

UNIT-III	CONTEXT FREE GRAMMARS AND PARSING	15
	e Grammars – derivation - parse tree - Top Down Parsing - Recursive Descent Parser Predictive Parser r – Bottom up parsing - Shift Reduce Parser – LR parser – SLR – CLR – LALR – YACC Specification (Chapter 4)	
UNIT-IV	SEMANTICS AND RUN TIME ENVIRONMENT	12
Syntax direc	$\frac{1}{1}$ ted translation – S-attributed and L-attributed grammars - applications of SDT - Storage organization	and

Syntax directed translation – S-attributed and L-attributed grammars - applications of SDT - Storage organization and storage allocation strategies – Three address codes – types – Implementation. (Text Book: Chapter 5,6 &7)

UNIT-V CODE OPTIMIZATION AND CODE GENERATION

Principal Sources of Optimization - Optimization of Basic Blocks –Flow Graphs - Data Flow Analysis of Flow Graphs - DAG representation of basic block – Issues in the design of Code Generation - Generic code generation algorithm - Peephole Optimization. (Text Book: Chapter 8 & 9)

Contact Hours : 60 Periods

Cour	rse Outcomes:							
On c	On completion of the course, the students will be able to							
CO1	CO1 Learn the major concept areas of language translation and phases of compiler design							
CO2	O2 Understand automata theory and use it in token recognition							
CO3	D3 Identify the similarities and differences among various parsing techniques and grammar transformation							
	techniques							
CO4	Infer knowledge on run time environment and intermediate code.							
CO5	Apply various optimization techniques and develop target code.							

Text Books:

Alfred V Aho, Monica S. Lam, Ravi Sethi and Jeffrey D Ullman, "Compilers – Principles, Techniques and Tools", 2nd Edition, Pearson Education, 2007.

9

12

Re	ference Books:
1	Michael Sipser. Introduction to the Theory of Computation, PWS Publishing Company.
2	Randy Allen, Ken Kennedy, "Optimizing Compilers for Modern Architectures: A Dependence-based Approach", Morgan Kaufmann Publishers, 2002.
3	Steven S. Muchnick, "Advanced Compiler Design and Implementation, "Morgan Kaufmann Publishers - Elsevier Science, India, Indian Reprint 2003.
4	Keith D Cooper and Linda Torczon, "Engineering a Compiler", Morgan Kaufmann Publishers Elsevier Science, 2004.
5	Charles N. Fischer, Richard. J. LeBlanc, "Crafting a Compiler with C", Pearson Education, 2008.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	1	2	3	-	-	-	-	-	-	-	-	-	1	-	-	-
CO2	1	3	3	1	3	-	-	-	-	-	-	1	1	-	-	2
CO3	1	3	3	1	3	-	-	-	-	-	-	1	1	-	-	2
CO4	-	2	3	-	-	-	-	-	-	-	-	-	1	-	-	-
CO5	-	3	3	3	-	-	-	-	-	-	-	1	3	-	-	3
CO (Avg)						-	-	-	-	-	-			-	-	2.33
(··· 8)	1.00	4.33	5.00	5.00	2.00							1.00	1.75			

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	С
EC19505	ANALOG AND DIGITAL COMMUNICATION	ES	3	0	0	3

Ob	jectives: Broad objective of this course is to
*	Understand analog modulation techniques.
*	Acquire knowledge in digital modulation techniques.
*	Learn the necessity of data and pulse communication techniques.
*	Be familiarized with source and Error control coding.
*	Gain knowledge on multi-user radio communication.

UNIT-I	ANALOG MODULATION	9
Introduction	n to Communication Systems: Modulation – Types - Need for Modulation. Theory of Amplitude Mod	lulation
- Evolution	and Description of SSB Techniques - Theory of Frequency and Phase Modulation - Comparison of v	arious
Analog Cor	nmunication System $(AM - FM - PM)$.	
UNIT-II	DIGITAL MODULATION	9
Amplitude	Shift Keying (ASK) - Frequency Shift Keying (FSK) - Phase Shift Keying (PSK) - BPSK - QPS	SK – 8
PSK - Qua	drature Amplitude Modulation (QAM) – 8 QAM– Bandwidth Efficiency– Comparison of various	Digital
Communica	ation System (ASK – FSK – PSK – QAM).	-
UNIT-III	DATA AND PULSE COMMUNICATION	9
Data Comm	unication systems, Data Communication Circuits - Data Communication Codes - Error Detection and	d
Correction '	Fechniques - serial and parallel interfaces.	
Pulse Com	munication: Pulse Amplitude Modulation (PAM) - Pulse Time Modulation (PTM) - Pulse code Mod	lulation
(PCM) - Co	mparison of various Pulse Communication System (PAM – PTM – PCM).	
UNIT-IV	SOURCE AND ERROR CONTROL CODING	9
Entropy, Se	burce encoding theorem-Shannon-Fano coding, Huffman coding-Channel capacity, Shannon's	limit -
Channel co	ding theorem- Error Control Coding, Linear block codes, Cyclic codes, Convolution codes,	Viterbi
decoding al	gorithm.	
UNIT-V	MULTI USER RADIO COMMUNICATION	9
01111-1	WULTI USEK KADIO COMMUNICATION	,
Global Syst	em for Mobile Communications (GSM) – Overview of multiple access scheme - Code division multi	nle

access (CDMA) – Cellular Concept and Frequency Reuse - Channel Assignment and Handoff. 45

Contact Hours :

Course Outcomes:
On completion of the course, the students will be able to
CO1 Describe various analog modulation techniques.
CO2 Differentiate various digital modulation techniques employed in communication systems.
CO3 Explain data communication and pulse modulation techniques.
CO4 Analyze Source and Error control coding.
CO5 Demonstrate the multi-user radio communication.

Te	xt Books:
1	Wayne Tomasi, "Advanced Electronic Communication Systems", 6th Edition, Pearson Education, 2009.
2	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2004.

Re	ference Books:								
1	B.Sklar, "Digital Communication Fundamentals and Applications" 2 nd Edition Pearson Education 2007.								
2	H.Taub, D L Schilling and G Saha, "Principles of Communication", 3rd Edition, Pearson Education, 2007.								
3	B. P.Lathi, "Modern Analog and Digital Communication Systems", 3rd Edition, Oxford University Press, 2007.								
4	H P Hsu, Schaum Outline Series - "Analog and Digital Communications", TMH 2006.								
5	Martin S.Roden, "Analog and Digital Communication System", 3 rd Edition, Prentice Hall of India, 2002.								

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	2	2	1	1	1	1	1	1	1	1	1	1	1	1
CO2	3	2	2	1	2	1	1	1	1	1	2	1	2	2	1
CO3	2	1	1	1	1	1	1	1	2	2	2	1	1	1	1
CO4	3	3	3	2	2	1	1	1	1	1	2	2	1	1	1
CO5	2	2	1	1	1	2	1	2	2	1	2	1	1	1	1
CO (Avg)	2.60	2.00	1.80	1.20	1.40	1.20	1.00	1.20	1.40	1.20	1.80	1.20	1.20	1.20	1.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Lab oriented Theory Course)	Category	L	Т	Р	C
IT19541	WEB TECHNOLOGY	PC	3	0	2	4

Objectives:	Broad	objective	of this	course is to

★ To design and create a basic webpage using HTML and Cascading Style Sheets.

★ To have a basic idea about scripting language JavaScript and build dynamic webpage.

★ To understand about Bootstrap and JQuery.

★ To create dynamic web pages using server side scripting.

★ To gain knowledge to develop Web Application for various field.

UNIT-I MARK-UP LANGUAGE AND STYLE SHEET

HTML5 – Elements, Attributes-Basic Elements-Lists-Image-Tables – Links – HTML5 control elements – Semantic elements – Audio – Video controls .CSS3 – Inline, embedded and external style sheets – Rule cascading – Inheritance – Backgrounds – Box Model –Navigation Bar-Dropdowns- Shadows – Text – Transformations – Transitions – Animations.

UNIT-II CLIENT SIDE PROGRAMMING

The JavaScript Language: Introduction-Syntax-Variables and Data Types-Statements-Operators-Functions-Arrays-Syntax, Accessing elements, objects-properties and methods. Strings- Syntax, Accessing elements, objects-properties and methods. Built-in Objects. Regular Expressions- Introduction-Modifiers-Patterns-Quantifiers-Methods. Validation- Event Handling DHTML with JavaScript.

UNIT-III FRONT – END FRAMEWORK

Bootstrap: Introduction-History- Grid System-Classes and Structure-Buttons-Button Groups-Forms-Vertical, Horizontal and Inline-Inputs-Input Sizing-Dropdowns-Navigation Bar-Pagination.JQUERY-Introduction-Syntax-Selectors-Events-Effects:Hide and Show-Animation.

UNIT-IV SERVER SIDE PROGRAMMING

An introduction to PHP: PHP- Using PHP- Variables- Program control- Built-in functions-Arrays-Strings, Numbers and Math-Form Validation- Regular Expressions – File handling – Cookies –Sessions- CONNECTIVITY-Introduction-MySQL Database-Prepared and Select Data- Creating HTML forms by embedding PHP code.

UNIT-V

APPLICATION DEVELOPMENT

Creation of simple interactive applications - Simple database applications – Multimedia applications - Design and development of information systems – Personal Information System –Information retrieval system – Social networking applications.

Contact Hours : 45

9

9

9

9

	List of Experiments				
1	Write a html program for Creation of web site with forms, frames, links, tables etc				
2	Design a web site using HTML and DHTML. Use Basic Text Formatting, Images etc.				
3	Create a web page with the following using HTML5 (i) To embed an image map in a web page (ii) To fix the hot spots (iii) Show all the related information when the hot spots are clicked.				
4	Create a web page with all types of Cascading style sheets.				
5	Design a Scientific calculator using Java script.				
6	Design a Registration form and validate.				
7	Develop a responsive web page using Bootstrap.				
8	Design a webpage with Grid System using Bootstrap.				

9	Design a webpage with Dropdown, Navigation bar and Pagination.		
10	Design a web page using JQuery selector.		
11	Create a simple web page using JQuery Effects.		
12	2 Design a web page to calculate the factorial of a given number using PHP.		
13	3 Create a web page to perform arithmetic operation using PHP.		
14	Program using Regular Expression in PHP.		
15	5 Develop an any application using PHP with MySQL.		
	Contact Hours	:	60
	Total Contact Hou	rs :	105

On completion of the course, the students will be able to
CO1 Construct a basic webpage using HTML and Cascading Style Sheets.
CO2 Build dynamic web page with validation using Java Script objects and by applying different event handling mechanisms.
CO3 Develop a responsive web page.
CO4 Construct simple web pages in PHP and Create simple database applications.
CO5 Design an interactive web-application.

Text	Books

10.	
1	Paul Deitel, Harvey Deitel and Abbey Deite, —Internet and World Wide Web - How to Program, 5th Edition, 2011.
2	Jake Spurlock,"Bootstrap-Responsive Web Development" Kindle Edition,O'REILLY,2013.
	Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition, O'REILLY, 2014.

Reference Book:

1 Jeffrey C and Jackson, —Web Technologies A Computer Science Perspectivel, Pearson Education, 2011.

We	eb Link
1.	W3SCHOOL.com

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	-	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	-	3	3	2	-	-	-	-	-	-	-	-	3	-	3	-
CO3	-	3	3	3	-	-	-	-	-	-	-	-	3	-	3	-
CO4	-	3	2	3	-	-	-	-	-	-	-	-	3	-	-	-
CO5	-	2	3	3	-	-	-	-	-	-	3	-	-	3	-	-
CO (Avg)					-	-	-	-	-	-	3.00	-				-
. 0,	3.00	2.60	2.75	2.80									3.00	3.00	3.00	

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Lab oriented Theory Course)	Category	L	Т	P	С
CS19541	COMPUTER NETWORKS	PC	3	0	4	5

Objectives: Broad objective of this course is to

★Understand the concepts of computer networks and error detection-correction of data.

Be exposed to various addressing schemes and routing protocols.

Learn the Transport Layer, flow control and congestion control algorithms.

Be familiar with real time applications of networking devices and tools.

To configure different devices and trace the flow of information between nodes in the network using various tools.

UNIT-I FUNDAMENTALS AND DATA LINK LAYER

Building a network – Requirements – Layering and protocols – Internet Architecture – Network software – Application Programming Interface (sockets) - Performance - Link layer Services - Framing – Error Detection and Correction - Reliable transmission.

UNIT-II MEDIA ACCESS AND INTERNETWORKING

Media Access Protocols – ALOHA - CSMA/CA/CD –Ethernet – Wireless LANs - 802.11- Bluetooth - Switching and Forwarding - Bridges and LAN Switches – Basic Internetworking- IP Service Model – IP fragmentation - Global Addresses – ARP - DHCP – ICMP- Virtual Networks and Tunnels.

UNIT-III ROUTING

Routing – Network as Graph - Distance Vector – Link State – Global Internet –Subnetting - Classless Routing (CIDR) - BGP- IPv6 – Multicast routing - DVMRP- PIM.

UNIT-IV TRANSPORT LAYER

Overview of Transport layer – UDP – TCP - Segment Format – Connection Management – Adaptive Retransmission - TCP Congestion control - Congestion avoidance (DECbit, RED) – QoS – Application requirements.

UNIT-V APPLICATION LAYER

E-Mail (SMTP, MIME, POP3, IMAP), HTTP – DNS - FTP - Telnet – web services - SNMP - MIB – RMON.
Contact Hours : 45

	List of Experiments
1	To Configuration of Network in Linux Environment.
2	Learning and Assign of IP Address to computers.
3	Implementation of Subnet mask in IP addressing.
4	Write a socket PING program to testing the server connectivity.
5	Design, Build & Configure Networks using Cisco Packet Tracer tools.
6	Study & Implement the different types of Network Cables (RS 232C).
7	Implementation of setup a Local Area Network (using Switches) – Minimum 3 nodes and Internet.
8	Write a socket program Remote Procedure Call using connection oriented / connectionless protocols (programs like echo, chat, file transfer etc).
9	To Identify the various port & its usage using NMAP tool.
10	To capture, save, and analyze network traffic on TCP / UDP / IP / HTTP / ARP /DHCP /ICMP /DNS using Wireshark Tool.
11	Write a code using Raw sockets to implement packet Sniffing.
12	Perform a case study using OPNET / NS3 tools about the different routing algorithms to select the Network path with its optimum and economical during data transfer.

9

0

9

13	Simulation of Link State routing algorithm using OPNET or NS3 tool.		
14	Simulation of Distance Vector Routing algorithm OPNET or NS3 tool.		
15	To Analyze the different types of servers using Webalizer tool.		
	Contact Hours	:	60
	Total Contact Hours	:	105

Course Outcomes:							
On completion of the course, the students will be able to							
CO1 Choose the required functionality at each layer for given application.							
CO2 Trace the flow of information from one node to another node in the network.							
CO3 Apply the knowledge of addressing scheme and various routing protocols in data communication to select optimal							
path.							
CO4 Monitor the traffic within the network and analyze the transfer of packets.							
CO5 Develop real time applications of networks using different tools.							

Tey	ext Books:					
1	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann					
	Publishers Inc., 2011.					
2	Behrouz A. Forouzan, Data Communications and Networking, Fifth Edition, McGrawHill, 2017.					

Reference Book:

1	William Stallings, "SNMP, SNMPv2, SNMPv3 and RMON 1 and 2", Third Edition, Pearson Edition, 2009.				
2	James F. Kurose, Keith W. Ross, Computer Networking - A Top-Down Approach Featuring the Internet, Seventh				
	Edition, Pearson Education, 2017.				
3	Andrew S. Tanenbaum, David J. Wetherall, Computer Networks, 5th Edition, Prentice Hall publisher, 2010.				
4	William Stallings, "Data and Computer Communications", Eighth Edition, Pearson Education, 2011.				

Web Link

1. Website reference: https://realpython.com/python-sockets/

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	2	1	-	3	1	1	1	1	-	1	1	2	1	1
CO2	2	2	1	-	2	1	1	-	-	-	2	2	1	1	1
CO3	3	3	1	-	3	0	1	-	-	-	2	1	2	3	2
CO4	2	3	-	-	3	1	1	1	-	-	2	2	1	2	3
CO5	3	2	2	2	3	0	1	1	-	-	3	3	3	3	3
CO (Avg)	2.60	2.40	1.25	2.00	2.80	0.60	1.00	1.00	1.00	-	2.00	1.80	1.80	2.00	2.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

Subject Code	Subject Name (Lab oriented Theory Course)	Category	L	Т	P	С
EC19443	PRINCIPLES OF MICROPROCESSORS AND MICROCONTROLLER	ES	3	0	4	5

Objectives: Broad objective of this course is to

★Infer the programming concept by illustrating and elucidating the basic functionalities of 8085.

★Infer the programming concept by illustrating and elucidating the basic functionalities of 8086.

★Peruse the knowledge of peripherals and interface various devices with the processor.

★Infer the programming concept by illustrating and elucidating the basic functionalities of 8051.

Peruse the knowledge of microcontroller to interface various devices with it.

UNIT-I THE 8085 MICROPROCESSOR

8085 Architecture - Pin configuration - Instruction Set - Addressing modes – Interrupts - Timing diagram – Assembly Language Programming.

UNIT-II THE 8086 MICROPROCESSOR

Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming –8086 signals – Maximum mode and minimum mode- Multiprocessor configurations – Coprocessor, Closely coupled and loosely Coupled configurations.

UNIT-III PERIPHERALS & INTERFACING

Parallel communication interface (8255) – Serial communication interface (8251) – D/A and A/D Interface – Programmable Timer controller (8254) – Keyboard /display controller (8279) – Programmable Interrupt controller (8259) – DMA controller (8237).

UNIT-IV MICROCONTROLLER

Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports- Timers – Interrupts – Serial communication - Instruction set - Addressing modes - Assembly language programming.

UNIT-V INTERFACING MICROCONTROLLER

Interfacing – LCD & Keyboard Interfacing – RTC and EEPROM interface using I2C protocol- Stepper Motor, Traffic Light Controller.

Contact Hours : 45

	List of Experiments								
	CYCLE 1 8085 MICROPROCESSOR								
1	Arithmetic and Logical Operations								
2	Code Conversion and Searching Operations								
3	Parallel interfacing and Timer interfacing								
	CYCLE 2 8086 MICROPROCESSOR								
4	Arithmetic and Logical Operations								
5	Square, Cube, 1's and 2's Complement								
6	Code Conversion, Sorting and Searching Operations								
7	String manipulation Operation								
8	Keyboard &Display, ADC &DAC interfacing								

9

0

	СҮ	CYCLE 3 8051MICROPROCESSOR											
9	Arithmetic and Logical Operations												
10	Code Conversion												
11	Traffic control interfacing												
12	Stepper Motor control interfacing												
	·		Contact Hours	:	60								
			Total Contact Hours	:	105								

Course Outcomes:	
On completion of the course, the students will be able to	
CO1elop an algorithm and write programs in 8085	
CO2elop an algorithm and write programs in 8086	
CO3 ss various interfacing devices interfaced with the processor to adapt an application.	
CO4elop an algorithm and write programs in 8051	
CO5 Assess various interfacing devices interfaced with the controller to adapt an application	

Te	xt Books:
	Ramesh S. Gaonkar, "Microprocessor Architecture, Programming and Applications with 8085". Sixth edition,
	Penram International Publishing, 2012.
	A.K. Ray, K.M. Bhurchandi, —Advanced Microprocessor and Peripherals, Second edition, Tata McGraw-Hill, 2010.
	Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinley, "The 8051 Microcontroller and Embedded Systems", Second Edition, Pearson Education 2008. Fifth impression 2011.

Re	Reference Book:										
1	Krishna Kant, Microprocessor and Microcontroller Architecture, programming and system design										
	using 8085, 8086, 8051 and 8096, PHI, 2007, Seventh Reprint, 2011.										
2	Kenneth J. Ayala., The 8051 Microcontroller, Third Edition, Thompson Delmar Learning,										

Web links for virtual lab:

1	https://nptel.ac.in/courses/108105102/	

2 https://e-box.co.in/micro-processor-and-micro-controller.shtml

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	3	3	3	3	2	2	1	2	2	2	2	1	1	1
CO2	1	2	3	3	3	3	2	2	1	2	2	2	2	1	1	1
CO3	1	2	3	3	3	3	2	2	1	2	2	2	2	1	1	1
CO4	3	2	3	3	3	3	2	2	1	2	2	2	2	1	1	1
CO5	1	2	3	3	3	3	2	2	1	2	2	2	2	1	1	1
CO (Avg)	1.80	2.00	3.00	3.00	3.00	3.00	2.00	2.00	1.00	2.00	2.00	2.00	2.00	1.00	1.00	1.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Laboratory Course)	Category	L	Т	P	C
IT19521	OPEN SOURCE PROGRAMMING AND TUTORIAL	PC	0	0	4	2
	LAB					

Objectives: Broad objective of this course is

★ To learn fundamentals of Python decision making and functions

★ To understand NumPy array operations

★ To perform openCV basic applications on images and videos.

★ Be familiar with Minitab.

To understand basic constructs of R – programming.

	List of Experiments								
1	Python, conditional decision making								
2	Exercises based on list, tuple, set, Dictionary								
3	Built-in functions, User-defined functions								
4	numpy array, basic array operations.								
5	Load data with various file extensions (.txt,.docx,.csv,.jpg)								
6	Load a data file and perform data cleaning operations (Drop column, Drop row, fill missing data, replace values)								
7	Perform data wrangling operations (Sort, Filter, reduce, join, combine and reshape)								
8	Perform basic plotting and visualization.								
9	Getting Started with Images - cv2.imread(), cv2.imshow(), cv2.imwrite() using Matplotlib.								
10	Matplotlib Plotting Styles and Features – Changing Color spaces, object tracking - cv2.cvtColor(), cv2.inRange().								
11	Geometric Transformations of Images - like translation, rotation, affine transformation - cv2.getPerspectiveTransform.								
12	Concept of Canny edge detection – Canny Edge Detection - cv2.Canny().								
13	Getting Started with Videos - cv2.VideoCapture(), cv2.VideoWriter()								
14	Install minitab, opening minitab, entering data, saving and retrieving your data.								
15	Basic commands, arithmetic (LET) command.								
16	Character graphs, true graphics, pasting into a word.								
17	install R-studio, implement basics data structure in R programming(list, vector, factors, data frames, matrices and arrays).								
18	Visualizes the data using plots (scatter, box, histogram).								
	Total Contact Hours: 30								

Software Tools required:

- Anaconda for python 3.9
- o Pycharm
- OpenCV python
- o Minitab
- RStudio IDE

Course Outcomes:

On completion of the course, the students will be able to

CO1 Understand openCV and usage of its various functions.

CO2 Apply the basic knowledge of openCV and develop applications.

CO3 Understand and explore the basics knowledge of minitab.

CO4 Apply basic constructs of R.

CO5 Apply machine learning by classification techniques

CO /P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
C01	3	3	2	-	-	-	-	-	1	-	-	-	3	1	-	3
CO2	3	3	3	2	-	2	-	-	-	-	-	2	2	3	-	2
CO3	3	3	3	2	3	-	-	2	2	-	-	-	-	3	-	3
CO4	3	3	3	-	3	1	-	-	-	-	1	2	2	-	-	-
CO5	3	3	2	3	2	-	-	1	3	-	3	3	3	3	1	3
CO (Avg)	3.00	3.00	2.60	2.33	2.67	1.50	-	1.50	2.00	-	2.00	2.33	2.50	2.50	1.00	2.75

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

Subject Code	Subject Name	Category	L	Т	Р	C
GE19521	SOFT SKILLS-II	EEC	0	0	2	1

Course Description:

The course, "VAP" intends to enhance the students' confidence to communicate in front of an audience effectively. The emphasis is on improving the spoken skills of the students so that they can communicate both, in the college and in the corporate setting to deliver their message successfully. In today's technology driven world, communicating with confidence is imperative. Hence, this course aims at providing students with the necessary practice in the form of debates, discussions and role plays.

Program Learning Goals:

This program will help our students to build confidence and improve their English communication in order to face the corporate world as well as providing them with opportunities to grow within an organisation.

Course Objectives:

The major course objectives are:

- a. To help students break out of shyness.
- b. To build confidence
- c. To enhance English communication skills.
- d. To encourage students' creative thinking to help them frame their own opinions,

Learning and Teaching Strategy:

The program is completely student centric where the focus is on activities led by students which include role plays, discussions, debates other games as well. These activities would be supplemented by interactive use of technology and brief trainer input.

Week	Activity Name	Description	Objective
1	The News hour	Students are made to read news articles from the English newspapers. The students also have to find words and their meaning from the article they have not come across before and share it with the group. They then use these words in sentences of their own	The aim of this activity is not only to get the students to read the newspaper but also aims at enhancing the students' vocabulary.

2	Court Case	The facilitator provides the participants the premise of a story and proceeds to convert the story into a court case. The students are required, department-wise to debate and provide their points to win the case for their clients.	The aim of the lesson is to encourage creative and out-of-the -box thinking to ensure a good debate and defense skills.
3	The ultimate weekend	The students design activities they are going to do over the weekend and they have to invite their classmates to join in the activity. The students move around the class and talk to other students and invite them.	The aim of this activity is to develop the art of conversation among students. It also aims at practicing the grammatical structures of "going to" "have to" and asking questions.
4	The Four Corners	This is a debate game that uses four corners of the classroom to get students moving. The following is written on the 4 corners of the room "Strongly Agree, Somewhat Agree, Somewhat Disagree and Strongly Disagree". The topics are then given to the class and students move to the corner that they feel best explains their opinions	This activity aims at getting students to come up with their own opinions and stand by it instead of being overshadowed by others and forcing themselves to change based on others opinions.
5	Debate	Boarding school or day school? Which is more beneficial for a student?	The aim of this activity is to encourage students to draw up feasible points on the advantages and benefits of both. And enhance their debating ability

6	Grand Master	The facilitator starts the	The aim of the lesson is
U		session by keeping an	designed to teach the art
		individual in mind, upon	of questioning. It also
		which the students guess it	helps to enhance the
		only through "Yes or No"	students' speaking and
		questions. Post few trials the	listening skills.
		students are given same	instelling skills.
		opportunity to do the same	
		with the crowd.	
7	Debate	Does violence on the TV and	This activity aims at
,	Debute	Video games influence	encouraging the
		children negatively?	students to debate on
		ennaren negativery.	real life scenarios that
			most students spend a
			lot of time on.
8	Turn Tables	This is a speaking activity	The aim of this activity
		where the students need to	is to make the
		speak for and against the	participants become
		given topics when the	spontaneous and have
		facilitator shouts out 'Turn	good presence of mind.
		Table'.	
9	Debate	Do marks define the	This debate activity
		capabilities of a student?	aims at allowing the
			students to argue on this
			worrisome adage of marks.
10	FictionAD	The Participants are asked to	The activity aims at
10	TICIOIAD	create an Ad for a	developing their
		challenging topic only using	creativity and
		fictional characters.	presentation skills.
11	Debate	Are social networking sites	This activity aims at
11		effective, or are they just a	refining the students
		sophisticated means for	debating skills on a very
		stalking people?	real life situation.
12	Talent Hunt	Talent Hunt is a fun activity	The aim of this activity
		where the students are	is designed to evoke
		selected at random and	their inner talents and
		supported to present any of	break the shyness and
		their own skills.	the fear of participating
			in front of a crowd
13	Feedback	At the end of the session in	The aim is to do both
		the final week (12) the trainer	give feedback to
		would provide feedback to	students as well as
		the students on best practices	obtain feedback on the
		for future benefits.	course from them.

Course Learning Outcome:

On successful completion of the course, students should be able to:

- 1. Be more confident
- 2. Speak in front of a large audience without hesitation
- 3. Think creatively
- 4. Speak impromptu
- 5. Communicate in English

Learning Resources:

Kings Learning work sheets.

Subject Code	Subject Name (Lab oriented Theory course)	Category	L	Т	P	С
IT19641	MOBILE COMMUNICATION	PC	3	0	2	4

Obje	Objectives: Broad objective of this course is					
•	To understand the basic concepts of mobile computing.					
٠	To learn the basics of mobile telecommunication system .					
٠	To be familiar with the network layer protocols and Ad-Hoc networks.					
٠	To know the basis of application layer protocols.					
•	To gain knowledge about different mobile platforms and application development					

UNIT-I INTRODUCTION

Introduction to Mobile Computing – Applications of Mobile Computing- Generations of Mobile Communication Technologies- Multiplexing – Spread spectrum -MAC Protocols – SDMA- TDMA- FDMA- CDMA

UNIT-II MOBILE TELECOMMUNICATION SYSTEM

Introduction to Cellular Systems – GSM – Services & Architecture – Protocols – Connection Establishment Frequency Allocation – Routing – Mobility Management – Security – GPRS- UMTS – Architecture – Handover Security

UNIT-III MOBILE IP NETWORK AND TRANSPORT LAYER

Introduction to Mobile IP: Requirements, IP packet delivery- agent discovery- registration, tunneling and encapsulation- optimization- reverse tunneling; Mobile adhoc networks - routing - destination sequence distance vector - dynamic source routing and alternative metrics; Traditional TCP - congestion control- slow start- fast retransmit - fast recovery- implications of mobility; Classical TCP improvements – methods of mobile TCP: Indirect TCP - snooping TCP - mobile TCP - fast retransmit.

UNIT-IV MOBILE APPLICATION LAYER

WAP – Architecture – WDP – WTLS – WTP – WSP – WAE – WTA Architecture – WML-imod-SyncML-WAP2.0

UNIT-V MOBILE PLATFORMS AND APPLICATIONS

Mobile Device Operating Systems – Special Constraints & Requirements – Commercial Mobile Operating Systems – Software Development Kit: iOS, Android, BlackBerry, Windows Phone – MCommerce – Structure – Pros & Cons – Mobile Payment System – Security Issues

Total Contact Hours : 30

List o	of Experiments			
1	Develop an application that uses GUI components, Font and Colours			
2	Develop an application that uses Layout Managers and event listeners.			
3	Develop a native calculator application.			
4	Write an application that draws basic graphical primitives on the screen.			
5	Develop an application that makes use of Database.			
6	Implement an application that implements Multi-threading.			
7	Develop a native application that uses GPS location information.			
8	Implement an application that writes data to the SD card			
9	Implement an application that creates an alert upon receiving a message.			
10	Write a mobile application that creates alarm clock			
		Contact Hour	s :	60
		Total Contact Hour	s :	90

6

6

6

6

Course Outcomes:

On completion of course students will be able to

- Explain the basics of mobile telecommunication systems
- Understand and Illustrate the generations of telecommunication systems in wireless networks
- Determine the functionality of MAC, network layer and Identify a routing protocol for a given Ad hoc network
- Explain the functionality of the Application layers
- Develop a mobile application using android/blackberry/ios/Windows SDK

Text Book(s):

- 1 Jochen Schiller, —Mobile Communications, PHI, Second Edition, 2003.
- 2 Prasant Kumar Pattnaik, Rajib Mall, —Fundamentals of Mobile Computing, PHI Learning Pvt.Ltd, New Delhi 2012

Reference Books(s):

- 1 Dharma Prakash Agarval, Qing and An Zeng, "Introduction to Wireless and Mobile systems", Thomson Asia Pvt Ltd, 2005.
- 2 Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, —Principles of Mobile Computing, Springer, 2003.
- **3** William.C.Y.Lee,—Mobile Cellular Telecommunications-Analog and Digital Systems, Second Edition, TataMcGraw Hill Edition ,2006.
- 4 C.K.Toh, —AdHoc Mobile Wireless Networks, First Edition, Pearson Education, 2002.
- 5 Android Developers : http://developer.android.com/index.html
- 6 Apple Developer : https://developer.apple.com/
- 7 Windows Phone DevCenter : http://developer.windowsphone.com
- 8 BlackBerry Developer : <u>http://developer.blackberry.com</u>

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	1	-	1	-	-	-	-	-	-	-	-	-	-	1	1	1
CO2	1	-	1	-	-	-	-	-	-	-	-	-	-	1	-	1
CO3	2	-	2	-	-	-	-	-	-	-	-	-	-	1	1	1
CO4	2	-	2	-	1	-	-	-	-	-	-	-	-	1	1	1
CO5	2	1	2	-	2	-	-	-	-	-	-	1	1	1	2	2
CO(Av					1 50	-	-	-	-	-	-					1.00
g)	1.60	1.00	1.60	-	1.50							1.00	1.00	1.00	1.25	1.20

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

Subject Code	Subject Name (Lab oriented Theory course)	Category	L	Т	Р	С
IT19642	CRYPTOGRAPHY AND INFORMATION SECURITY	PC	3	0	2	4

Obj	Objectives: Broad objective of this course is to learn						
•	Basics of encryption and Number Theory.						
•	Methods of public key encryption.						
٠	Authentication and hash functions.						
٠	Approaches to Information Security.						
•	Issues in Information Security.						

INTRODUCTION & NUMBER THEORY UNIT-I

Services, Mechanisms and attacks-the OSI security architecture-Network security model-Classical Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques, steganography)-Finite Fields and Number Theory: Modular arithmetic- Euclid's algorithm-Finite fields- Polynomial Arithmetic -Prime numbers Fermat's and Euler's theorem- Testing for primality -The Chinese Remainder theorem- Discrete logarithms.

BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY UNIT-II

Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Triple DES. Public key cryptography: Principles of public key cryptosystems-The RSA algorithm-Key management-Attacks on RSA - Diffie Hellman Key exchange- Elliptic curve arithmetic-Elliptic curve cryptography Side channel analysis- side channel attacks.

HASH FUNCTIONS AND DIGITAL SIGNATURES UNIT-III

Authentication requirement - MAC - Hash function - MD5 - SHA - HMAC -- Digital signature and authentication protocols - DSS- Blockchain - Case Study: Bitcoin - Ethereum - Zcash.

UNIT-IV **INTRODUCTION TO INFORMATION SECURITY**

Components of an Information system - Approaches to Information Security Implementation: The Systems Development Life Cycle - The Security Systems Development Life Cycle - Security Professionals and the Organization - Communities of Interest.

LEGAL, ETHICAL AND PROFESSIONAL ISSUES **UNIT-V**

Introduction – Law and Ethics in Information Security – Relevant U.S. Laws – International Laws and Legal Bodies – Ethics and Information Security - Codes of Ethics and Professional Organizations 45

Total Contact Hours

List of Experiments

	-							
1	Implement the following Substitution and Transposition Techniques:							
	a.	Caesar Cipher						
	b.	Playfair Cipher						
	с.	Hill Cipher						
	d.	Vigenere Cipher						
	e.	Rail fence – row & Column Transformation						
	f.	Affine Cipher						
2	Implem	ent the following algorithms						
	a.	DES						
	b.	RSA Algorithm						
	с.	Diffie-Hellman						
	d.	MD5						
	e.	SHA-1						

9

9

8

10

:

3	Implement the Digital Signature Algorithm (DSA).
4	Demonstrate how to provide secure data storage, secure data transmission and for creating digital signatures (GnuPG).
5	Setup a honey pot and monitor the honeypot on network (KF Sensor)
6	Installation of rootkits and study about the variety of options
7	Perform wireless audit on an access point or a router and decrypt WEP and WPA.(NetStumbler)
8	Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w)
9	Study of Sniffing and Spoofing attacks.
10	Study of Techniques uses for Web Based Password Capturing.
	Contact Hours : 60
	Total Contact Hours : 105

Course Outcomes:

On completion of course students will be able to

CO1 Apply the methods of conventional encryption and Number Theory.

CO2 Apply the concepts of Public Key Encryption.

CO3 Experiment methodology for Authentication and Hashing.

CO4 Comprehend the approaches of Information security

CO5 Identify the issues in information security.

Text Book(s):

- 1 William Stallings, Cryptography and Network Security-Principles and Practices, Seventh Edition, Pearson Education, 2017
- 2 Michael E Whitman and Herbert J Mattord, "Principles of Information Security", Fourth Edition, Thomson Publishing, India Edition, 2011.
- 3 Christo Paar and Jan Pelzl ,Understanding Cryptography: A Textbook for Students and Practioners, First Edition, Springer, 2010
- 4 Joxean Koret and Elias Bachaalany, The Antivirus Hackers Handbook, First Edition, Wiley, 2015

Re	Reference Books(s):							
1	Yehuda Lindell and Jonathan Katz, Introduction to Modern Cryptography, Second Edition, CRC Press, 2015							
2	Bruce Schneier, Applied Cryptography: Protocols, Algorithms and Source Code in C, Special Edition, Wiley, 2015							
	Atul Kahaet, Cryptography and Network Security, Third Edition, Tata McGraw-Hill, 2013							
4	Imran Bashir, Mastering Blockchain: Deeper insights into decentralization, cryptography, bitcoin and popular Blockchain frameworks, First Edition, Packt, 2017							

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	-	2	-	2	1	-	-	-	2	2	-	-	1	2
CO2	3	2	-	2	-	2	1	2	-	-	2	1	-	-	1	2
CO3	2	2	-	2	-	2	2	2	-	-	3	2	-	2	2	2
CO4	2	1	-	2	-	2	1	2	1	-	2	2	-	2	2	2
CO5	2	1	-	2	-	2	1	3	1	-	2	2	-	2	2	2
CO(Av g)	2.40	1.60	-	2.00	_	2.00	1.20	2.25	1.00	-	2.20	1.80	-	2.00	1.60	2.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

Subject Code	Subject Name (Lab oriented Theory course)	Category	L	Т	P	С
IT19643	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	PC	3	0	2	4

Obje	Objectives: Broad objective of this course is						
٠	To learn the methods of solving problems using Artificial Intelligence.						
•	To formalise a given problem in the language/framework of different AI methods.						
•	To introduce the concepts of machine learning.						
•	To know the basics of neural networks and other machine learning algorithms.						
•	To familiarize about the Expert Systems						

UNIT-I INTRODUCTION TO AI AND PRODUCTION SYSTEMS

Introduction to AI-Problem formulation, Problem Definition-Production systems, Control strategies, Search strategies Problem characteristics, Production system characteristics-Specialized productions system- Problem solving methods -Problem graphs, Matching, Indexing and Heuristic functions -Hill Climbing-Depth first and Breath first, Constraints satisfaction – Related algorithms, Measure of performance and analysis of search algorithms.

UNIT-II KNOWLEDGE REPRESENTATION AND INFERENCE

Game playing, Knowledge representation using Predicate logic and calculus, Structured representation of knowledge Production based system, Frame based system, Inference – Backward chaining, Forward chaining, Rule value approach, Fuzzy reasoning – Certainty factors, Bayesian Theory-Bayesian Network-Dempster – Shafer theory.

UNIT-III MACHINE LEARNING BASICS

Learning – Designing a learning system, Perspectives and issues in machine learning, Concept Learning – as task, as search. Types of Machine Learning – Supervised Learning- Regression, Classification. Testing Machine Learning Algorithms- Over fitting, Training, Testing and Validation Sets, The confusion Matrix, Accuracy Metrics, ROC Curve, Unbalanced Datasets, Measurement Precision.

UNIT-IV NEURAL NETWORKS

The Brain and the Neuron – Neural Networks – The Perceptron- Linear Separability- Linear Regression-Examples. Unsupervised Learning- The K-means algorithm-Vector Quantization- The self organizing feature map.

UNIT-V EXPERT SYSTEMS

Expert systems – Architecture of expert systems, Roles of expert systems – Knowledge Acquisition – Meta knowledge, Heuristics. Typical expert systems – MYCIN, DART, XOON, Expert systems shells.

Total Contact Hours : 45

List of Experiments

1	Study of Prolog.
2	Write simple fact for the statements using PROLOG.
3	Write predicates One converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below
	freezing.
4	Write a program to solve the Monkey Banana problem.
5	WAP in turbo prolog for medical diagnosis and show the advantage and disadvantage of green and red cuts.
6	Write a program to solve 4-Queen problem.

9

9

9

7	Write a program to solve traveling salesman problem.
8	Write a program to solve water jug problem.
9	Write a python program to implement linear regression.
10	Write a python program for ML classification algorithms
	a. Logistic Regression
	b. Decision Tree
11	Write a python program to implement
	a. K-Nearest Neighbor algorithm
	b. SVM
12	Write a python program to implement a simple Neural Network.
	Platforms: Prolog, Anaconda, PyCharm
	Contact Hours : 30
	Total Contact Hours : 75

Course Outcomes:						
On completion of course students will be able to						
CO1 Learn the methods of solving problems using Artificial Intelligence.						
CO2 Formalize a given problem in the language/framework of different AI methods.						
CO3 Introduce the concepts of machine learning.						
CO4 Know the basics of neural networks and other machine learning algorithms.						
CO5 Familiarize about the Expert Systems						

Text Book(s):

1	Kevin Night and Elaine Rich, Nair B	"Artificial Intelligence (S	SIE)", Mc Graw Hill- 2008. (Units-LII & V)

- 2 Stephen Marsland, —Machine Learning An Algorithmic Perspectivel, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 3 Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013

Reference Books(s):

	-	
1	L	Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007. (Unit-III).
2	2	Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.
	}	Deepak Khemani "Artificial Intelligence", Tata Mc Graw Hill Education 2013.
4		Stuart Russel and Peter Norvig "AI – A Modern Approach", 2nd Edition, Pearson Education 2007.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	3	2	3	2	-	-	-	-	-	-	-	2	2	1	1
CO2	1	3	3	1	1	-	-	-	-	-	-	-	-	1	-	-
CO3	1	3	3	3	3	-	-	-	-	-	-	-	-	1	2	3
CO4	1	2	3	2	-	-	-	-	-	-	-	-	-	1	2	3
CO5	-	3	3	3	-	-	-	-	-	-	-	-	2	1	2	2
CO(Av g)	1.25	2.80	2.80	2.40	2.00	-	-	-	-	-	-	-	2.00	1.20	1.75	2.25

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
IT19644	INNOVATION AND DESIGN THINKING FOR INFORMATION	EEC	3	0	2	4
	TECHNOLOGY					

Obje	Objectives: Broad objective of this course is					
•	To explain the principles of Design thinking and describe the phases of Design Thinking					
•	To summarize the phases of Explore and Empathise					
•	To analyze and categorize the tools used in experiment and engage phases					
•	To illustrate the various tools in evolve phase and list the innovation tools					
•	To discuss the use of Toolkit in leading the growth and innovation in an organization					

UNIT-I	INTRODUCTION	9					
	f Design Thinking- Process of Design Thinking – Planning a Design Thinking project- Understandin						
the problem	- Observation Phase - Point-of-View Phase - Ideate Phase - Prototype Phase - Test Phase-Implement	tation.					
UNIT-II	EXPLORE & EMPATHISE	9					
Explore pha Empathise -	ise-STEEP Analysis, Strategic priorities, Activity System, Stakeholder Mapping, Opportunity Framin Methods & Tools, Field observation, Deep user interview, Needs Finding, Persona Development.	lg-					
UNIT-III	EXPERIMENT & ENGAGE	9					
Experiment	-Methods & Tools, Ideation using Scamper, Analogous Inspiration, Deconstruct & Reconstruct, User						
Experience	Design, Prototyping-Engage-Methods & Tools, Storytelling, Storyboarding, co-creation						
UNIT-IV	EVOLVE & INNOVATION TOOLS	9					
Evolve- Me	thods & Tools, Concept Synthesis, Strategic requirements, Activity system integration, viability analy	ysis,					
Innovation '	Tool (Using User needs, CAP, 4S), Change management tool using review, Quick wins, Art of Story tell	lling.					
UNIT-V	DESIGN THINKING TOOLKIT	9					
	n-Journey Mapping-Value chain analysis-Mind mapping-Brainstorming-Concept Development-Assu						
Testing-Rap	Testing-Rapid prototyping-customer co-creation-Learning launch-Leading growth and innovation in an organization						
	Total Contact Hours :	45					

	Indicative List of Experiments
	Topics / Areas for the Project: (Not restricted to the following)
1	Internet Based Live Tracking System.
2	Android based Application Development
3	Network Security Projects.
4	Security Based on Cryptographic techniques.
5	Steganography Based projects.
6	Developing Smart devices using IOT
7	Authentication and data Privacy projects.
8	Web based socio networking projects
9	Wireless Data handling and management System.
10	Cloud Based Projects.
11	Biometric based security Projects.
12	Image processing.
13	Applications to aid physically challenged people.
14	Mobile networks data management.
15	Mobile Location Based Systems.
16	E-Learning and Evaluation systems.
17	Embedded system designing and implementation.
18	Secured Health Care applications
19	Secured Transaction with Block chain.

 $Curriculum \ and \ Syllabus \ | \ B. Tech \ Information \ Technology \ | \ R2019$

20 Crypto currency and Bit coin Based projects.			
	Contact Hours	:	30
	Total Contact Hours	:	75

Course Outcomes:

On completion of course students will be able to

CO1 Explain the principles of Design thinking and describe the phases of Design Thinking

CO2 Summarize the phases of Explore and Empathise

CO3 Analyze and categorize the tools used in experiment and engage phases

CO4 Illustrate the various tools in evolve phase and list the innovation tools

CO5 Discuss the use of Toolkit in leading the growth and innovation in an organization

Text Book(s):

1 Christian Mueller-Roterberg, Handbook of Design Thinking, 2018, Kindle Direct Publishing.

2 Design Thinking-The Guide Book

https://www.rcsc.gov.bt/wp-content/uploads/2017/07/dt-guide-book-master-copy.pdf

3 Jeanne Liedtka and Tim Ogilvie 2011, Designing for Growth: A Design Thinking Tool Kit for Managers, Columbia University Press [ISBN: 9780231158381]

Reference Books(s):

1 Tim Brown, Barry Katz Change by Design - How Design Thinking Transforms Organizations and Inspires Innovation, First Edition, Happer Collins,2009

2 Thomas Lockwood, Design Thinking – Integrating, Innovation, Customer experience and Brand value, First Edition, Allworth Press, 2009

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	2	-	-	-	-	-	-	-	-	3	-	-	-	3
CO2	1	2	2	-	-	2	2	2	-	-	-	3	3	3	3	3
CO3	1	2	2	-	2	2	2	2	-	-	-	3	3	3	3	3
CO4	1	-	2	3	2	2	2	2	-	-	3	3	3	3	3	3
CO5	-	-	2	3	2	-	2	2	3	-	-	-	3	3	3	3
CO(Av																
g)	1.25	2.00	2.00	3.00	2.00	2.00	2.00	2.00	3.00	-	3.00	3.00	3.00	3.00	3.00	3.00

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)No correlation : "-"

Subject Code	Subject Name (Laboratory Course)	Category	L	Т	P	C
GE19621	PROBLEM SOLVING TECHNIQUES	EEC	0	0	2	1

Objectives: Broad objective of this course is

• To improve the numerical ability and problem-solving skills.

	List of Experiments			
1	Numbers system			
2	Reading comprehension			-
3	Data arrangements and Blood relations			
4	Time and Work			
5	Sentence correction			
6	Coding & Decoding, Series, Analogy, Odd man out and Visual reasoning			
7	Percentages, Simple interest and Compound interest			
8	Sentence completion and Para-jumbles			
9	Profit and Loss, Partnerships and Averages			
10	Permutation, Combination and Probability			
11	Data interpretation and Data sufficiency			
12	Logarithms, Progressions, Geometry and Quadratic equations.			
13	Time, Speed and Distance			
		Total Contact Hours	: 3	0

Course Outcomes: On completion of the course, the students will be able to	On completion of the course, the students will be able to					
• Have mental alertness						
Have numerical ability						
Solve quantitative aptitude problems with more confidence.						

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	2	2	1	1	-	-	-	-	1	1	2	2	2	2
CO2	3	3	2	3	1	1	-	-	-	-	1	1	2	2	2	2
CO3	3	3	2	3	1	1	-	-	-	-	1	1	2	2	2	2
CO(Avg							-	-	-	-						
)	2.67	2.67	2	2.67	1	1					1.00	1	2	2	2	2

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

Subject Code	Subject Name (Lab oriented Theory Course)	Category	L	Т	P	C
IT19741	CLOUD AND BIG DATA ANALYTICS	PC	3	0	4	5

Obje	Objectives:									
٠	To understand and appreciate the evolution of cloud from the existing technologies.									
•	To be familiar with cloud computing and have knowledge on the various service models.									
٠	To introduce the concepts of Big Data and Hadoop, and implement map reduce.									
٠	To describe the data stream analytics methodologies.									
	To visualize and analyze various data visualization techniques									

CLOUD ENABLING TECHNOLOGIES UNIT-I

Technologies for Network-Based Systems - System Models for Distributed and Cloud Computing - Implementation Levels of Virtualization - Virtualization Structures/Tools and Mechanisms - Virtualization of CPU, Memory, and I/O Devices - Virtual Clusters and Resource Management - Virtualization for Data-Center Automation.

UNIT-II CLOUD ARCHITECTURE AND SERVICES

Layered Cloud Architecture Design - NIST Cloud Computing Reference Architecture - Public, Private and Hybrid Clouds - laaS - PaaS - SaaS - Architectural Design of Compute and Storage Clouds - Public Cloud Platforms: GAE, AWS, and Azure.

UNIT-III INTRODUCTION TO BIG DATA AND HADOOP

Introduction to Big Data, Types of Digital Data, Challenges of conventional systems - Web data, Evolution of analytic processes and tools, Analysis Vs reporting - Big Data Analytics, Introduction to Hadoop - Distributed Computing Challenges - History of Hadoop, Hadoop Eco System - Use case of Hadoop - Hadoop Distributors - HDFS -Processing Data with Hadoop - Map Reduce.

UNIT-IV MINING DATA STREAMS

Introduction to Streams Concepts - Stream data model and architecture - Stream Computing, Sampling data in a stream - Filtering streams - Counting distinct elements in a stream - Estimating moments - Counting oneness in a window -Decaying window - Realtime Analytics Platform(RTAP) applications - case studies - real time sentiment analysis, stock market predictions. 0

UNIT-V DATA VISUALIZATION

Input for Visualization: Data and Tasks - Encoding Data with Marks and Channels - Creating a Scatter Plot - Common Visualization Idioms: Bar Chart - Vertical & Horizontal - Pie Chart and Coxcomb Plot -Line Chart - Area Chart -Making Maps - Visualizing Trees and Networks - Data Reduction: Histograms - Hexbin Mapping - Crossfiltering **Total Contact Hours** 45 ٠

List	of Experiments					
1	Install Virtualbox/VMware Workstation with different flavours of linux or windows OS on top of windows7 or					
	8.					
2	Install a C compiler in the virtual machine created using virtual box and execute Simple Programs					
3	Install Google App Engine. Create hello world app and other simple web applications using python/java					
4	Use GAE launcher to launch the web applications					
5	Install Hadoop single node cluster and run simple applications like word count					
6	Implement the following Substitution and Transposition Techniques:					
	a) Caesar Cipher					
	b) Playfair Cipher					
	c) Hill Cipher					
	d) Vigenere Cipher					
	e) Rail fence – row & Column Transformation					
	f) Affine Cipher					
7	Implement the following algorithms					
	a) DES					

9

0

	b) RSA Algorithm		
	c) Diffie-Hellman		
	d) MD5		
	e) SHA-1		
8	Implement the Digital Signature Algorithm (DSA).		
9	Create a visualization of the dataset you chose for your project		
	a) Bar Chart, Vertical & Horizontal		
	b) Pie Chart and Coxcomb Plot		
	c) Line Chart		
	d) Area Chart		
10	Create a histogram or aggregated bar chart of your project dataset.		
	Contact Hours	:	60
	Total Contact Hours	:	105

Course Outcomes:
On completion of course students will be able to
CO1 Learn the key and enabling technologies that help in the development of cloud.
CO2 Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.
CO3 Understand the usage scenarios of Big Data Analysis and Hadoop framework and apply Mapreduce over HDFS.
CO4 Apply stream data models.
CO5 Use various data visualization techniques.

Text Book(s):

1 Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.

2 Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley India; First Edition, 2015.

- 3 Visualization Analysis and Design, Tamara Munzner, AK Peters Visualization Series, CRC Press, Nov. 2014.
 4 Anand Rajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, First
- 4 Anand Rajaraman and Jeffrey David Ulman, "Mining of Massive Datasets", Cambridge University Press, First Edition, 2012.
 5 Energi Har Michaeling Kenchen (Dataset) Connectional Technical Press, First Press, Press, First Press, First Press, Press,
- 5 Jiawei Han, Micheline Kamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.

Reference Books(s):

1 Rittinghouse, John W., and James F. Ransome, —Cloud Computing: Implementation, Management and Security, CRC Press, 2017.

2 Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi, —Mastering Cloud Computing, Tata Mcgraw Hill, 2013.

3 Jay Liebowitz, "Big Data and Business Analytics" Auerbach Publications, CRC press First Edition, 2013.

4 Tom White "Hadoop: The Definitive Guide" Third Edition, O'Reilly Media, 2012.

5 Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & sons, First Edition, 2012.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	-	-	2	3	3	-	2	-	-	-	-	2	2	3	-	2
CO2	-	-	2	2	3	-	2	-	-	-	-	2	2	3	2	2
CO3	-	-	2	2	3	-	2	-	-	-	-	2	1	3	-	2
CO4	-	2	2	3	3	-	2	-	-	-	-	2	1	3	-	2
CO5	1	2	2	3	3	-	2	-	-	-	-	2	1	3	2	2
CO(Av g)	1.00	2.00	2.00	2.60	3.00	-	2.00	-	-	-	-	2.00	1.40	3.00	2.00	2.00

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Sı	ubject Code	Subject Name	Category	L	Т	Р	С
	IT19711	Industry Practices Lab	PC	0	0	4	2
-	urse Objecti						
•		become Junior RPA Developers.					
•		basic concepts of Robotic Process Automation.					
•		amiliarity and deep understanding of UiPath tools.					
•		he ability to design and create robots for business processes inde	ependently.				
•		kills required to pass UiPath RPA Associate v1.0 Exam.					
Un		Robotic Process Automation (RPA) Basics					9
•		ng and Installing UiPath Academic Alliance					
•	-	JiPath Extension in Browsers					
•	-	ctivity Packages in UiPath Studio					
•		kflow that prints "Hello World" in a message box.					
		Introduction to UiPath, Variables and Arguments					9
•		kflow that swaps two numbers using a third variable.					
Un		Selectors and Control Flow					9
•		kflow using an If statement, which asks a user, whether the use	-				
•		rkflow using Switch activity that asks users' their eye color a	ind display the	ir perso	onality	in a m	essage
	box.						
•		kflow for a 'Guessing Game'.					
•		kflow using a While loop that tells the user if the input is a prin					
•		kflow to display file names from a folder in the Output panel and	nd also store na	mes in	an MS	Word	file.
•		kflow using a Parallel activity.	_				
•		kflow that uses different Input Methods to input data in a Noter	pad.				
•		kflow that opens a browser and then opens UiPath's website.					
•		kflow using Web Recorder in UiPath Studio to Sign in to UiPat	th's website.				
Un		Data Manipulation, Automation Concepts and Techniques					9
•	Build a wor	kflow that fills the form on RPAChallenge.com website with on	rganized data fi	rom an	excel f	ile.	
•	Build a wo	rkflow that replaces double spaces with single spaces from a	text stored in 1	nultiple	Notep	oad file	s with
	different na	mes.					
•		kflow using .ToString method that converts an integer to string					
•	Build a wor	kflow using Format, Join, IndexOf, Split, and Substring metho	ds that extract	key info	ormatio	on from	a tex
	and prints in	n a different format.					
•	Build a wor	kflow using Split and Contains methods that extract sentences of	containing "RP	A" from	n a par	agraph.	
•	Build a wor	rkflow using data table activities to join two library databases u	using matching	studen	t ID ar	nd displ	ay the
	output in a	message box.					
•		kflow using Concat and Join method that merges two lists cont	aining the UK	and Spa	ain city	v names	, sorts
		es the first letter of each item, and displays it in a message box.					
•		kflow using a Screen Scraper Wizard that scrapes text using the	e Tesseract OC	R scrap	ing me	ethod fr	om an
	•	stores it in a Notepad.					
•		rkflow using the Screen Scraper Wizard that scrapes text using	the Full-Text	scrapin	g meth	od and	stores
	it in a Note						
•		rkflow using the Data Scraping wizard that scrapes blog post t	titles from the	UiPath	Blog f	rom m	ultiple
	pages.						
•		rkflow using a Read PDF Text activity and extract only Email	IDs and Phone	e Numb	ers fro	om a PI	OF file
		in an MS Word file.				_	_
•		rkflow using Read Range and Append Range activity to read of	data from a wo	rkbook	and a	ppend o	lata to
	another wor						
•		rkflow that calculates the total monthly deposit of a bank from	n an Excel file	e and st	ore ou	tput in	a new
	sheet.						
•		kflow that extracts attachments from emails containing the wor	d "Resume" in	its subj	ect.		
Un		Orchestrator and Capstone Projects					9
•		Processing Project					
	Stock-Brok	er Project					
		-responder Project					

Curriculum and Syllabus | B.Tech Information Technology | R2019

Disk Monitoring & Clean-Up Project	
Contact Hours :	45
Course Outcomes:	
On completion of the course, students will be able to:	
CO1 Become Junior RPA Developers.	
CO2 Understand the basic concepts of Robotic Process Automation.	
CO3 Understand the UiPath tools.	
CO4 Ability to design and create robots for business processes independently.	
CO5 Ability to pass UiPath RPA Associate v1.0 Exam.	
Text Books:	
1. Learning Robotic Process Automation: Create Software Robots and Automate Business Processes with	the
Leading RPA Tool – UiPath, Alok Mani Tripathi, Packt Publishing Ltd., 2018.	
Reference Books:	
1. Robotic Process Automation Projects: Build real-world RPA solutions using UiPath and Automation Anywhe	ere,
Nandan Mullakara, Arun Kumar Asokan, Packt Publishing Ltd., 2020.	

CO/PO		PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	3	2	1	1	-	-	-	-	-	-	-	-	1	1	-	-
CO2	2	1	1	1	-	-	-	-	-	-	-	-	1	2	-	-
CO3	2	1	1	1	-	-	-	-	-	-	-	-	2	1	1	1
CO4	2	1	1	1	-	-	-	-	-	-	-	-	1	1	-	-
CO5	3	2	1	1	-	-	-	-	-	-	1	1	1	1	1	1
CO (Avg)	2.40	1.40	1.00	1.00	-	-	-	-	-	-	1.00	1.00	1.20	1.20	1.00	1.00

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)No correlation: "-"

OPEN ELECTIVE

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	C
OIT1901	BUSINESS INTELLIGENCE	OE	3	0	0	3

Objectives: Broad objective of this course is	
Be exposed with the basic rudiments of business intelligence system	
★ understand the modeling aspects behind Business Intelligence	
★understand of the business intelligence life cycle and the techniques used in it	
Be exposed with different data analysis tools and techniques	

UNIT-I BUSINESS INTELLIGENCE	9									
Effective and timely decisions - Data, information and knowledge - Role of mathematical models - Busine										
intelligence architectures: Cycle of a business intelligence analysis - Enabling factors in business intelligen	ce projects –									
Development of a business intelligence system – Ethics and business intelligence.										
UNIT-II KNOWLEDGE DELIVERY										
The business intelligence user types, Standard reports, Interactive Analysis and Ad Hoc Querying, Paramet	erized									
Reports and Self-Service Reporting, dimensional analysis, Alerts/Notifications, Visualization: Charts, Grap	hs,									
Widgets, Scorecards and Dashboards, Geographic Visualization, Integrated Analytics, Considerations: Opti	mizing the									
Presentation for the Right Message.	-									
UNIT-III EFFICIENCY	9									
Efficiency measures - The CCR model: Definition of target objectives- Peer groups - Identification of good	loperating									
practices; cross efficiency analysis - virtual inputs and outputs - Other models. Pattern matching - cluster a	nalysis,									
outlier analysis.	-									
UNIT-IV BUSINESS INTELLIGENCE APPLICATIONS	9									
Marketing models - Logistic and Production models - Telecommunication Industry & Banking Case studie	·.									
UNIT-V FUTURE OF BUSINESS INTELLIGENCE	9									
Future of business intelligence – Emerging Technologies, Machine Learning, Predicting the Future, BI Sear	ch & Text									
Future of business intelligence – Emerging Technologies, Machine Learning, Predicting the Future, BI Sear Analytics – Advanced Visualization – Rich Report, Future beyond Technology.	ch & Text									

Course Outcomes:	
On completion of the course, the students will be able to	
CO1 Explain the fundamentals of business intelligence.	
CO2Link data mining with business intelligence.	
CO3 Apply various modeling techniques.	
CO4Explain the data analysis and knowledge delivery stages.	
CO5 Apply business intelligence methods to various situations and decide on appropriate technique.	

Text Books:

1	Efraim Turban, Ramesh Sharda, Dursun Delen, "Decision Support and Business Intelligence Systems", 9th Edition,
	Pearson 2013.

Re	ference Books:
1	Larissa T. Moss, S. Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle of Decision Making",
	Addison Wesley, 2003.
2	Carlo Vercellis, "Business Intelligence: Data Mining and Optimization for Decision Making", Wiley Publications,
	2009.
3	David Loshin Morgan, Kaufman, "Business Intelligence: The Savvy Manager"s Guide", Second Edition, 2012.
4	Cindi Howson, "Successful Business Intelligence: Secrets to Making BI a Killer App", McGraw- Hill, 2007.
5	Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy, Bob Becker, "The Data Warehouse Lifecycle
	Toolkit", Wiley Publication Inc.,2007.
6	G. Shmueli, N.R. Patel, P.C. Bruce, "Data Mining for Business Intelligence: Concepts, Techniques, and
	Applications in Microsoft Office Excel with XLMiner", 1 st Edition, Wiley India.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO11	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
C01	2	2	2	2	2	1	-	-	-	-	1	1	2	2	2	2
CO2	2	3	3	2	2	1	-	-	-	-	1	1	2	2	2	2
CO3	2	3	3	3	3	1	-	-	-	-	1	1	2	2	2	2
CO4	2	3	3	3	3	1	-	-	-	-	1	1	2	2	2	2
CO5	2	3	3	3	3	1	1	1	-	-	1	3	3	3	3	3
CO (Avg)	2.00	2.80	2.80	2.60	2.60	1.00	1.00	1.00	-	-	1.00	1.40	2.20	2.20	2.20	2.20

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	C
OIT1902	CYBER SECURITY	OE	3	0	0	3

Objectives: Broad objective of this course is to
★Learn the basics of Security Trends.
Know the operational and organizational security.
★Study the fundamentals of cryptography.
★Explore Authentication methods and Tools.
★Identify the purpose of Intrusion Detection Systems.

UNIT-I	INTRODUCTION TO SECURITY TRENDS AND CONCEPTS	9
The Compu	ter Security Problems - Targets and Attacks - Approaches to Computer Security - Ethics - Basic Secu	irity
Terminolog	ies – Security Models.	
UNIT-II	OPERATIONAL AND ORGANIZATIONAL SECURITY	9
Policies, Pro	ocedures, Standards and Guidelines - Security Awareness and Training - Interoperability Agreements	5 —
The security	y Perimeter – Physical Security – Environmental Issues – Wireless – Electromagnetic Eavesdropping	– The
Role of Sec	urity in People.	
UNIT-III	CRYPTOGRAPHY	9
Cryptograph	hy in Practice – Historical Perspectives – Algorithms – Hashing Functions – Symmetric Encryption –	
Asymmetric	c Encryption – Quantum Cryptography – Steganography – Cryptography Algorithm Use.	
UNIT-IV	AUTHENTICATION AND REMOTE ACCESS	9
User, Group	o and Role Management – Password Policies – Single Sign-On – Security Controls and Permissions –	
Preventing	Data Loss or Theft – The Remote Access Process – Remote Access Methods.	
UNIT-V	INTRUSION DETECTION SYSTEMS AND NETWORK SECURITY	9
History of I	ntrusion Detection Systems – IDS Overview – Network-Based IDSs – Host-Based IDSs – Intrusion	
Prevention	Systems – Honeypots and Honeynets – Tools.	

Contact Hours : 45 Periods

On completion of the course,	the students will be able to

CO1 Learn the basics of Security Trends.

CO2 Know the operational and organizational security.

CO3 Explain the fundamentals of cryptography.

CO4 Apply Authentication methods and Tools.

CO5 Demonstrate the Intrusion Detection Systems.

Re	eference Books:
1	W.A.Coklin, G.White, Principles of Computer Security: Fourth Edition, McGrawHill, 2016.
2	William Stallings, Cryptography and Network Security Principles and Practices, Seventh Edition, Pearson.
3	Achyut S. Godbole, Web Technologies: TCP/IP, Web/Java Programming, and Cloud Computing, Tata McGraw- Hill Education, 2013.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	1	-	2	-	-	-	-	1	-	-	-	-	1	-	-	-
CO2	2	-	-	2	-	-	-	-	-	-	-	-	1	3	-	-
CO3	2	-	-	3	-	-	-	-	-	-	-	-	2	-	-	2
CO4	-	-	-	-	2	1	-	-	-	-	-	-	-	2	2	-
CO5	-	2	-	-	-	-	-	-	-	-	-	-	1	-	2	3
CO (Avg)										-	-	-				
. 0/	1.67	2.00	2.00	2.50	2.00	1.00	-	1.00	-				1.25	2.50	2.00	2.50

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

SEMESTER – VI PROFESSIONAL ELECTIVE - I

Subject Code	Subject Name	Category	L	Т	P	С
IT19P61	ADVANCED R AND PYTHON PROGRAMMING	PE	2	0	2	3

Objectives: Broad objective of this course is

 \star To know the basics of python programming

 \star To learn the concept of python modules and frameworks.

 \star To understand the different types of database connectivity using python.

 \star To get the basic idea of R programming.

★ To implement machine learning algorithm using python data science package.

UNIT-I INTRODUCTION TO PYTHON PROGRAMMING

Basics of Python-Starting with python interpreter-Control flow statements-Functions-List,tuple,Dictionary-Files Modules –Packages - Regular expressions – Exception handling- Python OOPS Concepts – Classes and Objects Constructor-Inheritance

UNIT-II PYTHON MODULE AND FRAMEWORKS

Python Modules- Collection Module- Math Module –OS Module –Random Module –Sys Module- Statistics Module – JSON Module- -Numpy, Scipy and Pandas modules- Python Frameworks:Django, Flask, Pytorch, Web2PY, Pygame.

UNIT-III PYTHON DATA BASE CONNECTIVITY

Python MySQL Database Connectivity :Environment Setup-Create Data Base Connection-Create Database-Creating Tables-Insert, select, update, drop, join operations-Performing Transactions-Introduction to Python and MongoDE connectivity-Introduction to Python SQL te Connectivity.

UNIT-IV INTRODUCTION TO R

OverviewDataTypes,Variables,Operator,DecisionMaking,Loops,Functions,Strings,Vector,List, Arrays,Factors,Data Frames,Packages-Data Visualization – Data Interfaces- Reading and writing of CSV files Exploratory Data Analysis using R- Statistical Methods for Evaluation using R.

UNIT-V DATA SCIENCE USING R

Association – Classification – Clustering – Time series Analysis-Text Analysis-–Prediction Algorithm-Image Analytics – Video Analytics – Data base analytics

Total Contact Hours:30

	List of Experiments
1	Implement python programs using interactive and script mode.
2	Implement various control statements in python.
3	Implement python programs using packages.
4	Implement python OOPs concepts using programs
5	Implement python modules, Collection Module, Math Module, Pandas module using simple programs
6	Develop programs using Python frameworks such as Django, Flask etc.
7	Implement Python MySQL Database Connectivity
8	Implement MangoDB connectivity
9	Implement Python SQLite connectivity
10	Implementation of vector data objects operations
11	Study and implementation of various control structures in R
12	Study and implementation of Data Visualization with ggplot2
13	CLASSIFICATION MODEL
	a. Install relevant package for classification.
	b. Choose classifier for classification problem.

6

6

6

	c. Evaluate the performance of classifier			
14	CLUSTERING MODEL a. Clustering algorithms for unsupervised classification. b. Plot the cluster data using R visualizations.			
		Contact Hours	:	15
		Total Contact Hours	•	45

Course Outcomes: On completion of course students will be able to	
CO1 Learn the major concept of python programming and oops principles.	
CO2 Understand the concept of Python modules and frameworks	
CO3 Connect the different types of database with Python	
CO4 Learn the basic idea of R programming.	
CO5 Implement the supervised and unsupervised algorithm concept using R data science library.	

Re	Reference Books(s):											
1		LUTZ, David	Ascher,,	"Learning	Python",	2nd	Edition,	O'REILLY	Media	Inc,		
	2003.											
2	2 Sebastian Raschka,"Python Machine Learning",2nd Edition, 2017 Packt Publishing.											
		C. Müller, S				Machi	ne Learni	ng with	Python:	А		
	Guide for	Guide for Data Scientists", 2018 ReleaseO'REILLY Media Inc.										
4	Garrett Grolemund,"Hands on Programming with R", 2nd Edition, O'REILLY Media Inc											
5	Hadley W	ickham, Garrett	Grolemund,"	R for Data Sc	cience", O'R	EILLY N	Aedia Inc.					

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	3	3	3	2	1	-	-	-	-	1	2	2	1	2	2
CO2	2	3	3	3	3	2	-	-	-	-	1	2	2	1	2	2
CO3	2	3	3	3	3	2	-	2	2	-	1	2	2	1	2	2
CO4	2	3	3	3	3	2	-	-	-	-	1	2	2	1	2	2
CO5	2	3	3	3	3	2	-	2	2	-	3	2	2	1	2	2
CO(Av g)	2.00	3.00	3.00	3.00	2.80	1.80	-	2.00	2.00	-	1.40	2.00	2.00	1.00	2.00	2.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name	Category	L	Т	P	С
IT19P62	GAME PROGRAMMING	PE	2	0	2	3

Objectives: Broad objective of this course is								
★ To have an introduction into the Game programming and rendering.								
★ To learn the principles, mechanics and logics of Game Design.								
★ To learn the various Game Development process and its design attributes.								
★ To gain working knowledge in various game platforms.								
\star To learn to design games using python.								

UNIT-I	INTRODUCTION		6
Elements of	of Game Play — Artificial Intelligence — Getting Input from the Player - Sprite Programming — S n - Multithreading — Importance of Game Design — Game Loop, Software and Hardware Renderin	Sprit	e
UNIT-II	GAME DESIGN PRINCIPLES	ng.	6
• • • • • • •		~	•
of Games	development, Story Telling, Narration, Game Balancing, Core mechanics, Principles of level desi , Collision Detection, Game Logic, Path Finding. Game Engine Design: Rendering, Contro , collision detection, standard objects, and physics, Design Scope in Redesigning games.		
UNIT-III			6
Game dev	elopment: Developing 2D and 3D interactive games using OpenGL, DirectX — Puzzle games, Sing	gle /	
Multi-play	rer games-Games using HTML and Java Script, Scratch 2.0, Unity 3D - Introduction, Creating game	es ai	nd
Designing	and Coding gameplay systems.		
UNIT-IV	GAMING PLATFORMS AND FRAMEWORKS		6
Basics of A	Augmented Reality, Virtual Reality and Mixed Reality- Flash, DirectX, OpenGL, Java, Python, XN	A w	vith
Visual Stu	idio, Mobile Gaming for the Android, iOS, Game engines - Adventure Game Studio, DX Studio.		
	Idio, Mobile Gaming for the Android, iOS, Game engines - Adventure Game Studio, DX Studio. GAME PROGRAMMING USING PYTHON		6
UNIT-V		leek	-
UNIT-V Basic gam	GAME PROGRAMMING USING PYTHON	leek	-
UNIT-V Basic gam	GAME PROGRAMMING USING PYTHON the objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S	leek :	and
UNIT-V Basic gam	GAME PROGRAMMING USING PYTHON ne objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S ral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D.	leek :	and
UNIT-V Basic gam flee, Arriv	GAME PROGRAMMING USING PYTHON ne objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S ral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours eriments:	leek :	and
UNIT-V Basic gam flee, Arriv ist of expe	GAME PROGRAMMING USING PYTHON te objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S ral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours eriments: ore animation using sprite programming and incorporate multithreading	eek :	and
UNIT-V Basic gam flee, Arriv ist of expe 1. Explo 2. Imple	GAME PROGRAMMING USING PYTHON ne objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S ral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours eriments: ore animation using sprite programming and incorporate multithreading ement Collision detection in 3D gaming using python/ other tools	eek :	and
UNIT-V Basic gam flee, Arriv ist of expe 1. Explo 2. Imple 3. Imple	GAME PROGRAMMING USING PYTHON ne objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S ral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours eriments: ore animation using sprite programming and incorporate multithreading ement Collision detection in 3D gaming using python/ other tools ement "virtual pet" game using python/other tools	eek :	and
UNIT-V Basic gam flee, Arriv ist of expe 1. Explo 2. Imple 3. Imple 4. Imple	GAME PROGRAMMING USING PYTHON are objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S ral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours ceriments: ore animation using sprite programming and incorporate multithreading ement Collision detection in 3D gaming using python/ other tools ement "virtual pet" game using python/other tools ement "treasure hunt " game using python/other tools	seek	and
UNIT-V Basic gam flee, Arriv ist of expe 1. Explo 2. Imple 3. Imple 4. Imple 5. Imple	GAME PROGRAMMING USING PYTHON are objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S aral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours ceriments: ore animation using sprite programming and incorporate multithreading ement Collision detection in 3D gaming using python/ other tools ement "virtual pet" game using python/other tools ement Shooting Game using python/other tools	eek :	and
UNIT-V Basic gam flee, Arriv ist of expe 1. Explo 2. Imple 3. Imple 4. Imple 5. Imple 6. Devel	GAME PROGRAMMING USING PYTHON are objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S aral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours ceriments: ore animation using sprite programming and incorporate multithreading ement Collision detection in 3D gaming using python/ other tools ement "virtual pet" game using python/other tools ement Shooting Game using python/other tools op puzzle game using python/other tools	leek :	and
UNIT-V Basic gam flee, Arriv ist of expe 1. Explo 2. Imple 3. Imple 4. Imple 5. Imple 6. Devel 7. Devel	GAME PROGRAMMING USING PYTHON are objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S aral, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours ceriments: ore animation using sprite programming and incorporate multithreading ement Collision detection in 3D gaming using python/ other tools ement "virtual pet" game using python/other tools ement Shooting Game using python/other tools	leek :	and
UNIT-V Basic gam flee, Arriv List of expe 1. Explo 2. Imple 3. Imple 4. Imple 5. Imple 6. Devel 7. Devel	GAME PROGRAMMING USING PYTHON are objects, Getting started with cocos2d, Creating game assets, Implementing steering behaviours, S rail, Pursuit and evade Wander, Obstacle avoidance, Gravitation game, Pygame and 3D. Contact Hours ceriments: ore animation using sprite programming and incorporate multithreading ement Collision detection in 3D gaming using python/ other tools ement "virtual pet" game using python/other tools ement Shooting Game using python/other tools lop puzzle game using python/other tools lop puzzle game using python/other tools lop any interactive game using Unity3D	eek :	-

Course Outcomes:								
On completion of course students will be able to								
CO1 Identify the need for Game programming.								
CO2 Have knowledge on the concepts <u>and</u> techniques used in Game design.								
CO3 Design and model interactive game.								
CO4 Understand the need for advanced game development platforms.								
CO5 Design and develop games with open source components.								

Te	xt Book(s):
	Jeannie Novak, Game Development Essentials, Third Edition, Delmar Cengage Learning, ISBN-13: 978-1111307653, 2011.
	Jim Thompson, Barnaby Berbank-Green, and Nic Cusworth, Game Design: Principles, Practice, and Techniques - The Ultimate Guide for the Aspiring Game, Designer, First edition, Wiley, ISBN 0471968943, 2007.
3	Joseph Howse, Alejandro Rodas de Paz, Python Game Programming by Example, Packt Publishing, First edition, 2015.
Re	ference Book(s):
1	Jeremy Gibson, "Introduction to Game Design, Prototyping, and Development: From Concept to Playable Game with Unity and C#", Addison-Wesley Professional, 3 rd edition 2016.
2	John Horton, "Learning Java by Building Android Games", Packt Publishing Limited, 1st edition, 2015.
3	Jorge Palacios, "Unity 5.x Game AI Programming Cookbook", Packt Publishing Limited, 1st edition, 2016.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	2	1	1	-	-	-	3	2	2	2	2	2	2	2
CO2	2	3	2	1	1	-	-	-	3	2	3	2	2	2	2	3
CO3	2	3	2	2	2	-	-	-	-	-	-	2	2	3	2	3
CO4	2	-	-	2	3	-	-	-	-	-	-	-	2	2	-	-
CO5	2	2	-	3	3	-	1	2	3	2	1	3	2	3	-	3
CO(Av g)	2.00	2.50	2.00	1.80	2.00	-	1.00	2.00	3.00	2.00	2.00	2.25	2.00	2.40	2.00	2.75

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name	Category	L	Т	Р	С
IT19P63	AUTOMATION TOOLS	PE	2	0	2	3

Objectives: Broad objective of this course is

- ★ To understand Basic Programming concepts and the underlying logic/structure
- \star To Describe RPA , where it can be applied and how its implemented
- ★ To Describe the different types of variables, Control Flow and data manipulation techniques

★ To Understand Image, Text and Data Tables Automation

★ To Describe automation to Email and various types of Exceptions and strategies.

UNIT-I INTRODUCTION

Programming Concepts Basics - Understanding the application - Basic Web Concepts - Protocols - Email Clients -. Data Structures - Data Tables - Algorithms - Software Processes - Software Design - Scripting - .Net Framework - .Ne Fundamentals - XML - Control structures and functions - XML - HTML - CSS - Variables & Arguments.

UNIT-II ROBOTICS PROCESS AUTOMATION

RPA Basics - History of Automation - What is RPA - RPA vs Automation - Processes & Flowcharts - Programming Constructs in RPA - What Processes can be Automated - Types of Bots - Workloads which can be automated - RPA Advanced Concepts - Standardization of processes - RPA Developemt methodologies - Difference from SDLC - Robotic control flow architecture - RPA business case - RPA Team - Process Design Document/Solution Design Document Industries best suited for RPA - Risks & Challenges with RPA - RPA and emerging ecosystem.

UNIT-III RPA TOOLS

Introduction to RPA Tool - The User Interface - Variables - Managing Variables - Naming Best Practices - The Variables Panel - Generic Value Variables - Text Variables - True or False Variables - Number Variables - Array Variables - Date and Time Variables - Data Table Variables - Managing Arguments - Naming Best Practices - The Arguments Panel - Using Arguments - About Imported Namespaces - Importing New Namespaces- Control Flow - Control Flow Introduction - If Else Statements - Loops - Advanced Control Flow - Sequences - Flowcharts - About Control Flow - Control Flow

UNIT-IV RPA DATA MANIPULATION

Recording and Advanced UI Interaction - Recording Introduction - Basic and Desktop Recording - Web Recording Input/Output Methods - Screen Scraping - Data Scraping - Scraping advanced techniques - Selectors - Selectors -Defining and Assessing Selectors - Customization - Debugging - Dynamic Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced Citrix Automation - Introduction to Image & Text Automation - Image basec automation - Keyboard based automation - Information Retrieval - Advanced Citrix Automation challenges - Bes Practices - Using tab for Images - Starting Apps - Excel Data Tables & PDF - Data Tables in RPA - Excel and Data Table basics - Data Manipulation in excel - Extracting Data from PDF - Extracting a single piece of data - Anchors Using anchors in PDF.

UNIT-V EMAIL AUTOMATION

Email Automation - Incoming Email automation - Sending Email automation - Debugging and Exception Handling - Debugging Tools - Strategies for solving issues - Catching errors.

Contact Hours

urs

List of Experiments

- 1. Design and implementation of BOT using RPA Tool.
- 2. Implement Emptying Trash in gmail
- 3. Implement Emptying Recycle Bin
- 4. Develop a simple project that asks for the name of the user and then displays his or her response
- 5. Implement workflow,flowchart and delay activity
- 6. Building a data table using data scraping
- 7. Implement File operation

Curriculum and Syllabus | B.Tech Information Technology | R2019

6

6

6

6

6

- 8. Implement a project to extract data from an Excel file into a data table
- 9. Creating a data table and then writing all its data to an Excel file
- 10. Implementing the Attach Window activity
- 11. Implement Element, Image and System triggering events.
- 12. Implement Screen Scraping
- 13. Implement Email Automation

Contact Hours	:	15
Total Contact Hours		45

Course Outcomes:	
On completion of course students will be able to	
CO1 To understand Basic Programming concepts and the underlying logic/structure	
CO2 To Describe RPA, where it can be applied and how its implemented	
CO3 To Describe the different types of variables, Control Flow and data manipulation techniques	
CO4 To Understand Image, Text and Data Tables Automation	
CO5 To Describe automation to Email and various types of Exceptions and strategies.	

Text Book(s):

1 Alok Mani Tripathi, Learning Robotic Process Automation, Publisher: Packt Publishing Release Date: March 2018ISBN: 9781788470940.

Re	ference Books(s):
	Frank Casale, Rebecca Dilla, Heidi Jaynes, Lauren Livingston, "Introduction to Robotic Process Automation: a Primer", Institute of Robotic Process Automation.
2	Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant.
3	Srikanth Merianda, Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation.
4	https://www.uipath.com/rpa/robotic-process-automation.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	1	1	-	-	-	-	-	-	-	-	1	1	-	-
CO2	2	1	1	1	-	-	-	-	-	-	-	-	1	2	-	-
CO3	2	1	1	1	-	-	-	-	-	-	-	-	2	1	1	1
CO4	2	1	1	1	-	-	-	-	-	-	-	-	1	1	-	-
CO5	3	2	1	1	-	-	-	-	-	-	1	1	1	1	1	1
CO(Av g)	2.40	1.40	1.00	1.00	-	-	-	-	-	-	1.00	1.00	1.20	1.20	1.00	1.00

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

ſ	Subject Code	Subject Name	Category	L	Т	Р	С
ſ	IT19P64	3D IMAGING	PE	2	0	2	3

Objectives:	Broad	objective	of this cours	e is

- \star To understand the basic representation of images and image processing concepts
- \star To understand the basic transformations and image processing operations
- ★ To describe the 3D imaging principles and approaches
- ★ To understand quantification and evaluation of 3D imaging
- ★ To describe reconstruction of 3D images and object recognition

UNIT-I INTRODUCTION TO IMAGE PROCESSING

Digital Image Fundamentals: Digital Image – Monochrome and Color Images – Color Models – Digital Image Representations – File Formats - Fundamental Image Operations - Fundamental Steps in Digital Image Processing.(Tex Book 1)

UNIT-II IMAGE CHARACTERISTICS AND PROCESSING

Image Formation: Geometric primitives - 2D transformations - 3D transformations - 3D rotations - 3D to 2D projections - Image Processing: Point, Local, and Global Operators -Three Procedural Components –Classes of Loca Operators -Advanced Edge Detector.(Text Book 2 and Text Book 3)

UNIT-III 3D IMAGING PRINCIPLES AND APPROACHES

Representation of 3D structures - 3D Imaging principle and approaches - Image Visualization- Visualization methods. (Text Book 4 and Reference 1, 2, 3)

UNIT-IV QUANTIFICATION AND EVALUATION OF 3D IMAGING

Quantification using 3D imaging- Introduction, Methods - 3D Surface Image Generation, Point location, Distance calculation, Volume calculation, Evaluation of 3D imaging. (Reference 1, 3, 4, 5)

UNIT-V 3D OBJECT RECOGNITION

3D reconstruction - Epipolar geometry - Stereo calibration - Rectification of stereo images -Modeling and Recognizing Classes of Shapes 3D - Object Recognition from stereo images data-3D object recognition from range data.(Text Book 2, Text Book 3).

List of Experiments

- 1. Create 3D model from a single 2D image using PyTorch(Link 5)
- 2. PyTorch implementation of "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" (Link 4)
- 3. D image classification from CT scans (Link 1)
- 4. Classification of Pneumonia using 3D Medical Images(Link 2)
- 5. Peeled Human: Robust Shape Representation for Textured 3D Human Body Reconstruction (Link 3)
- 6. Classification of 3D data (Link 3)
- 7. 3D Action Retrieval (Link 3)
- 8. A Large Scale Database for 3D Object Recognition(link 4)

Contact Hours	:	15
Total Contact Hours		45

Course Outcomes:

On completion of course students will be able to

COI Describe the basic representation of images and image processing concepts

CO2 Apply the transformations and image processing operations

6

6

6

6

30

Contact Hours

CO3 Explain the 3D imaging principles and approaches

CO4 Summarize the quantification and evaluation methods of 3D images

CO5 Apply reconstruction of 3D images and object recognition

Tex	t Books(s):
1	Sheila Anand, L.Priya, "A Guide for Machine Vision in Quality Control", CRC Press, 2019.
2	Richard Szeliski, "Computer Vision -Algorithms and Applications", Springer, 2011.
3	Reinhard Klette, "Concise Computer Vision - An Introduction into Theory and Algorithm", Springer, 2014.
4	Dana A.Ballard, Christopher M.Brown, "Computer Vision", 1st Edition, Prentice Hall.
5	Bernd Girod, Gunther Greiner, Heinrich Niemann, "Principles of 3D Images Analysis and Synthesis", Springer, 2000.

Ref	erence Books(s):
1	Orhan Hakki Karatas, Ebubekir Toy, "Three-dimensional imaging techniques: A literature review", European Journal of Dentistry, Vol 8 / Issue 1 / Jan-Mar 2014.
2	Robb, R.A., "Three-Dimensional Visualization in Medicine and Biology", Book Chapter in: Handbook of Medical Imaging: Processing and Analysis, ed. Isaac N. Bankman, Academic Press, San Diego, CA, Chapter 42, pp. 685- 712, 2000.
3	Jayaram K. Udupa, "Three-dimensional Visualization and Analysis Methodologies: A Current Perspective", Imaging & Therapeutic Technology, Vol 19, May-June 1999
4	Gabor T.Herman, "Quantification Using 3D Imaging", Critical Reviews in Diagnostic Imaging, Volume 42, 2001
5	Tae-Kyun Kim, Josef Kittler and Roberto Cipolla, "Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations", IEEE Transactions On Pattern Analysis And Machine Intelligence, June- 2007.
6	D.A.Forsyth & J.Ponce – "Computer Vision – a modern approach", Prentice Hall, 1 st Edition, 2003.

CO/P	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	2	-	2	-	-	-	-	-	-	-	-	-	1	1	-	-
CO2	2	1	2	1	-	-	-	-	-	-	1	-	2	1	-	-
CO3	1	-	1	-	-	-	-	-	-	-	-	-	1	1	-	-
CO4	1	1	1	-	-	-	-	-	-	-	-	-	1	1	1	1
CO5	1	2	1	1	-	-	-	-	-	-	1	1	2	2	1	1
CO(Av					-	-	-	-	-	-						
g)	1.40	1.33	1.40	1.00							1.00	1.00	1.40	1.20	1.00	1.00

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name	Category	L	Т	P (
IT19P65	PYTHON FOR DATA SCIENCE	PE	2	0	2 3
Objectives:					
	lerstand the basics of Data Science				
	in the basics of Python				
	n Sequence data types and associated operations				
	n and implement Data visualization techniques				
	lerstand the case studies and implement various machine learning techniques				
UNIT-I I	NTRODUCTION TO DATA SCIENCE			6	
Introduction - D	Data Science, Descriptive Statistics, Exploratory Data Analysis, Visualization	Before Analys	is,		
Dirty Data, Vi	sualizing a Single Variable, Examining Multiple Variables, Data Explora	ation Versus	Pres	enta	tion-
Statistical Meth	ods for Evaluation, Hypothesis Testing, Difference of Means, ANOVA				
UNIT-II I	BASICS OF PYTHON SPYDER (TOOL)			6	
ntroduction Sp	yder - Setting working Directory - Creating and saving a script file - File e	execution, clea	ring	con	sole
emoving variat	bles from environment, clearing environment - Commenting script files - Varia	ble creation –			
Arithmetic and	logical operators - Data types and associated operations				
	SEQUENCE DATA TYPES AND ASSOCIATED OPERATIONS			6	
	types - Strings, Lists, Arrays, Tuples, Dictionary, Sets, Range - NumPy – nc	Array		U	
-		in intug			
	DATA VISUALIZATION			6	
andas datafran	ne and dataframe related operations - Reading files, Exploratory data analysis,	Data preparati	on a	nd	
preprocessing-	Data visualization - Scatter plot , Line plot , Bar plot , Histogram , Box 1	plot, Pair plo	ot - (Cont	rol
structures- if-els	se family, for loop, for loop with if break, while loop - Functions				
	CASE STUDY			6	
	egression – Classification – Clustering			U	
case studies - K			-		_
		ntact Hours		3	0
List of Experi					
	nt basic Python programs for reading input from console thon built-in data types: Strings, List, Tuples, Dictionary, Set and their method	s to solve any	aivo	n	
problem	thon bunt-in data types. Sumgs, Eist, Tupies, Dictionary, Set and their method	is to solve any	give	11	
	umerical operations using math and random number functions				
	CSV file and perform various Statistical and Comparison operations on rows/c	olumns.			
	umPy arrays from Python Data Structures, Intrinsic NumPy objects and Rando				
6 Import an	y CSV file to Pandas DataFrame and perform the following:				
	lize the first and last 10 records				
	e shape, index and column details				
	/Delete the records(rows)/columns based on conditions.				
	m ranking and sorting operations.				
	quired statistical operations on the given columns.				
	ne count and uniqueness of the given categorical values.				
	ne single/multiple columns. mage file and do crop and flip operation using NumPy Indexing.				
	In the and do crop and mp operation using Numpy indexing.	·k			
1	r plot (b) Line plot (c) Bar plot (d) Histogram (e) Box plot (f) Pair plot	n			
	ntation of Linear Regression and Logistic Regression.				
	ntation of classification techniques – SVM and Decision tree.				
	ntation of clustering techniques – K-Mean and Hierarchical methods.				_
	Conta	act Hours	:	1:	5

Curriculum and Syllabus | B.Tech Information Technology | R2019

											Tota	al Cont	act Ho	ours	:	45
Course	Outcon	nes:														
On comp	oletion	of cour	se stud	ents wi	ll be ab	le to										
CO1: Gair	n know	ledge o	n the b	asics of	f Data s	cience										
CO2: App	ly prog	rammi	ng kno	wledge	of Pyth	non in l	Data Sc	eince								
CO3: App	ly the s	sequenc	e data	types a	nd do tl	he asso	ciated	operati	ons							
CO4: Ana																
CO5: Buil	d analy	tical m	odels u	ising M	lachine	learnir	ig techi	niques								
Reference	ce Bool	ks(s):														
1. Wes l	McKin	ney, "P	ython f	or Data	a Analy	sis", O	'Reilly	Media	.2012							
2. Sebas	stian Ra	aschka,	"Pytho	on Mac	hine Le	arning	",Packp	oub.com	n,2015							
3. https:	//www	.dataca	mp.cor	n/cours	ses/stati	stical-t	hinking	g-in-py	thon-p	art-1						
CO/	PO	PO	РО	PO	PO	PO	PO	PO	РО	PO	РО	РО	PS	PS	PS	PS
PO	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	O4
CO1	2	1	3	3	3	1	3	-	-	-	-	1	3	3	1	1
CO2	2	1	3	3	3	1	3	-	-	-	-	1	3	3	1	1
CO3	2	1	3	3	3	1	3	-	-	-	-	1	3	3	1	1
CO4	2	1	3	3	3	1	3	-	-	-	-	1	3	3	1	1
CO5	2	1	3	3	3	1	3	-	-	-	-	1	3	3	1	1
СО								-	-	-	-					
(Avg.)	2.00	1.00	3.00	3.00	3.00	1.00	3.00					1.00	3.00	3.00	1.00	1.00

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Nocorrelation : "-"

SEMESTER – VII PROFESSIONAL ELECTIVE - II

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	C
IT19P71	EMBEDDED AND REALTIME SYSTEMS	PE	3	0	0	3

Objectives: Broad objective of this course is to

The architecture and programming of ARM processor.
 The embedded computing platform design and analysis.
 The basic concepts of real time Operating system.

The fundamentals of system design techniques and networks.

★ Having exploratory analysis on the various existing real time systems.

UNIT-I	INTRODUCTION TO EMBEDDED COMPUTING AND ARM	PROCESSORS	ç	9
	stems and micro processors– Embedded system design process –Desig sets preliminaries - ARM Processor – CPU: programming input and ou			
traps - Co-p	processors- Memory system mechanisms – CPU performance- CPU po	ower consumption.		
UNIT-II	EMBEDDED COMPUTING PLATFORM AND DESIGN ANA	LYSIS	9	9
and Debugg	Memory devices – I/O devices – Component interfacing – Design v ging – Program design – Model of programs – Assembly and Linkin d optimization of execution time, power, energy, program size – Progr	ng – Basic compilation	technique	
	RTOS BASED EMBEDDED SYSTEM DESIGN		-	9
UNIT-III Introduction interrupt roo	to basic concepts of RTOS- Task, process & threads, – power optimiz	zation strategies for pro-	cesses, g. Task	
Introduction interrupt rou communica semaphores		n-preemptive schedulin - synchronization betwee	g, Task een proces	
Introduction interrupt rou communica semaphores	to basic concepts of RTOS- Task, process & threads, – power optimization in RTOS, Multiprocessing and Multitasking, Preemptive and notion shared memory, message passing-, Inter process Communication -, Mailbox, pipes, priority inversion, priority inheritance, comparison	n-preemptive schedulin - synchronization betwee	g, Task een proces g systems:	
Introductior interrupt rou communica semaphores Works, 4C// UNIT-IV Design meth	a to basic concepts of RTOS- Task, process & threads, – power optimize in the basic concepts of RTOS- Task, process & threads, – power optimize it in stared memory, message passing-, Inter process Communication - , Mailbox, pipes, priority inversion, priority inheritance, comparison OS-II, RT Linux. SYSTEM DESIGN TECHNIQUES AND NETWORKS nodologies- Design flows – Requirement Analysis – Specifications-Sys- ality Assurance techniques- Distributed embedded systems – MPSoCs	n-preemptive schedulin – synchronization betwe of Real time Operating stem analysis and archit	g, Task een proces g systems:	s: Vx
Introductior interrupt rou communica semaphores Works, 4C// UNIT-IV Design methodsign – Qu	a to basic concepts of RTOS- Task, process & threads, – power optimize in the basic concepts of RTOS- Task, process & threads, – power optimize it in stared memory, message passing-, Inter process Communication - , Mailbox, pipes, priority inversion, priority inheritance, comparison OS-II, RT Linux. SYSTEM DESIGN TECHNIQUES AND NETWORKS nodologies- Design flows – Requirement Analysis – Specifications-Sys- ality Assurance techniques- Distributed embedded systems – MPSoCs	n-preemptive schedulin – synchronization betwe of Real time Operating stem analysis and archit	g, Task een process g systems: ecture	s: Vx
Introductior interrupt rou communica semaphores Works, 4C// UNIT-IV Design meth design – Qu multiproces UNIT-V Data compr	a to basic concepts of RTOS- Task, process & threads, – power optimize atines in RTOS, Multiprocessing and Multitasking, Preemptive and non- tion shared memory, message passing-, Inter process Communication - , Mailbox, pipes, priority inversion, priority inheritance, comparison OS-II, RT Linux. SYSTEM DESIGN TECHNIQUES AND NETWORKS modologies- Design flows – Requirement Analysis – Specifications-Sys- ality Assurance techniques- Distributed embedded systems – MPSoCs sors.	n-preemptive schedulin – synchronization betwe of Real time Operating stem analysis and archit and shared memory	g, Task een proces g systems: eecture	s: Vx 9

Course Outcomes:
On completion of the course, the students will be able to
CO1 Describe the architecture and programming of ARM processor.
CO2 Demonstrate the embedded computing platform and design analysis.
CO3 Explain the basics of real time operating systems.
CO4 Use the system design techniques to develop software for embedded systems.
CO5 Model real-time applications using embedded-system concepts

Te	xt Books:
1	Wayne Wolf, "Computers as Components - Principles of Embedded Computer System Design", Morgan
	Kaufmann Publisher, 2006.
2	Marilyn Wolf, "Computers as Components – Principles of Embedded Computing System Design", Third Edition
	"Morgan Kaufmann Publisher (An imprint from Elsevier), 2012.

Re	ference Books:
1	Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Third Edition Cengage Learning, 2012.
2	David. E. Simon, "An Embedded Software Primer", 1st Edition, Fifth Impression, Addison-Wesley Professional, 2007.
3	Raymond J.A. Buhr, Donald L.Bailey, "An Introduction to Real-Time Systems- From Design to Networking with C/C++", Prentice Hall, 1999.
4	C.M. Krishna, Kang G. Shin, "Real-Time Systems", International Editions, Mc Graw Hill 1997.
5	K.V.K.K.Prasad, "Embedded Real-Time Systems: Concepts, Design & Programming", Dream Tech Press, 2005.
6	Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata Mc Graw Hill, 2004.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	3	-	2	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	2	-	2	-	-	-	-	-	-	-	2	2	-	-
CO5	3	-	2	1	3	-	-	3	-	-	-	3	3	3	3	-
CO (Avg)	2.60	2.67	2.00	1.50	2.50	-	-	3.00	-	-	-	3.00	2.50	2.50	3.00	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	С
IT19P72	DIGITAL IMAGE PROCESSING	PE	3	0	0	3

Obj	ectives: Broad objective of this course is to learn
₩	Basics of digital image processing.
★ N	Methods of image transformation techniques.
₩	Enhancement and restoration techniques.
★	Approaches to segmentation and morphological processing.
۲ 🖈	Various compression techniques.

UNIT-I DIGITAL IMAGE FUNDAMENTALS

Elements of digital image processing systems, Digital Camera working principles, Elements visual perception, brightness, contrast, hue, saturation, Mach Band effect, Image sampling, Quantization, Dither, Two dimensional mathematical preliminaries.

UNIT-II IMAGE TRANSFORMS

1D DFT, 2D transforms - DFT, DCT, Discrete Sine Transform, Walsh Transform, Hadamard Transform, Slant Transform, Haar Transform.

UNIT-III IMAGE ENHANCEMENT AND RESTORATION

Spatial domain filtering, intensity transformations, contrast stretching, histogram equalization, smoothing filters, sharpening filters, noise distributions, mean filters, order statistics filters. Image restoration - degradation model, Unconstrained and Constrained restoration, Inverse filtering - removal of blur caused by uniform linear motion, Wiener filtering, Geometric transformations - spatial transformations, Gray - Level interpolation.

UNIT-IV IMAGE SEGMENTATION AND MORPHOLOGY

Image segmentation - Edge detection, Edge linking and boundary detection, Region growing, Region splitting and Merging, Image Recognition - Patterns and pattern classes, Matching by minimum distance classifier, Matching by correlation, Morphological Image Processing - Basics, SE, Erosion, Dilation, Opening, Closing, Hit – or - Miss Transform, Boundary Detection, Hole filling, Connected components, convex hull, thinning, thickening, skeletons, pruning, Geodesic Dilation, Erosion, Reconstruction by dilation and erosion.

UNIT-V IMAGE COMPRESSION

Need for data compression, Huffman, Run Length Encoding, shift codes, Arithmetic coding, Vector Quantization, Block Truncation Coding, Transform coding, JPEG, MPEG.

Contact Hours : 45 Periods

9

9

9

Course Outcomes:	
On completion of the course, the students will be able to	
CO1 Apply the basic steps of image processing techniques.	
CO2 Apply the concepts of transformation.	
CO3 Experiment methodology for enhancement and restoration.	
CO4Comprehend the approaches of segmentation and morphological techniques.	
CO5 Identify various compression techniques.	

Te	xt Books:
1	Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education, Inc., Second Edition, 2004.
2	Rafael C. Gonzalez, Richard E. Woods, Steven Eddins," Digital Image Processing using MATLAB", Pearson Education, Inc., 2004.

Re	eference Books:
1	Anil K. Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 2002.
2	William K. Pratt, "Digital Image Processing", John Wiley, New York, 2002.
3	S. Sridhar, "Digital Image Processing", Oxford University Press.
	Milan Sonka et al, "Image Processing, Analysis and Machine Vision", Brooke s/Cole, Vikas Publishing House, 2nd edition, 1999.
5	Sid Ahmed, M.A., "Image Processing Theory, Algorithms and Architectures", McGrawHill, 1995.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO
C01													1	4	3	4
COI	3	-	-	2	-	2	1	-	-	-	2	2	-	2	1	2
CO2	3	1	-	2	-	2	1	2	-	-	2	1	-	2	1	2
CO3	2	1	-	2	-	2	1	2	-	-	3	2	-	2	2	2
CO4	2	1	-	2	-	2	1	2	-	-	2	2	-	2	2	2
CO5	2	1	-	2	-	2	1	3	-	-	2	2	-	2	2	2
CO (Avg)																
(Avg)	2.40	1.00	-	2.00	-	2.00	1.00	2.25	-	-	2.20	1.80	-	2.00	1.60	2.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	С
IT19P73	WIRELESS COMMUNICATION	PE	3	0	0	3

Ob	jectives: Broad objective of this course is
-	To study the characteristic of wireless channel.
-	To learn the design of a cellular system.
-	To be familiar with various digital signaling techniques.
-	To know the basis of multipath mitigation techniques.
-	To gain knowledge on the concepts of multiple antenna techniques.

UNIT-I WIRELESS CHANNELS

Large scale path loss – Path loss models: Free Space and Two-Ray models -Link Budget design – Small scale fading-Parameters of mobile multipath channels – Time dispersion parameters-Coherence bandwidth – Doppler spread & Coherence time, fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.

UNIT-II CELLULAR ARCHITECTURE

Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations–Cellular concept- Frequency reuse - channel assignment- hand off- interference & system capacity- trunking & grade of service – Covera21`ge and capacity improvement.

UNIT-III DIGITAL SIGNALING FOR FADING CHANNELS

Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix, Windowing, PAPR.

UNIT-IV MULTIPATH MITIGATION TECHNIQUES

Equalization – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macro diversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver.

UNIT-V MULTIPLE ANTENNA TECHNIQUES

MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.

Contact Hours : 45 Periods

Course Outcomes:	
On completion of the course, the students will be able to	
CO1 Explain the Characterize a wireless channel and evolve the system design specifications.	
CO2 Design a cellular system based on resource availability and traffic demands.	
CO3 Understand the digital signaling for fading channels.	
CO4 Identify suitable signaling and multipath mitigation techniques for the wireless channel and system under consideration.	
CO5 Explain the Multipath Mitigation Techniques.	

Te	Text Books:						
1	Rappaport, T.S., —Wireless communications, Pearson Education, Second Edition, 2010.(UNIT I, II, IV).						
2	Andreas.F. Molisch, —Wireless Communications, John Wiley – India, 2006. (UNIT III,V).						

9

9

9

Re	Reference Books:						
1	Wireless Communication – Andrea Goldsmith, Cambridge University Press, 2011.						
2	Van Nee, R. and Ramji Prasad, —OFDM for wireless multimedia communications, Artech House, 2000.						
3	David Tse and Pramod Viswanath, —Fundamentals of Wireless Communication, Cambridge University Press, 2005.						
4	Upena Dalal, —Wireless Communication, Oxford University Press, 2009.						

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
-													1	-	5	-
CO1	1	-	1	-	-	-	-	-	-	-	-	-	-	1	1	1
CO2	1	2	1	-	-	-	-	-	-	-	-	-	-	1	-	1
CO3	2	-	2	-	-	-	-	-	-	-	-	-	-	1	1	1
CO4	2	-	2	-	1	-	-	-	-	-	-	-	-	1	1	1
CO5	2	-	2	-	2	-	-	-	-	-	-	1	-	1	2	2
CO (Avg)						-	-	-	-	-	-					
(Avg)	1.60	2.00	1.60	-	1.50							1.00	-	1.00	1.25	1.20

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	C
IT19P74	INTERNET OF THINGS	PE	3	0	0	3

Objectives: Broad objective of this course is
\bigstar To understand the basics of Internet of things and protocols.
★To understand about the middleware for Internet of Things.
★To understand the concepts of Web of Things.
★To Understand State of the Art - IoT Architecture.
★To introduces some of the application areas where Internet of Things can be applied.

UNIT-I INTRODUCTION TO IoT

What is the IoT and why is it important? Elements of an IoT ecosystem, Technology drivers, Business drivers, Trends and implications, Overview of Governance, Privacy and Security Issues.

UNIT-II IoT PROTOCOLS 9 Protocol Standardization for IoT – Efforts – M2M and WSN Protocols – SCADA and RFID Protocols – Issues with IoT Standardization – Unified Data Standards –Protocols – IEEE 802.15.4–BACNet Protocol– Modbus – KNX – Zigbee– Network layer – APS layer – Security. 9 UNIT-III IoT ARCHITECTURE 9

IoT Open source architecture (OIC)- OIC Architecture & Design principles- IoT Devices and deployment models-IoTivity : An Open source IoT stack - Overview- IoTivity stack architecture - Resource model and Abstraction.

UNIT-IV WEB OF THINGS

Web of Things versus Internet of Things – Two Pillars of the Web – Architecture standardization for WoT– Platform Middleware for WoT – Unified Multitier WoT Architecture – WoT Portals and Business Intelligence.

UNIT-V IoT APPLICATIONS

IoT applications for industry: Future Factory Concepts,Brownfield IoT, Smart Objects, Smart Applications. Study of existing IoT platforms /middleware,IoT- A, Hydra etc.

Contact Hours : 45 Periods

9

9

9

Course Outcomes:

On completion of the course, the students will be able to

CO1 Discuss the world of current IoT technologies.

CO2 Interpret IoT Architecture.

CO3 Describe the fundamentals of Web of Technology.

CO4 Examine middleware of IoT

CO5 Judge the applications of IoT, BigData and cloud.

Te	xt Books:
1	Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.
2	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet Of Things", Springer, 2011.
3	David Easley and Jon Kleinberg, "Networks, Crowds, and Markets: Reasoning About a Highly Connected World", Cambridge University Press, 2010.
4	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key Applications and Protocols", Wiley, 2012.

 Reference Books:

 1
 Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)",1st Edition,VPT, 2014.

 2
 Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to ConnectingEverything", 1st Edition, Apress Publications, 2013.

 3
 CunoPfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493-9357-1

CO/P	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO	PSO	PSO	PSO
0													1	2	3	4
CO1	2	_	-	_	_	-	_	-	-	_	_	_	2	_	-	2
CO2	-	2	3	2	-	-	Ι	I	_	_	_	_	_	_	3	I
CO3	_	2	2	-	-	I	Ι	-	-	-	-	-	1	_	2	
CO4	1	2	3	-	-	-	-	-	-	-	-	-	2	2	-	1
CO5	-	_	3	-	_	_	_	I	_	-	-	-	3	_	-	-
CO (Avg)	0.75	1 20	2 75	0.50	_	-	-	_	_	_	-	_	1.00	0.40	1 00	0.75
	0.75	1.20	2.75	0.50									1.60	0.40	1.00	0.75

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
IT19P75	DEEP LEARNING TECHNIQUES	PE	3	0	0	3

Ob	jectives:
*	To get familiar with basic concepts and theory
*	To understand the basics of Neural Networks
*	To be familiar with CNN
*	To have deep knowledge in optimizers
*	To know about advances deep archiectures

UNIT-I	INTRODUCTION	9
Introduction -	- Feature Descriptor, Baysian Learning, Discrimenent Function, Linear Classifier, Support Vector Ma	ichine,
Linear Machi	ne, Multiclass Support Vector Machine, Optimization – Optimization Techniques in Machine Learnin	ng,
Non-Linear F	functions.	
UNIT-II	BASICS OF NEURAL NETWORKS	9

Introduction toNeural Networks -Multilayer Perceptron, Backpropagation Learning, Loss Function, Backpropagation

Learning Examples, Autoencoders – Autoencoders Training, Autoencoders Varients

UNIT-III CONVOLUTIONAL NEURAL NETWORKS

Convolutional - Cross Correlation, CNN Architecture, MLP versus CNN, LeNet, AlexNet, VGG16 and Transfer

Learning, Vanishing and Exploding Gradient

UNIT-IV OPTIMIZATION TECHNIQUES

9

GoogleNet, ResNet, Optimizers – Momentum Optimizer, Momentum and Nestrov Accelerated Gradient (NAG) Optimizer, Adagrad Optimizer, RMSProp, AdaDelta and Adam Optimizer. Normalization – Batch Normalization, Group Normalization, Training Tricks – Regularization, Early Stopping, Dropouts

UNIT-V ADVANCED DEEP ARCHITECTURES

Recurrent Neural Networks (RNN), Advanced RNNs - LSTM, GRU Generative Adversarial Networks (GAN),

Advanced GANs, Case Study: Face Recognition, Image Denoising and Image Classification.

Total Contact Hours : 45

9

Cours	se Outcomes:
On co	ompletion of course students will be able to
CO1	Know the basic concepts and theory
CO2	Have knowledge in Neural Networks
CO3	Implement CNN
CO4	Have more knowledge in deep learning optimizers
C05	Know the advanced deep architectures

Text Book(s):

- 1 Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016
- 2 https://nptel.ac.in/courses/106/105/106105215/

Reference Books(s):

- 1 Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2 Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.
- **3** Golub, G.,H., and Van Loan,C.,F., Matrix Computations, JHU Press,2013.
- 4 Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education, 2004.

CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	3	2	1	2	2	-	-	-	-	-	-	2	-	1	1	3
CO2	2	3	2	3	2	-	-	-	-	-	-	3	-	1	2	3
CO3	2	3	3	3	3	-	-	-	-	-	-	2	-	1	-	3
CO4	2	2	2	2	1	-	-	-	-	-	-	-	1	1	3	3
CO5	2	2	3	3	2	-	-	-	-	-	-	3	1	1	3	3
CO(Av						-	-	-	-	-	-					
g)	2.20	2.40	2.20	2.60	2.00							2.50	1.00	1.00	2.25	3.00

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

PROFESSIONAL ELECTIVE - III

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	С
IT19P80	SERVICE ORIENTED ARCHITECTURE	PE	3	0	0	3

Objectives: Broad objective of this course is to

Learn XML fundamentals.

Be exposed to build applications based on XML.
Understand the key principles behind SOA.
Be familiar with the web services technology elements for realizing SOA.

★ Learn the various web service standards.

UNIT-I	INTRODUCTION TO XML KEY FEATURES	9
XML docur	nent structure – Well formed and valid documents – Namespaces – DTD – XML Schema – X-Files.	
UNIT-II	BUILDING ,CREATING XML APPLICATIONS	9
Parsing XM XML.	IL – using DOM, SAX – XML Transformation and XSL – XSL Formatting – Modeling Databases ir	1
UNIT-III	INTRODUCTION SERVICE ORIENTED ARCHITECTURE	9
	tics of SOA, Comparing SOA with Client-Server and Distributed architectures – Benefits of SOA of Service orientation – Service layers WEB SERVICES AND ITS STANDARDS	9
Principles o UNIT-IV Service desc	f Service orientation – Service layers	-
Principles o UNIT-IV Service desc	of Service orientation – Service layers WEB SERVICES AND ITS STANDARDS criptions – WSDL – Messaging with SOAP – Service discovery – UDDI – Message Exchange Patter	-
Principles o UNIT-IV Service desc Orchestratio UNIT-V Service Orio	of Service orientation – Service layers WEB SERVICES AND ITS STANDARDS criptions – WSDL – Messaging with SOAP – Service discovery – UDDI – Message Exchange Patter on(WS-BPEL) – Choreography –WS Transactions((WS-Coordination).	ns – 9

Course Outcomes:						
On completion of the course, the students will be able to						
CO1 Build applications based on XML.						
CO2 Develop web services using technology elements.						
CO3 Developing services and deploying based on relevance.						
CO4 Building and composing services with necessary Business activities.						
CO5 Build SOA-based applications for intra-enterprise and inter-enterprise applications.						

Te	xt Books:
1	Ron Schmelzer et al. "XML and Web Services", Pearson Education, 2002 2.
2	Erl, "Service Oriented Architecture: Concepts, Technology, and Design", Pearson Education, 2005.

Re	eference Books:
1	Frank P.Coyle, "XML, Web Services and the Data Revolution", Pearson Education, 2002.
2	Eric Newcomer, Greg Lomow, "Understanding SOA with Web Services", Pearson Education, 2005.
3	Sandeep Chatterjee and James Webber, "Developing Enterprise Web Services: An Architect's Guide", Prentice Hall, 20044.
	. James McGovern, Sameer Tyagi, Michael E. Stevens, Sunil Mathew, "Java Web Services Architecture", Morgan Kaufmann Publishers, 2003.

CO/P	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO	PSO	PSO	PSO
0													1	2	3	4
CO1	-	1	2	-	-	2	-	-	-	2	2	-	3	2	1	2
CO2	-	3	3	3	3	2	1	-	3	2	3	-	3	2	-	3
CO3	-	2	2	3	3	2	-	-	2	-	2	2	2	3	-	-
CO4	2	-	2	2	2	-	2	-	3	-	3	3	-	-	3	-
CO5	2	2	3	3	3	-	2	-	-	-	-	3	-	3	2	3
CO (Avg)	2.00	2.00	2.40	2.75	2.75	2.00	4.67		2.67	2.00	2.50	2.67	2.67	2.50	2.00	2.67
	2.00	2.00	2.40	2.75	2.75	2.00	1.67	-	2.67	2.00	2.50	2.67	2.67	2.50	2.00	2.67

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	C
IT19P76	IMAGE PROCESSING AND VISION TECHNIQUES	PE	3	0	0	3

Ob	jectives: Broad objective of this course is
*	To review image processing techniques for computer vision.
*	To outline the image enhancement in the Spatial and Frequency Domain.
*	To understand Image Restoration and Image Compression.
*	To understand three-dimensional image analysis.

To study some applications of computer vision algorithms.

UNIT-I IMAGE PROCESSING FOUNDATION

Introduction-Image Processing Operations- Basic Image filtering operations: Noise Suppression by Gaussian Smoothing- Median Filters- Mode Filters- Rank Order Filters- The Role of Filters in Industrial Applications of Vision-Thresholding- Adaptive Thresholding-Edge detection techniques - corner and interest point detection - mathematical morphology - Some Basic Approaches to Texture Analysis.

IMAGE ENHANCEMENT IN THE SPATIAL AND FREQUENCY DOMAIN UNIT-II

Image enhancement by point processing-Image enhancement by neighbourhood processing- Basic Gray Level 20% Transformations-Histogram Processing-Enhancement Using Arithmetic and Logic Operations-Zooming- Basics of Spatial Filters- Smoothening and Sharpening Spatial Filters-Combining Spatial Enhancement Methods. Introduction to Fourier Transform and the frequency Domain-Smoothing and Sharpening Frequency Domain Filters- Homomorphic Filtering. 9

UNIT-III IMAGE RESTORATION AND IMAGE COMPRESSION

Model of The Image Degradation / Restoration Process-Noise Models- Restoration in the presence of Noise Only Spatial Filtering- Periodic Noise Reduction by Frequency Domain Filtering-Linear Position-Invariant Degradations-Estimation of Degradation Function- Inverse Filtering-Wiener filtering- Constrained Least Square Filtering-Geometric Mean Filter-Geometric Transformations. Data Redundancies-Image Compression Models-Elements of Information Theory- Lossless and Lossy compression-Huffman Coding-Shanon-Fano Coding- Arithmetic Coding-Golomb Coding-LZW Coding-Run Length Coding-Loss less predictive Coding- Bit Plane Coding- Image compression standards.

UNIT-IV 3D VISION

3-D Vision - Methods for 3D vision - projection schemes - shape from shading - photometric stereo - Surface Smoothness- shape from texture - use of structured lighting- three-dimensional object recognition schemes- Image Transformations and Camera Calibration.

UNIT-V APPLICATION

Automated Visual Inspection: Process- Types- Application: Photo album - Face detection - Face recognition - Eigen faces - Active appearance and 3D shape models of faces Application- Surveillance-foreground-background separation particle filtres - Chamfer matching- tracking- and occlusion - combining views from multiple cameras - human gait analysis Application- In-vehicle vision system: locating roadway – road markings – road signs – locating pedestrians. Contact Hours : **45 Periods**

Course Outcomes:	
On completion of the course, the students will be able to	
CO1 Implement fundamental image processing techniques required for computer vision.	
CO2 Understand the image enhancement in the Spatial and Frequency Domain.	
CO3 Apply Image Restoration and Image Compression.	
CO4 Apply 3D vision techniques.	
CO5 Develop applications using computer vision techniques.	

9

9

9

Te	Text Books:								
1	E. R. Davies, "Computer & Machine Vision", Fourth Edition, Academic Press, 2012.								
2	Rafael C. Gonzalez & Richard E. Woods, "Digital Image Processing", 2nd edition, Pearson Education.								

Re	eference Books:
1	R. Szeliski, "Computer Vision: Algorithms and Applications", Springer 2011.
2	Simon J. D. Prince, "Computer Vision: Models, Learning, and Inference", Cambridge University Press, 2012
3	Mark Nixon and Alberto S. Aquado, "Feature Extraction & Image Processing for Computer Vision", Third Edition,
	Academic Press, 2012.
4	D. L. Baggio et al., "Mastering OpenCV with Practical Computer Vision Projects", Packt Publishing, 2012.
	Jan Erik Solem, "Programming Computer Vision with Python: Tools and algorithms for analyzing images", O'Reilly
	Media, 2012.
6	A.K. Jain, "Fundamental of Digital Image Processing", PHI.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	-	3	-	-	-	-	-	-	-	-	-	-	3	-
CO2	-	3	3	2	-	-	-	-	-	-	-	-	3	-	3	-
CO3	-	3	3	3	-	-	-	-	-	-	-	-	3	-	3	-
CO4	-	3	2	3	-	-	-	-	-	-	-	-	3	-	-	-
CO5	-	2	3	3	-	-	-	-	-	-	3	-	-	3	-	-
CO (Avg)	2.00	2.60	2.75	2.90	-	-	-	-	-	-	2.00		2.00	2.00	2.00	
	3.00	2.60	2.75	2.80							3.00	-	3.00	3.00	3.00	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	C
IT19P77	COMPUTATIONAL LINGUISTICS	PE	3	0	0	3

Objectives: Broad objective of this course is	
★ To learn the fundamentals required for Computational Linguistics.	
★ To understand the concept of Phonology and Morphology.	
★ To deal with Statistical and Rule based Models.	
★ To understand the concepts of Language Structure, Analysis and their Applications.	
★ To study various Linguistic Models.	

INTRODUCTION **UNIT-I**

Introduction about Computational Linguistics - Linguistics and its structures - The role of Natural Language Processing-Issues - Motivation - Theory Of Language - Words- Features of Indian Languages.

MORPHOLOGY AND PARTS-OF-SPEECH **UNIT-II**

Phonology - Computational Phonology- Words and Morphemes - Categorization and Lemmatisation - Word Form Recognition - Valency - Agreement - Regular Expressions and Automata- Morphological issues of Indian Languages -Transliteration.

UNIT-III **PROBABILISTIC MODELS**

Probabilistic Models of Pronunciation and Spelling - Weighted Automata - N- Grams - Corpus Analysis - Smoothing -Entropy - Parts-of-Speech - Taggers - Rule based - Hidden Markov Models - Speech Recognition.

SYNTAX & CONTEXT FREE PARSING **UNIT-IV**

Basic Concepts of Syntax- Parsing Techniques - General Grammar rules for Indian Languages - Context Free Grammar - Parsing with Context Free Grammars - Top Down Parser - Earley Algorithm - Features and Unification -Lexicalised and Probabilistic Parsing. 9

SEMANTICS AND PRAGMATICS **UNIT-V**

Representing Meaning - Computational Representation - Meaning Structure of Language - Semantic Analysis - Lexical Semantics - WordNet - Pragmatics - Discourse - Reference Resolution - Text Coherence - Dialogue Conversational Agents.

Contact Hours : **45 Periods**

9

Q

9

9

Course Outcomes:

On completion of the course, the students will be able to

CO1 Comprehend the basic requirement of Computational Linguistics.

CO2 Understand the design of Phonological structures, generalization and Morphological Analyzers.

CO3 Evaluate the performance of different Probabilistic Models.

CO4 Use Context free languages to describe the syntactic structure of a language and parsing methods.

CO5 Understand the concept of Semantics ,Pragmatics and Language Modelling.

Re	ference Books:
1	Daniel Jurafskey and James H. Martin "Speech and Language Processing", Prentice Hall, 2000.
2	Ronald Hausser "Foundations of Computational Linguistics", Springer-Verleg, 1999.
3	James Allen "Natural Language Understanding", Benjamin/Cummings Publishing Co. 1995.
	Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.
	Steve Young and Gerrit Bloothooft "Corpus – Based Methods in Language and Speech Processing", Kluwer
	Academic Publishers, 1997.

CO/P	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1	PO1	PO1	PSO	PS	PSO	PSO
0										0	1	2	1	02	3	4
CO1	3	-	-	-	1	-	-	-	-	-	-	-	-	2	-	-
CO2	2	-	-	-	1	-		-	-	1	-	-	1	-	-	
CO3	2	-	-	-	1	-	-		-	-	-		1	-	-	-
CO4	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO5	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
CO (Avg)	1.80	-	-	-	1.00		0.00	0.00	_	1.00		0.00	1.00	2.00		0.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Lab Oriented Theory Course)	Category	L	Т	Р	С
CS19P12	DISTRIBUTED SYSTEMS	PE	2	0	2	3

Objectives:	Broad	objective	of this	course	is

 \bigstar To explain the goals and types of Distributed Systems.

To describe Communications and distributed web based system.

★ To learn about Distributed objects and File System.

★ To emphasize the benefits of using Distributed Transactions and Concurrency.

★ To learn issues related to process and Security.

UNIT-I INTRODUCTION TO DISTRIBUTED SYSTEMS

Introduction to Distributed systems – Design Goals-Challenges - Types of Distributed Systems - Architectural Styles – Middleware - System Architecture – Centralized and Decentralized organizations – Peer-to-Peer System –Focus on resource sharing -Case Study: Skype, Bittorrent.

UNIT-II COMMUNICATIONS AND DISTRIBUTED WEB BASED SYSTEM

Fundamentals - Remote Procedure Call – Stream oriented communication – Message oriented communication – Multicast communication - Web based system architecture-Web services-Case Study: Apache Web server, HTTP, SOAP.

UNIT-III DISTRIBUTED OBJECTS AND FILE SYSTEM

Remote Invocation – Request Reply Protocol - Java RMI - Distributed Objects - CORBA -Object to component -Enterprise java Bean- Introduction to Distributed File System - File Service architecture – Andrew File System, Sur Network File

System - Case Study: Google File System

UNIT-IV SYNCHRONIZATION AND DISTRIBUTED TRANSACTIONS

Clock Synchronization – Physical Clocks– Clock Synchronization Algorithms– Logical Clocks-Lamport's Logical Clocks- Vector Clocks-Election Algorithms-Ring based Algorithm -Bully Algorithm– Distributed Transactions-Nested Transaction- Locks- Concurrency Control- Timestamp Ordering - Atomic Commit-Distributed Deadlock.

UNIT-V SECURITY AND PROCESS

Introduction to Security – Security Threats, Policies, and Mechanisms-Design Issues-Cryptography-Secure Channels – Authentication-Message Integrity and Confidentiality-Secure Group Communication-Example: Kerberos- Process-Threads- Virtualization.

Contact Hours : 30

List of Experiments Install Skype and initiate a chat between users. 1. Write a program to add two numbers in Java RMI. 2. Write a program in java for creating a simple chat application with TCP. 3. Write a program to illustrate UDP sockets. 4. Write a program to Distributed Deadlock Detection using Chandy Haas Misra. 5. Create a SOAP based web service for a simple Java calculator class with operations add and subtract. Also create 6. web service client which consumes web service and displays the result of invoked web service. Write a java program to illustrate multithreaded server where the client send a number to the server and in response 7. to each client, the server should send back the square of the received number. Contact Hours 30 **Total Contact Hours** 60

6

6

6

6

Course	Course Outcomes:							
On con	On completion of the course, the students will be able to							
CO1	Gain knowledge about goals and types of Distributed Systems.							
CO2	Ability to describe Communications and distributed web based system.							
CO3	Clear knowledge about Distributed objects and File System.							
CO4	Emphasize the benefits of using Distributed Transactions and Concurrency.							
CO5	Gain knowledge about process and Security.							

Te	Fext Books:								
1	Tanenbaum, A. and van Steen, M., Distributed Systems: Principles and Paradigms, Second Edition, Prentice Hall, 2007.								
2	Coulouris, G, Dollimore, J., and Kindberg, Distributed Systems: Concepts and Design, Fourth Edition, Addison-Wesley, 2006.								

Re	eference Books:
1	Pradeep K Sinha Distributed Operating Systems, Prentice-Hall of India, First Edition, New Delhi, 2001.
	Jean Dollimore, Tim Kindberg, George Coulouris, Distributed Systems -Concepts and Design, Pearson Education, Fourth edition, 2005.
3	M.L. Liu Distributed Computing Principles and Applications, Pearson Education, First edition, 2004.
	HagitAttiya and Jennifer Welch Distributed Computing: Fundamentals, Simulations and Advanced Topics, Wiley,
	First edition, 2004.

CO/PO	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	2	1	1	1	3	1	3	2	3	2	3
CO2	3	3	3	3	3	2	2	2	3	2	3	2	3	3	3
CO3	3	3	3	3	3	2	2	2	2	2	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	2	2	3	2	2	2	2
CO5	3	3	3	2	2	2	2	2	2	2	3	2	3	2	3
CO (Avg)	3	2.8	2.8	2.6	2.6	2	2	1.8	2.4	1.8	3	2	2.8	2.4	2.8

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
IT19P78	SOFTWARE TESTING	PE	3	0	0	3

Γ	jectives:	
	Know what is software quality and various defect removal processes.	

Know various testing terminologies and techniques.
 Understand various levels and types of testing

Curriculum and Syllabus | B.Tech Information Technology | R2019

*	Learn to manage automation in testing
-	Learn the Quality Matrice accorded with after the testing

★ Learn the Quality Metrics associated with software testing

UNIT-I INTRODUCTION

Introduction to Software Quality - Challenges – Objectives – Quality Factors – Components of SQA – Contract Review – Development and Quality Plans – SQA Components in Project Life Cycle – SQA Defect Removal Policies – Reviews.

UNIT-II TESTING TECHNIQUES

Using White Box Approach to Test design - Static Testing Vs. Structural Testing – Code Functional Testing – Coverage and Control Flow Graphs –Using Black Box Approaches to Test Case Design – Random Testing – Requirements based testing –Decision tables –State-based testing – Cause-effect graphing – Error guessing.

UNIT-III TEST LEVELS AND METHODOLOGIES

Levels of Testing - Unit Testing - Integration Testing - Defect Bash Elimination- System Testing– System and Acceptance Testing – Testing Strategies – White Box and Black Box Approach- Compatibility testing-Performance Testing – Regression Testing - Internationalization Testing – Ad-hoc Testing – Website Testing –Usability and Accessibility Testing – Configuration Testing - Compatibility Testing - MC/DC Testing, Mutation testing, Case study for White box testing and Black box testing techniques.

UNIT-IV TEST AUTOMATION AND MANAGEMENT

Test plan – Management – Execution and Reporting – Software Test Automation – Test Automation framework - Agile Testing - End-to-end test automation - Automated Testing tools - Hierarchical Models of Software Quality – Configuration Management – Documentation Control.

UNIT-V SQA IN PROJECT MANAGEMENT

Project progress control – costs – quality management standards – project process standards – management and its role in SQA – SQA unit, Software Process Assessment Cycle, SCAMPI.

Total Contact Hours : 45

Course Outcomes:

On completion of course students will be able to

CO1 Differentiate between different testing methodologies.

CO2 Apply suitable types of testing methodologies

CO3 Test the product with white and black box testing strategies.

CO4 Perform automated test and configuration management with documentation.

CO5 Understand various quality management standards

Text Book(s):

1	Daniel Galin, "Softwar	e Quality Assurance	from Theory to Imp	plementation", Pearson	n Education, 2009

- 2 Yogesh Singh, "Software Testing", Cambridge University Press, 2012
- 3 Srinivasan Desikan, Gopalaswamy Ramesh," Software Testing Principles and Practices", Pearson Education, 2006
 4 William Perry, "Effective Methods of Software Testing", Third Edition, Wiley Publishing 2007
- Automated Software Testing: Foundations, Applications and Challenges, <u>Ajay Kumar Jena</u>, <u>Himansu Das</u>, <u>Durga</u> Prasad Mohapatra, I Edition, Springer, 2020.
- 6 Agile Testing: A Practical Guide for Testers and Agile Teams, <u>Crispin Lisa</u>, <u>Gregory Janet</u>, Addison-Wesley Signature Series, 2008

Reference Books(s):

- 1 Aditya Mathur, "Foundations of Software Testing", Pearson Education, 2008
- 2 Ron Patton,"Software Testing", Second Edition, Pearson Education, 2007
- **3** Robert Furtell, Donald Shafer and Linda Shafer, "Quality Software Project Management", Pearson Education Asia, 2002.

9

9

) ____

9

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	3	-	2	-	2	-	2	2	-	2	1	3	-	2
CO2	2	3	-	2	2	1	-	1	-	1	2	-	-	2	-	-
CO3	2	-	1	-	1	1	-	-	1	1	-	1	2	-	-	2
CO4	2	2	-	2	-	2	1	-	-	2	2	-	-	-	1	-
CO5	2	-	-	1	1	-	1	-	-	1	1	-	2	1	-	2
CO(Av																
g)	2.00	2.33	2.00	1.67	1.50	1.33	1.33	1.00	1.50	1.40	1.67	1.50	1.67	2.00	1.00	2.00

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

Subject Code	Subject Name (Theory course)	Category	L	Τ	Р	С
IT19P79	COMPREHENSION	PE	3	0	0	3

Ob	jectives: Broad objective of this course is
-	To explain the concepts of computer organization and architecture
-	To describe the concepts of programming, data structures and algorithms.
-	To explore the concepts of compiler design
-	To emphasize the concepts of operating systems and databases
-	To explain the computer network concepts

UNIT-I COMPUTER ORGANIZATION AND ARCHITECTURE

Machine instructions and addressing modes, ALU, data-path and control unit, Instruction pipelining, pipeline hazards Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode).

UNIT-II PROGRAMMING, DATA STRUCTURES AND ALGORITHMS

Programming in C. Recursio, Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs. Searching, sorting, hashing, Asymptotic worst case time and space complexity, Algorithm design techniques: greedy, dynamic programming and divide-and-conquer. Graph traversals, minimum spanning trees, shortest paths

UNIT-III COMPILER DESIGN

Lexical analysis, parsing, syntax-directed translation. Runtime environments, Intermediate code generation, Local optimisation, Data flow analyses: constant propagation, liveness analysis, common subexpression elimination.

UNIT-IV OPERATING SYSTEM AND DATABASES

System calls, processes, threads, inter-process communication, concurrency and synchronization, Deadlock, CPU and I/O scheduling, Memory management and virtual memory, File systems, ER-model, Relational model: relational algebra, tuple calculus, SQL, Integrity constraints, normal forms, File organization, indexing (e.g., B and B+ trees), Transactions

6

9

9

UNIT-V	COMPUTER NETWORKS		12									
OSI and TO	CP/IP Protocol Stacks; Basics of packet, circuit and virtual circui	t-switching; framing, error dete	ction,									
Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link state												
routing; Fra	routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP),											
Network Ad	Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets;											
Application	Application layer protocols: DNS, SMTP, HTTP, FTP, Email.											
			4.5									

Total Contact Hours:45

Course Outcomes:

On completion of course students will be able to

CO1 be expert in computer organization and architecture concepts.

CO2 implement programming, data structures and algorithms

CO3Explore the concepts of compiler design

CO4 explore operating systems and database concepts.

CO5 Design computer network concepts

Text Book(s):

Ie	xt DOOK(S):
1	Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw Hill, 2002
2	Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Pearson Education, 1988
3	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 1997
4	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, Ninth Edition, John Wiley and Sons Inc., 2012
5	Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", Sixth Edition, Tata Mc Graw Hill, 2011.
6	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers Inc., 2011

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	3	-	2	-	2	-	2	2	-	2	1	3	-	2
CO2	2	3	-	2	2	1	-	1	-	1	2	-	-	2	-	-
CO3	2	-	1	-	1	1	-	-	1	1	-	1	2	-	-	2
CO4	2	2	-	2	-	2	1	-	-	2	2	-	-	-	1	-
CO5	2	-	-	1	1	-	1	-	-	1	1	-	2	1	-	2
CO(Av																
g)	2.00	2.33	2.00	1.67	1.50	1.33	1.33	1.00	1.50	1.40	1.67	1.50	1.67	2.00	1.00	2.00

SEMESTER – VIII PROFESSIONAL ELECTIVE - IV

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	C
IT19P81	BLOCK CHAIN ARCHITECTURE AND USE CASES	PE	3	0	0	3

Oł	bjectives: Broad objective of this course is
-	To introduce basics of Block chain, structure and Merkle trees.
-	To understand the process involved in mining and consensus.
-	To learn about Hyper ledger framework and its component design.
1	To introduce Bit coin network.
7	To familiar with Block chain use cases.

UNIT-I	INTRODUCTION TO BLOCKCHAIN	9										
Blockchain	Introduction-structure of block-block header-block identifiers-The Genesis block-linking blocks in the	he										
block chain	-Merkle trees. (Text Book-1: Chapter 7)											
UNIT-II	MINING AND CONSENSUS	9										
transactions	Introduction-Decentralized Consensus – Independent verification of transactions – Mining nodes-Aggregating transactions in to blocks-constructing the block header-Mining the block- successfully mining the block – Validating a new block (Text Book-1: Chapter 8).											
UNIT-III	III HYPERLEDGER FABRIC											
	Hyperledger frameworks, tools and building blocks – Hyperledger fabric component design, Hyperledger fabric-The journey of a sample transaction- Hyperledger explored. (Text Book-3: Chapter 2)											
UNIT-IV	THE BITCOIN NETWORK	9										
Full nodes -	Network Architecture - Node types and roles – The extended Bitcoin Network – Network Discovery - Exchanging Inventory- Simplified payment verification nodes- Bloom filters – Bloom filters and pdates – Transaction pools – Alert messages. (Text Book-1: Chapter 6)	—										
UNIT-V	BLOCKCHAIN FOR GOVERNMENT	9										
	tity verification-Digital art: Blockchain attestation services (Notary, Intellectual Property protection) government. (Text Book-2: Chapter 3)	_										
	Contact Hours : 45 Per	riods										

Course Outcomes:	٦
On completion of the course, the students will be able to	
CO1 Learn the basics of Blockchain, structure and Merkle trees.	
CO2 Infer the knowledge about the process involved in mining and consensus.	
CO3 Learn about Hyperledger framework and its component design.	
CO4 Understand the importance Bitcoin network	
CO5 Apply the various Blockchain use cases.	

Te	xt Books:
1	Andreas Antonopoulos "Mastering Bitcoin: Unlocking Digital Cryptocurrencies"
2	Melanie Swan, O'Reilly "Blockchain - Blue print for a New Economy"
3	Nitin Gaur, Lucesrosiers, Venkataraman Ramakrishnan, PetrNovotny, Dr.Salman A.Baset, Anthony O'Dowd
	"Hands-On Blockchain with Hyperledger".

Reference Books:

1 Zero to Blockchain - An IBM Redbooks course, by Bob Dill, David Smits https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html

CO/P	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1	PO1	PO1	PS	PSO	PSO	PSO
0										0	1	2	01	2	3	4
C01	2	-	-	-	3	-	-	-	-	-	-	-	-	-	-	3
CO2	2	-	2	2	3	-	-	-	-	-	-	-	-	-	-	3
CO3	1	1	1	2	3	-	-	-	-	-	-	-	-	-	2	-
CO4	2	1	1	-	3	-	-	-	-	-	-	2	-	-	2	3
CO5	-	2	-	-	-	-	-	1	-	-	2	2	-	-	2	2
CO (Avg)						-	-		-	-			-	-		
× Ο,	1.75	1.33	1.33	2.00	3.00			1.00			2.00	2.00			2.00	2.75

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	С
IT19P82	CYBER FORENSICS	PE	3	0	0	3

Objectives: Broad objective of this course is to
★Understand the process of Digital Cyber Forensics.
Be aware of the Cyber forensics Environments and standards.
Study the data and evidence collection activities
★Understand how to investigate digital evidence
Explore advanced techniques in Cyber Forensics.

UNIT-I DIGITAL FORENSICS PROCESS Computer Forensic Fundamentals - Applying Forensic Science to c

Computer Forensic Fundamentals - Applying Forensic Science to computers - Computer Forensic Services - Benefits of Professional Forensic Methodology -Steps taken by computer forensic specialists, Forensic Science, Digita Forensics, Digital Evidence, Digital Forensics Process – Identification, Collection, Examination, Analysis, Presentation Phases. Cyber Crime Law- International Legal Framework of Cybercrime Law, Digital Crime, Investigation Methods for Collecting Digital Evidence.

UNIT-II FORENSICS ENVIRONMENTS & STANDARDS

Hardware and Software Environments – Storage Devices, Operating System, File Systems, Metadata, Locating evidence in file systems-Password security, Encryption, and Hidden files. Digital Evidence Examination Guidelines – ACPO – IOCE – SWGDE -DFRWS – IACIS –HTCIA - ISO 27037.

UNIT-III DATA AND EVIDENCE COLLECTION

Identification of Data: Timekeeping, Forensic Identification and Analysis of Technical Surveillance Devices, Reconstructing Past Events: How to Become a Digital Detective, Useable File Formats, Unusable File Formats, Converting Files, Investigating Network Intrusions and Cyber Crime, Network Forensics and Investigating logs, Investigating network Traffic, Investigating Web attacks, Router Forensics. Cyber forensics tools and case studies.

UNIT-IV INVESTIGATING DIGITAL EVIDENCE

Applying Forensic Science to Computers- Preparation, Survey, Documentation, Preservation, Examination and Analysis, Reconstruction, Reporting Selecting and Analyzing Digital Evidence - Locating digital evidence, Categorizing files, Eliminating superfluous files, The Event Analysis tool, Cloud Analysis tool, The Lead Analysis tool, Volume Shadow Copy analysis tools, Validating the Evidence. Case study – illustrating the recovery of deleted evidence held in volume shadows.

UNIT-V ADVANCED CYBER FORENSICS

Windows Forensics Evidence Collection in Linux and Mac Operating system, Network Forensics Packet Capture using Wireshark, tshark and tcpdump, Memory Forensics Virtual Machine Forensics Use and Implementation of Virtual Machines in Forensic Analysis Cloud Forensics Forensic analysis of Cloud storage and data remnants, Examining Browsers, E-mails, Messaging Systems, and Mobile Phones, Internet and Cloud- Challenges in Digital Forensics.

Contact Hours : 45 Periods

Course Outcomes:

On completion of the course, the students will be able to

CO1 Identify the need for cybercrime forensics.

CO2 Examine the hardware, software components and standards responsible for seeking evidence.

CO3 Apply techniques for collecting data and evidences.

CO4 Analyze the methods for investigating digital evidences

CO5 Examine advanced techniques for Cyber Forensics.

9

9

Text Books:

1 Richard Boddington, Practical Digital Forensics, PACKT publishing, First Edition, 2016 ANDRÉ ÅRNES.

Re	ference Books:
1	John R.Vacca, Computer Forensics, Second Edition, Cengage Learning, 2005.
2	Richard E.Smith, Internet Cryptography, Third Edition, Pearson Education, 2008
3	Marjie T.Britz, Computer Forensics and Cyber Crime: An Introduction, Third Edition, Prentice Hall, 2013
4	Cory Altheide, Harlan Carvey, Digital Forensics with Open Source Tools, Syngress imprint of Elsevier.
	Bill Nelson, Amelia Phillips, Christopher Steuart, "Guide to Computer Forensics and Investigations", Fourth
	Edition, Course Technology.
6	Angus M.Marshall, "Digital forensics: Digital evidence in criminal investigation", John – Wiley and Sons, 2008.
7	Digital Evidence and Computer Crime, Eoghan Casey, Third Edition, 2011, Elsevier Inc.
8	Computer Forensics: Computer Crime Scene Investigation, 2nd Edition, John R. Vacca, Charles River Media, 2005.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	-	1	-	-	2	-	-	-	-	-	-	-	1	2	-
CO2	-	-	-	-	3	-	-	-	-	-	-	-	-	1	-	1
CO3	-	2	-	1	-	-	-	-	-	-	-	-	-	1	-	1
CO4	2	1	-	-	2	-	-	-	-	-	-	-	-	1	-	1
CO5	2	-	2	-	-	1	-	-	-	-	-	1	1	1	2	2
CO (Avg)	2.00	1.50	1.50	1.00	2.50	1.50	-	-	-	-	-	1.00	1.00	1.00	2.00	1.25

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	C
IT19P83	DATA WAREHOUSING AND	PE	3	0	0	3
	MINING					

Objectives: Broad objective of this course is to

★ Learn the concepts of Data Warehousing and Business Analysis.

★ Familiar with the concepts of Data Mining.

→ Understand the concepts of Association and Correlations Algorithms.

★ Understand the concepts of Classification Algorithms.

★ Understand the concepts of Clustering and outlier Analysis.

UNIT-I DATA WAREHOUSING

Data Warehouse: Basic Concepts, A Multitiered Architecture, Data Warehouse Models, Metadata Repository- Data Warehouse Modelling: Data Cube and OLAP, Data Cube: A Multidimensional Data Model: Schemas-Concept Hierarchies-OLAP Operations. (TB1-CH: 4)

UNIT-II DATA MINING AND VISUALIZATION

Introduction: Kinds of Data, Kinds of Patterns- Data Objects and Attribute Types- Data Visualization: Pixel-Oriented, Geometric Projection, Icon-Based, Hierarchical, Visualizing Complex Data and Relations- Data Pre-processing. (TB1-CH: 1&2)

UNIT-III ASSOCIATIONS AND CORRELATIONS

Basic Concepts: Frequent Itemsets, Closed Itemsets, and Association Rules - Frequent Item set Mining Methods: Finding Frequent Itemsets by Confined Candidate Generation, Growth Approach for Mining Frequent Itemsets, Mining Frequent Itemsets Using Vertical Data Format, Mining Closed and Max Patterns - Interesting Patterns: Pattern Evaluation Methods. (TB1-CH: 6)

UNIT-IV CLASSIFICATION

Basic Concepts- Decision Tree Induction: ID3- Bayes Classification Methods: Bayes' Theorem, Naive Bayesian Classification- Classification by Back propagation- Support Vector Machines-Techniques to improve classification accuracy-Prediction. (TB1-CH: 8)

UNIT-V CLUSTER ANALYSIS AND DATA MINING APPLICATIONS

Cluster Analysis- Partitioning Methods- Hierarchical Methods: Agglomerative versus Divisive Hierarchical Clustering-Density-Based Methods: DBSCAN- Grid-Based Methods: STING: Statistical Information Grid-Outlier Detection-Data Mining Applications: Science and Engineering-Data Mining Tools: Weka & R -Web Mining-Emerging Trends in Data Mining. (TB1-CH: 10)

Contact Hours : 45 Periods

Course Outcomes:

On completion of the course, the students will be able to

CO1 Apply the Data Warehousing and Business Analytics concepts.

CO2 Apply the concepts of Data Mining to large data sets.

CO3 Make use of Association and Correlations Algorithms.

CO4 Compare and Contrast the various classifiers.

CO5 Apply Clustering and outlier Analysis and to solve Data Mining Case Studies.

Text Books:

Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", Third Edition, Elsevier, 2012.

9

9

9

Re	eference Books:
1	Pang-Ning Tan, Michael Steinbach and Vipin Kumar, "Introduction to Data Mining", Person Education, 2007.
2	K.P. Soman, Shyam Diwakar and V. Aja, "Insight into Data Mining Theory and Practice", Eastern Economy
	Edition, Prentice Hall of India, 2006.
3	G. K. Gupta, "Introduction to Data Mining with Case Studies", Eastern Economy Edition, Prentice Hall of India,
	2006.
4	Daniel T.Larose, "Data Mining Methods and Models", Wiley-Interscience, 2006.
5	Alex Berson and Stephen J.Smith, "Data Warehousing, Data Mining and OLAP", Tata McGraw – Hill Edition,
	Thirteenth Reprint 2008.

CO/P O		PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	-	2	-	2	1	-	-	-	2	2	-	-	1	2
CO2	3	2	-	2	-	2	1	-	-	-	2	1	-	-	1	2
CO3	2	2	-	2	-	2	2	-	-	-	3	2	-	2	2	2
CO4	1	1	-	2	2	2	1	-	-	-	2	2	-	2	2	2
CO5	-	-	-	2	2	2	-	-	-	-	2	2	-	-	2	2
CO (Avg)	2.25	1.75	-	2.00	2.00	2.00	1.25	-	-	-	2.20	1.80	-	2.00	1.60	2.00

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	С
IT19P84	PARALLEL COMPUTING	PE	3	0	0	3

Objectives: Broad objective of this course is
★ To study the scalability and clustering issues and the technology necessary for them.
★ To understand the technologies enabling parallel computing.
★ To study the different types of interconnection networks.
★ To study the different parallel programming models.
★ To study the software support needed for shared memory programming.

UNIT-I	SCALABILITY AND CLUSTERING	9
Evolution o	f Computer Architecture – Dimensions of Scalability – Parallel Computer Models – Basic Concepts	Of
Clustering -	- Scalable Design Principles – Parallel Programming Overview – Processes, Tasks and Threads –	
Parallelism	Issues – Interaction / Communication Issues –Semantic Issues In Parallel Programs.	
UNIT-II	ENABLING TECHNOLOGIES	9
Memory Te	relopment Trends – Principles of Processor Design – Microprocessor Architecture Families – Hierar chnology – Cache Coherence Protocols – Shared Memory Consistency – Distributed Cache Memor e – Latency Tolerance Techniques – Multithreaded Latency Hiding.	
UNIT-III	SYSTEM INTERCONNECTS	9
	terconnection Networks – Network Topologies and Properties – Buses, Crossbar and Multistage Sw ultithreading – Synchronization Mechanisms.	vitches,
		vitches,
Software M UNIT-IV	ultithreading – Synchronization Mechanisms.	
Software M UNIT-IV	ultithreading – Synchronization Mechanisms. PARALLEL PROGRAMMING	
Software M UNIT-IV Paradigms A UNIT-V	ultithreading – Synchronization Mechanisms. PARALLEL PROGRAMMING And Programmability – Parallel Programming Models – Shared Memory Programming.	9

Cou	rse Outcomes:					
On completion of the course, the students will be able to						
CO1	Analyze different methods used for Scalability and Clustering.					
CO2	Study the Enabling Technologies of Parallel Computing.					
CO3	Design various System interconnects using Network topologies.					
CO4	Do the analysis and implementation procedures for Parallel programming.					
CO5	Understand the concept of message passing programming.					

Te	xt Books:
1	Kai Hwang and Zhi.Wei Xu, "Scalable Parallel Computing", Tata McGraw-Hill, New Delhi, 2003.

Reference Books:	
	David E. Culler & Jaswinder Pal Singh, "Parallel Computing Architecture: A Hardware/Software Approach", Morgan Kaufman Publishers, 1999.
2	Michael J. Quinn, "Parallel Programming in C with MPI & OpenMP", Tata McGraw-Hill, New Delhi, 2003.
3	Kai Hwang, "Advanced Computer Architecture" Tata McGraw-Hill, New Delhi, 2003.

CO/P	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO11	PO1 2	PSO	PSO	PSO	PSO
0													1	2	3	4
CO1	3	2	-	3	-		-	-		-	-	-	3	-	3	-
CO2	-	3	3	2	-		-	-		-	3	-	3	-	3	-
CO3	-	3	3	3	-		-	-		-	3	-	3	-	3	-
CO4	-	3	2	3	-		-	-		-	3	-	3	-	-	-
CO5	-	2	3	3	-		-	-		-	-	-	-	3	-	-
CO (Avg)					-		-	-		-						
(3.00	2.60	2.75	2.80							3.00	#DIV/0!	3.00	3.00	3.00	-

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
IT19P85	SOCIAL NETWORKS	PE	3	0	0	3

Ob	jectives:
*	Understand the basics of Social Networks
*	Understand the ties and homophily
*	Understand the market and StrategicInteraction in Networks
*	Understand link analysis and searching
*	Understand the concepts of modeling networks

UNIT-I INTRODUCTION

Aspects of Networks; Representing and Measuring Networks-Representing Networks-Statistics and Characteristics of Network; Graphs-Paths and Connectivity-Distance and Breadth First Search-Basic Graph Theory; Network Datasets: An Overview

UNIT-II EMPIRICAL BACKGROUND ON SOCIAL

Observations about the Structure of Networks; Strong and Weak Ties; Networks in Their Surrounding Contexts Homophily-Mechanisms Underlying Homophily: Selection and Social Influence-Affiliation-Tracking Link Formation ir On-Line Data-A Spatial Model of Segregation; Positive and Negative Relationships

UNIT-III MARKETS AND STRATEGIC INTERACTION IN NETWORKS

Matching Markets-Bipartite Graphs and Perfect Matchings-Valuations and Optimal Assignments-Prices and the Market-Clearing Property-Constructing a Set of Market-Clearing Prices; Network Models of Markets with Intermediaries Bargaining and Power in Networks

UNIT-IV INFORMATION NETWORKS AND THE WORLD WIDE WEB

The Structure of the Web; 4 Link Analysis and Web Search; Growing Random Networks- Uniform Randomness: an Exponential Degree Distribution- Hybrid Models- Small Worlds, Clustering, and Assortativity; Cascading Behavior in Networks; Institutions and Aggregate Behavior- Voting

UNIT-V LEANRING AND GAME THEORETICAL MODELLING

Learning and Networks; Decisions, Behavior, and Games on Networks; Game-Theoretic Modeling of Network Formation; Allocation Rules, Networks, and Cooperative Games; Observing and Measuring Social Interaction-Specification and Identification- Community Structures, Block Models, and Latent Spaces

9

9

9

Total Contact Hours	:	45

Course Outcomes:	٦							
On completion of course students will be able to								
CO1 Remember the basics of Social Networks								
CO2 Create the ties and homophily								
CO3 Apply the market and Strategic Interaction in Networks								
CO4 Perform link analysis and searching								
CO5 Develop the model for social networks								

Text Book(s):

1 Networks, Crowds and Markets by David Easley and Jon Kleinberg, Cambridge University Press, 2010.

2 Social and Economic Networks by Matthew O. Jackson, Princeton University Press, 2010.

Re	eference Books(s):
1	Peter Mika, "Social Networks and the Semantic Web", , First Edition, Springer 2007.
2	BorkoFurht,"Handbook of Social Network Technologies and Applications", 1st Edition, Springer, 2010
3	GuandongXu ,Yanchun Zhang and Lin Li, "Web Mining and Social Networking – Techniques and applications", First Edition Springer, 2011.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	-	2	-	2	1	-	-	-	2	2	-	-	1	2
CO2	3	2	-	2	-	2	1	-	-	-	2	1	-	-	1	2
CO3	2	2	-	2	-	2	2	-	-	-	3	2	-	2	2	2
CO4	1	1	-	2	2	2	1	-	-	-	2	2	-	2	2	2
CO5	-	-	-	2	2	2	-	-	-	-	2	2	-	-	2	2
CO(Av								-	-	-						
g)	2.25	1.75	-	2.00	2.00	2.00	1.25				2.20	1.80	-	2.00	1.60	2.00

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

PROFESSIONAL ELECTIVE - V

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	C
IT19P90	STARTUP MANAGEMENT	PE	3	0	0	3

Objectives: Broad objective of this course is

★ To understand the basic concepts of Entrepreneurship and Startups.

★ To learn and internalize the process of founding a startup.

★ To provide strategies for successful implementation of ideas.

To learn the processes of transforming the company.

★ To have exposure to startup supporting institutions and schemes in India.

UNIT-I BASICS OF ENTREPRENEURSHIP

Evolution of Entrepreneurship –Entrepreneurs Characteristics, Functions, Qualities, and Types, Entrepreneurship in India- Role of Entrepreneurship in Economic Development - Growth and Problems of Entrepreneurship in India.

UNIT-II STARTUP IDEA

Entry strategies -New product, Franchising, Partial Momentum Sponsorship and Acquisition. Intellectual Property – Creation and Protection. Business Plan- Source of product for business, Market analysis, Feasibility study, Capital formation, Budgeting project profile preparation, Financial outlook and Evaluation criteria.

UNIT-III CREATING A MODERN COMPANY

Lean Startup Tools and Processes – Leap of Faith assumptions, Minimum Viable product, Validated learning, Build-Measure-Plan, Pivot or Persevere. Management for Innovation – Accountability, Process, Culture, People and Transformation outcome.

UNIT-IV TRANSFORMING THE COMPANY

Critical Mass, Scaling Up and Deep systems. Innovation Accounting – Simple Dashboard, Business case and Bet Present value. The Global View. Role of Public policy.

UNIT-V STARTUP SUPPORTING INSTITUTIONS & SCHEMES IN INDIA

Startup Supporting Institutions –SSIB, NABARD, SIDO, NSIC, SIDESI, NBMSME, KVIC, MGIRI, Coir Board, NISIET. Startup Schemes in India- MGS, M-SIPS, The Venture Capital Assistance Scheme, Credit Guarantee, Raw material assistance, Infrastructure development scheme, MSME Market Development Assistance, Credit Linked Capital Subsidy for Technology Up gradation, AIC, Bridge Loan Against MNRE Capital Subsidy.

Contact Hours : 45 Periods

0

9

9

9

	se Outcomes:	
On co	ompletion of the course, the students will be able to	
CO1	Understand the basic concepts of Entrepreneurship and Startups.	
CO2	Write a business Plan.	
	Design strategies for successful implementation of ideas.	
	Apply the processes of transforming the organization.	
CO5	Understand and remember the process and role of Startup Supporting Institutions and Schemes in India.	

Te	xt Books:
1	The Startup Way: How Modern Companies Use Entrepreneurial Management to Transform Culture and Drive
	Long-Term Growth -Eric Ries.
	Entrepreneurial Development – S S Khanka S. Chand Publishing, 2006 TheDynamics of Entrepreneurial
	Development & Management by Desai, Vasant, Himalaya Publishing House, Delhi.
3	Managing Small Business by Longenecker, Moore, Petty and Palich, Cengage Learning, India Edition.

Reference Books:

1 Entrepreneurship: New Venture Creation by David H. Holt.

2 Entrepreneurship Development New Venture Creation by Satish Taneja, S.L.Gupta.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-	2
CO2	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	1
CO3	-	-	-	-	-	2	-	-	-	-	2	-	-	-	-	1
CO4	-	-	-	-	-	-	2	-	3	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	1	-	2	-	3	2	-	-	-	-
CO (Avg)	-	-	-	-	-	1.50	1.33	-	2.00	-	2.50	2.00	-	-	-	1.33

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	С
IT19P86	LATERAL THINKING TECHNIQUES	PE	3	0	0	3

Oł	Objectives: Broad objective of this course is						
-	★To understand the types of thinking.						
-	To understand the nature and application of Lateral Thinking.						
-	To understand the techniques involved in Lateral Thinking.						
-	To solve more Lateral Thinking puzzles of easy, medium and difficult levels.						
-	To study various case studies where Lateral Thinking is used.						

UNIT-I INTRODUCTION	9						
The way the mind works-five stages of thinking-Basic process in thinking-The need for innovation-Change, Creati	ivity						
and Innovation-Lateral Thinking-Difference between Lateral and Vertical Thinking-Attidudes Towards Lateral							
Thinking.							
UNIT-II LATERAL THINKING TECHNIQUES							
Basic Nature of Lateral Thinking-Use of Lateral Thinking-Examples of Lateral Thinking- Lateral Thinking							
Techniques-The generation of Alternatives- Innovation-Suspended Judgment.							
UNIT-III LATERAL THINKING DESIGN	9						
Design-Dominant ideas and crucial factors-Fractionation-The reversal method and Brainstorming-Analogies.							
UNIT-IV PROBLEM SOLVING	9						
Ask Searching Questions-Choice of Entry point and Attention Area-Random Stimula	ation-						
Concepts/Divisions/Polarization-The new word PO-Blocked by openness-Description/problem solving/design.							
	0						
UNIT-V CASE STUDY 9							
How to solve Lateral Thinking puzzles?-Examples of Lateral Thinking puzzles-Easy, Hard and Difficult puzzlers. Case							
Study-Motorola Lateral Thinking Six Hats- Lateral Thinking Stimulates a \$300K Business Impact- ABB Case Studies							
Featured at Global Creativity & Innovation Seminar.							
Contact Hours : 45 Per	iods						

Course Outcomes:					
On completion of the course, the students will be able to					
CO1 Understand the different types of thinking and differences between them.					
CO2 Demonstrate the Lateral thinking techniques.					
CO3 Understand the challenging assumptions and design					
CO4 Solve problems by applying lateral thinking techniques					
CO5 Apply lateral thinking to find business Solutions.					

Te	xt Books:
1	Dr.Edward de Bono "Lateral Thinking Creativity step by step" Phoenix books publisher.
2	Paul Sloane "The Leader's Guide to Lateral Thinking Skills" 3rd Edition.
3	Paul Sloane "Lateral Thinking Puzzlers" Puzzle Wright Press.

ſ	Web Link						
Ī	1	https://www.udemy.com/course/master-lateral-thinking/					
Ī	2	https://www.lyndacurtin.com/index.php/services/case-studies/96-lateral-thinking-stimulates-a-300k-business-impact					
	3	https://www.slideshare.net/jaydeepchaurasia/motorolalateralthinkingsixhatscasestudy					

CO/P	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO	PSO	PSO	PSO
0													1	2	3	4
CO1	-	2	-	-	-	-	-	-	-	-	-	-	2	-	-	-
CO2	-	1	-	-	I	-	-	-	1	-	-	-	1	-	-	-
CO3	-	2	-	-	-	1	-	-	-	-	-	-	-	1	1	-
CO4	-	3	I	2	I	1	I	-	-	-	-	-	2	2	-	-
CO5	-	2	-	3	-	2	-	-	2	-	3	2	2	2	-	2
CO (Avg)	-	2.00	-	2.50	-	1.50	-	-	1.50	-						
× · 8/											3.00	2.00	1.75	1.67	1.00	2.00

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	P	С
IT19P87	TOTAL QUALITY MANAGEMENT	PE	3	0	0	3

Ob	jectives: Broad objective of this course is
*	To understand the concept of Quality.
	To provide leadership in shaping a culture for quality within an organization and determining the effectiveness of quality.
*	To learn the concept of quality tools, management tools and statistical fundamentals to improve quality.
*	To provide a clear understanding to apply TQM tools as a means to improve quality.

★ To have exposure to challenges in Quality Improvement Programs.

UNIT-I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention.

UNIT-II TQM PRINCIPLES

Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT-III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT-IV TQM TOOLS AND TECHNIQUES II

Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT-V QUALITY MANAGEMENT SYSTEM

Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector-Specific Standards—AS 9100, TS16949 and TL 9000-- ISO 9001 Requirements—Implementation— Documentation—Internal Audits—Registration-ENVIRONMENTAL MANAGEMENT SYSTEM: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001— Benefits of EMS.

Contact Hours : 45 Periods

Course Outcomes:

On completion of the course, the students will be able to

CO1 Understand quality concepts and philosophies of TQM

CO2 Apply TQM principles and concepts of continuous improvement

CO3 Apply and analyze the quality tools, management tools and statistical fundamentals to improve quality

CO4 Understand the TQM tools as a means to improve quality

CO5 Remember and understand the quality systems and procedures adopted

Text Books:

1 Dale H.Besterfiled, Carol B.Michna,Glen H. Besterfield,MaryB.Sacre,HemantUrdhwareshe and RashmiUrdhwareshe, —Total Quality Managementl, Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

9

9

9

9

Re	ference Books:
	James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8 th Edition, First Indian Edition, Cengage Learning, 2012.
2	Janakiraman. B and Gopal .R.K., "Total Quality Management - Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.
3	Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006
4	ISO9001-2015 standards.

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	-	-	-	-	-	1	1	-	-	-	-	-	-	1	1	1
CO2	-	-	-	-	-	2	2	-	-	-	-	-	-	1	2	1
CO3	1	1	-	-	2	-	1	1	-	-	-	-	-	1	2	1
CO4	2	1	-	1	2	-	1	1	-	-	-	-	-	1	2	1
CO5	2	-	-	1	1	2	-	-	-	-	-	-	-	1	1	1
CO (Avg)									-	-	-	-	-			
× • 8/	1.67	1.00	-	1.00	1.67	1.67	1.25	1.00						1.00	1.60	1.00

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High) No correlation : "-"

Subject Code	Subject Name (Theory Course)	Category	L	Т	Р	C
IT19P88	PROFESSIONAL ETHICS	PE	3	0	0	3

Objectives: Broad objective of this course is to l	earn
\bigstar To understand the concept of Human Values.	
★ To create an awareness on Engineering Ethics	
★ To learn about engineering as social experime	nts.
★ To create awareness on Safety, Risk and Right	ts of others.
★ To have exposure on Global Issues.	

UNIT-I HUMAN VALUES

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

UNIT-II ENGINEERING ETHICS

Senses of _Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.

UNIT-III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT-IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

UNIT-V GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility.

Contact Hours : 45 Periods

Course Outcomes:					
On completion of the course, the students will be able to					
CO1 Understand the concepts of Human values.					
CO2 Apply ethics in society.					
CO3 Discuss the ethical issues related to engineering.					
CO4 Realize the responsibilities and rights in the society.					
CO5 Gain Knowledge on Global Issues.					

Text Books:

1	Mike W. Martin and Roland Schinzinger, —Ethics in Engineering Tata McGraw Hill, New Delhi, 2003.
2	Govindarajan M, Natarajan S, Senthil Kumar V. S, —Engineering Ethics, Prentice Hall of India, New Delhi, 2004.

10

9

0

9

Re	ference Books:				
1	Charles B. Fleddermann, —Engineering Ethics, Pearson Prentice Hall, New Jersey, 2004.				
	Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, -Engineering Ethics - Concepts and Cases,				
	Cengage Learning, 2009.				
3	John R Boatright, —Ethics and the Conduct of Business, Pearson Education, New Delhi, 2003.				
4	Edmund G Seebauer and Robert L Barry, —Fundamentals of Ethics for Scientists and Engineers, Oxford University				
	Press, Oxford, 2001.				
5	Laura P. Hartman and Joe Desjardins, —Business Ethics: Decision Making for Personal Integrity and Social				
	Responsibility Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013. 6. World Community Service Centre, _				
•	Value Education', Vethathiri publications, Erode, 2011.				

W	Web Link						
1	www.onlineethics.org						
2	www.nspe.org						
3	www.globalethics.org						
4	www.ethics.org						

CO/P O	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
C01	-	-	-	-	-	-	2	3	2	-	-	3	-	-	3	-
CO2	-	-	-	-	-	-	3	3	-	-	-	3	-	2	3	-
CO3	-	-	-	-	-	-	3	3	-	-	-	3	-	2	3	-
CO4	-	-	-	-	-	-	3	3	2	-	-	3	-	-	3	-
CO5	-	-	-	-	-	-	3	3	2	-	-	3	-	-	3	-
CO (Avg)	-	-	-	-	-	-	2.80	3 00	2.00	-	-	3.00	_	2.00	3.00	-

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial(High)

No correlation : "-"

Subject Code	Subject Name (Theory course)	Category	L	Τ	Р	C
IT19P89	SOFTWARE PROJECT MANAGEMENT	PE	3	0	0	3

Ob	Objectives:					
*	★ To understand the outline activities of software Project Management					
*	★ To Learn the Metrics for Software cost and effort estimation					
*	★ To show the activity planning and risk management activities					
*	★ To exhibit the project management activities and learn the usage of tools					
*	To evaluate the recruitment of Project Personnel					

UNIT-I PROJECT EVALUATION AND PROJECT PLANNING

Importance of Software Project Management – Activities Methodologies – Categorization of Software Projects – Setting objectives – Management Principles – Management Control – Project portfolio Management – Cost-benefit evaluation technology – Risk evaluation – Strategic program Management – Stepwise Project Planning.

UNIT-II PROJECT LIFE CYCLE AND EFFORT ESTIMATION

Software process and Process Models – Choice of Process models - Incremental delivery – Rapid Application development – Agile methods – Extreme Programming – SCRUM – Managing interactive processes – Basics of Software estimation – Effort and Cost estimation techniques – COCOMO Model - A Parametric Productivity Model - Staffing Pattern.

UNIT-III ACTIVITY PLANNING AND RISK MANAGEMENT

Objectives of Activity planning – Project schedules – Activities – Sequencing and scheduling – Network Planning models – Forward Pass & Backward Pass techniques – Critical path (CRM) method – Risk identification – Assessment – Monitoring – PERT technique – Monte Carlo simulation – Resource Allocation – Creation of critical patterns – Cost schedules.

UNIT-IV PROJECT MANAGEMENT AND TOOLS

Framework for Management and control – Collection of data Project termination – Visualizing progress – Cost monitoring – Earned Value Analysis- Project tracking – Change control- Software Configuration Management – Managing contracts – Contract Management - Gantt Chart - MS Project - Reporting Dashboards - Timesheets

UNIT-V STAFFING IN SOFTWARE PROJECTS

Managing people – Organizational behavior – Best methods of staff selection – Motivation – The Oldham-Hackman job characteristic model – Ethical and Programmed concerns – Working in teams – Decision making – Team structures – Virtual teams – Communications genres – Communication plans.

Total Contact Hours:45

9

9

Course Outcomes:

On completion of course students will be able to

CO1 Implement Project Management principles during software development.

CO2 Apply Cost and effort estimation metrics for real projects

CO3 Use activity planning templates and practice risk management

CO4 Practice project management activities and learn the usage of project management tools

CO5 Adopt best practices for recruitment and employee motivation

Text Book(s):

1 Bob Hughes, Mike Cotterell and Rajib Mall: Software Project Management – Fifth Edition, Tata McGraw Hill, New Delhi, 2012.

Re	Reference Books(s):					
1	Robert K. Wysocki "Effective Software Project Management" – Wiley Publication, 2011.					
2	Walker Royce: "Software Project Management"- Addison-Wesley, 1998.					
3	Gopalaswamy Ramesh, "Managing Global Software Projects" – McGraw Hill Education (India), Fourteenth Reprint					
	2013.					
4	The Project Management Tool Kit: 100 Tips and Techniques for Getting the Job Done Right, Tom Kendrick					

CO/P	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO	PSO	PSO	PSO
0													1	2	3	4
CO1	2	-	-	-	2	-	2	-	2	-	-	2	1	3	-	2
CO2	2	3	-	2	2	1	-	1	-	1	2	-	-	2	-	-
CO3	-	-	1	-	1	1	-	-	1	-	-	1	2	-	1	2
CO4	2	2	-	3	-	2	1	-	-	2	-	-	-	1	-	-
CO5	-	-	-	1	-	-	1	-	-	1	1	-	1	1	-	-
CO (Avg)																
(8)	2.00	2.50	1.00	2.00	1.67	1.33	1.33	1.00	1.50	1.33	1.50	1.50	1.33	1.75	1.00	2.00

Correlation levels 1, 2 or 3 are as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) No correlation : "-"

IT19712	PROJECT PHASE I	L T P C
		0084

OBJECTIVE:

• To enable the students to do analysis and design of the industry- relevant and real-time projects on various core domains of information technology.

Course Outcomes	Course Outcome Statements
C01	Analyze complex Engineering problems related Information Technology to reach substantiated conclusions by applying knowledge of Mathematics, Engineering fundamentals and Engineering specialization.
CO2	Create research based solutions for complex computer Engineering or multidisciplinary problems, and design system components or processes by applying appropriate techniques, resources, and modern IT tools.
CO3	Apply contextual computer science engineering solutions in the sustainable development towards environmental, societal, health, safety, legal, cultural issues and needs
CO4	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
CO5	Perform effectively as an individual, and as a member or leader in diverse teams, Communicate effectively and write effective reports and design documentation, ability to engage themselves in life-long learning

IT19811 PROJECT PHASE II L T P C 0 0 12 6 0 0

OBJECTIVE:

• To enable the students to do the implementation of the industry- relevant and real-time projects on various core domains of information technology.

Course Outcomes	Course Outcome Statements
C01	Analyze complex Engineering problems related Information Technology to reach substantiated conclusions by applying knowledge of Mathematics, Engineering fundamentals and Engineering specialization.
CO2	Create research based solutions for complex computer Engineering or multidisciplinary problems, and design system components or processes by applying appropriate techniques, resources, and modern IT tools.
CO3	Apply contextual computer science engineering solutions in the sustainable development towards environmental, societal, health, safety, legal, cultural issues and needs
CO4	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
CO5	Perform effectively as an individual, and as a member or leader in diverse teams, Communicate effectively and write effective reports and design documentation, ability to engage themselves in life-long learning