RAJALAKSHMI ENGINEERING COLLEGE

(An Autonomous Institution Affiliated to Anna University Chennai)

Department of Mechanical Engineering

DEPARTMENT VISION

To provide a world class Mechanical Engineering education through innovation and

excellence in Teaching and Research.

DEPARTMENT MISSION

- To impart high quality technical education and prepare Mechanical Engineers with all round knowledge of multi-disciplinary branches of Engineering and Technology.
- To foster skill sets required to be a global professional for industry, research and technology management.
- To provide consultancy to the neighborhood industries.
- To cultivate the spirit of entrepreneurship.

PEO I

To provide students with sound foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, analyze and solve engineering problems and to prepare them for graduate studies and for successful careers in industry.

PEO II

To impart students with skills for design, improvement and installation of Mechanical and allied integrated systems of men and material.

PEO III

To educate the students on designing the modern mechanical systems and expose them to industrial practices for better employability and adaptability.

PEO IV

To instill the values, skills, leadership and team spirit for comprehensive and wholesome personality, to promote entrepreneurial interest among students and to create a fervor for use of Engineering in addressing societal concerns.

Programme Outcomes (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- 1. To innovate a Mechanical System which meets the desired specifications and requirements using CAE tools.
- 2. To explore alternate materials for automobile, manufacturing and process industries
- 3. To lead professional career in industries or an entrepreneur by applying Engineering and Management principles and practices.

B.E. MECHANICAL ENGINEERING

REGULATIONS 2019

CURRICULUM Choice Based Credit System SEMESTER I

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY							
1	HS19151	Technical English	HS	3	2	1	0	3
2	MA19151	4	3	1	0	4		
3	PH19141						2	4
4	4 GE19101 Engineering Graphics ES 4						0	4
PRAC	TICALS							
5		Engineering Practices - Civil and Mechanical	ES	2	0	0	2	1
NON-	CREDIT - N	IANDATORY COURSE						
6	MC19101	3	3	0	0	0		
	TOTAL 21 13							

SEMESTER II

SL.	COURSE	COURSE TITLE	CATEGORY	CONTACT	L	Т	Р	С
NO.	CODE	COURSE IIILE	CATEGORI	PERIODS	Ľ	1	I	C
THEC	DRY							
1.	MA19251	Differential Equations and	BS	4	3	1	0	4
2.CY19241Engineering ChemistryBS5						0	2	4
3.	GE19141	Programming using C	ES	6	2	0	4	4
4.	ME19201	Manufacturing Processes PC 3		3	3	0	0	3
5.	GE19201	Engineering Mechanics	ES	3	2	1	0	3
PRAC	CTICALS							
6	GE19122	Engineering Practices- Electrical and Electronics	ES	2	0	0	2	1
NON-	CREDIT - N	MANDATORY COURSE						
7.	7.MC19102Indian Constitution and Freedom Movement (Non-Credit)MC3							0
	TOTAL 26 16 2 8 1							

SEMESTER-III

S.NO	Sub. Code	SUBJECT TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	GE19301	Life Science for Engineers	BS	3	3	0	0	3
2	MA19355	Transforms and Applications	BS	4	3	1	0	4
3	ME19301	Engineering Thermodynamics	PC	4	3	1	0	4
4	ME19302	Metal cutting and Machine tools	PC	3	3	0	0	3
5	ME19303	Kinematics of Machinery	PC	3	2	1	0	3
6	EE19241	Basic Electrical Engineering	ES	5	3	0	2	4
7	ME19311	Machine Drawing Lab	PC	3	0	0	3	1.5
8	ME19312	Manufacturing Tech Lab	PC	3	0	0	3	1.5
		TOTAL		28	17	3	8	24

SEMESTER-IV

S.N O	Sub. Code	SUBJECT TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	MA19455	Statistics & Numerical Methods	BS	4	3	1	0	4
2	ME19401	Thermal Engineering	PC	3	3	0	0	3
3	ME19402	Strength of Materials	PC	3	3	0	0	3
4	ME19403	Fluid Mechanics & Machinery	PC	3	3	0	0	3
5	ME19404	Engineering Materials & Metallurgy	PC	3	3	0	0	3
6	GE19303	Economics for Engineers	ES	3	3	0	0	3
7	ME19411	Strength of Materials and Fluid Mechanics and Machinery Laboratory	РС	3	0	0	3	1.5
8	ME19412	Thermal Engineering Lab - I	РС	3	0	0	3	1.5
9.	GE19421	Soft Skills - I	EEC	2	0	0	2	1
NON-	CREDIT - MA	NDATORY COURSE						
10	MC19301	Essence of Indian Traditional knowledge (Non-Credit)	МС	3	3	0	0	0
		Total Credit		30	21	1	8	23

S.NO	Sub. Code	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	ME19501	Design of Machine Elements	PC	3	3	0	0	3
2	ME19502	Heat and Mass Transfer	PC	3	3	0	0	3
3	ME19541	Dynamics of Machines	PC	5	3	0	2	4
4	ME19542	Metrology and Measurements	PC	5	3	0	2	4
5	EC19351	Basic Electronics Engineering	ES	3	3	0	0	3
		OPEN ELECTIVE - I	OE	3	3	0	0	3
6	ME19511	CAD/CAM LAB	РС	3	0	0	3	1.5
7	ME19512	Thermal Engineering Lab-II	PC	3	0	0	3	1.5
9	GE19521	Soft Skills - II	EEC	2	0	0	2	1
		Total Credit		30	18	0	12	24

SEMESTER-V

SEMESTER-VI

S.NO	Sub. Code	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	ME19601	Finite Element Analysis	PC	3	3	0	0	3
2	ME19602	Gas Dynamics and Jet Propulsion	PC	3	3	0	0	3
3	ME19603	Total Quality Management	PC	3	3	0	0	3
4	ME19604	Design of Transmission systems	PC	3	3	0	0	3
5		Professional Elective-I	PE	3	3	0	0	3
6		Open Elective - II	OE	3	3	0	0	3
7	GE19621	Problem Solving Techniques	EEC	2	0	0	2	1
8	ME19611	Simulation and Analysis Laboratory	РС	3	0	0	3	1.5
9	ME19612	Innovation and Design thinking for Mechanical Engineer	EEC	3	0	0	3	1.5
		Total Credit		26	18	0	8	22

S.NO	Sub. Code	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	ME19701	Automobile Engineering	PC	3	3	0	0	3
2.	ME19702	Automation in Manufacturing	PC	3	3	0	0	3
3	ME19741	Mechatronics	PC	5	3	0	2	4
4		Professional Elective II	PE	3	3	0	0	3
5		Professional Elective III	PE	3	3	0	0	3
6		Professional Elective IV	PE	3	3	0	0	3
7	ME19711	Project – Phase I	EEC	2	0	0	2	1
8	ME19712	Comprehension	EEC	2	0	0	2	1
		Total Credit		24	18	0	6	21

SEMESTER-VII

SEMESTER-VIII

S.NO	Sub. Code	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1		Professional Elective V	PE	3	3	0	0	3
2		Professional Elective VI	PE	3	3	0	0	3
3	ME19811	Project – Phase II	EEC	16	0	0	16	8
		Total Credit		22	6	0	16	14

Summary of Credits:

CATEGORY	I	II	ш	IV	V	VI	VII	VII	Credits	(%)
BS	8	8	4	4	0	0	0	0	24	14.7
HS	3	0	0	0	0	0	-	-	3	1.8
ES	5	8	7	3	3	-	-	-	26	16
РС	0	3	13	15	17	13.5	10	0	71.5	44
PE	0	0	0	0	0	3	9	6	18	11.0
EEC	0	0	0	1	1	2.5	2	8	14.5	8.8
OE	0	0	0	0	3	3	0	0	6	3.7
Non-Credit*/ (Mandatory)		\checkmark		\checkmark						
TOTAL	16	19	24	23	24	22	21	14	163	100

PROFESSIONAL ELECTIVES FOR B.E. MECHANICAL ENGINEERING

SL. NO	COURSE CODE	COURSE TITLE	CATEGOR Y	CONTAC T PERIODS	L	Т	Р	С
1.	ME19P61	Composite Materials and Mechanics	PE	3	3	0	0	3
2.	ME19P62	Unconventional Machining Processes	PE	3	3	0	0	3
3.	ME19P63	Renewable Sources of Energy	PE	3	3	0	0	3
4.	ME19P64	Industry 4.0	PE	3	3	0	0	3
6.	ME19P65	Robotics	PE	3	3	0	0	3
7.	ME19P66	Computer Aided Design	PE	3	3	0	0	3
8.	ME19P67	Industrial Safety	PE	3	3	0	0	3
9.	ME19P68	Geometric Dimensioning and Tolerancing	PE	3	3	0	0	3

SEMESTER VI ELECTIVE I

SEMESTER VII ELECTIVE II

SL. NO	COURSE CODE	COURSE TITLE	CATEGOR Y	CONTAC T PERIODS	L	Т	Р	С
1.	ME19P71	Material Testing and Characterization	PE	3	3	0	0	3
2.	ME19P72	Additive Manufacturing	PE	3	3	0	0	3
3.	ME19P73	Introduction to Power Plant Engineering	PE	3	3	0	0	3
4.	GE19P71	Principles of Management	PE	3	3	0	0	3

SEMESTER-VII ELECTIVE III

SL. NO	COURSE CODE	COURSE TITLE	CATEGOR Y	CONTAC T PERIODS	L	Т	Р	С
1.	ME19P74	Hydraulics and Pneumatics	PE	3	3	0	0	3
2.	ME19P75	Refrigeration and Air conditioning	PE	3	3	0	0	3
3.	ME19P76	Process planning and Cost Estimation	PE	3	3	0	0	3
4.	GE19P72	Entrepreneurship Development	PE	3	3	0	0	3

ELECTIVE IV

SL. NO	COURSE CODE	COURSE TITLE	CATEGOR Y	CONTAC T PERIODS	L	Т	Р	С
1.	ME19P77	Production Planning and Control	PE	3	3	0	0	3
2.	ME19P78	Welding Technology	PE	3	3	0	0	3
3	ME19P79	Hybrid and Electrical Vehicles	PE	3	3	0	0	3
4	GE19P73	Marketing Management	PE	3	3	0	0	3

SEMESTER VIII

ELECTIVE V

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	C				
1.	ME19P81	Operation Research	PE	3	3	0	0	3				
2.	ME19P82	Design of Jigs, Fixture & Press tools	PE	3	3	0	0	3				
3.	ME19P83	Non-Destructive Testing and Evaluation	PE	3	3	0	0	3				
4.	ME19P84	Computational Fluid Dynamics	PE	3	3	0	0	3				
5.	ME19P85	Design of Experiments	PE	3	3	0	0	3				

ELECTIVE VI

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	ME19P86	Research Methodology and Intellectual Property Rights	PE	3	3	0	0	3
2.	ME19P87	Energy Engineering and Management	PE	3	3	0	0	3
3.	ME19P88	Supply chain and Logistics management	PE	3	3	0	0	3
4	ME19P89	Corrosion and Surface Engineering	PE	3	3	0	0	3

OPEN ELECTIVES OFFERED BY MECHANICAL ENGINEERING DEPARTMENT

- 1. OME1901 Supply Chain Management
- 2. OME1902 Basics of 3D printing and Additive Manufacturing
- 3. OME1903 Industrial Safety Engineering

SCHEDULE OF COURSES

SEM			ORY COURS	ES			THEORY	CUM LAB		AB COURSES		MANDATORY COURSES	CREDITS
1.	HS19151 Technical English (3)	MA19151 Algebra & Calculus (4)	GE19101 Engg. Graphics (4)				PH19141 Physics of Materials (4)		GE19121 Eng. Practices- Civil & mech (1)			MC19101 EVS	16
2.	MA19251 Differential Equation and vector calculus (3)	ME19201 Manufacturing Processes (3)	GE19201 Engineering Mechanics (3)				CY19241 Engineering Chemistry (4)	GE19141 Programming In C (4)	GE19122 Eng. Practices- Electrical & Electronics (1)			MC19102 Indian Constitution and Freedom Movement	19
3.	GE19301 Life Science for Engineers (3)	MA19355 Transforms & Application (4)	ME19301 Engineering Thermodyna mics (3)	ME19302 Metal Cutting & machine tools (3)	ME19303 Kinematics Of machinery (3)		EE19241 Basic Electrical Engineering (4)		ME19311 Machine Drawing Lab (1.5)	ME19312 Manufacturing Technology Lab (1.5)			24
4.	MA19455 Statistics & Numerical Method (4)	ME19401 Thermal Engineering (3)	ME19402 Strength of Materials (3)	ME19403 Fluid mechanics & Machinery (3)	ME19404 Engg. Materials & metallurgy (3)	GE19303 Economics for Engineers (3)			ME19411 Strength of Materials and Fluid Mechanics and Machinery Laboratory (1.5)	ME19412 Thermal Engg Lab-I (1.5)	GE19421 Soft Skill Lab-I (1)	MC19301 Essence of Indian Traditional knowledge	23
5.	ME19501 Design of machine Element (3)	ME19502 HMT (3)	EC19351 Basic Electronics Engineering (3)	OPEN ELECTIVE – I (3)			ME19541 Dynamics of machines (4)	ME19542 Metrology & Measurement (4)	ME19511 CAD/CAM Lab (3)	ME19512 Thermal Engg Lab-II (3)	GE19521 Soft Skill lab -II (1)		24
б.	ME19601 FEA (3)	ME19602 Gas Dynamics & jet propulsion (3)	ME19603 TQM (3)	ME19604 Design of transmission system (3)	Professional Elective-I (3)	OPEN ELECTIVE – II (3)			GE19621 Problem solving Techniques (1)	ME19611 Simulation & analysis Lab (1.5)	ME19612 Innovation & Design Thinking Lab(1.5)		22
7.	ME19701 Automobile Engineering (3)	ME19702 Automation in Manufacturing (3)	Professional Elective II (3)	Professional Elective III (3)	Professional Elective IV (3)		ME19741 Mechatronics (4)		ME19711 Project-Phase- (1)	ME19712 Comprehension (1)			21
8.	Professional Elective V (3)	Professional Elective VI (3)							ME19811 Project-Phase-II (8)				14

SEMESTER I

Subject Code	Subject Name	Category	L	Т	Р	С
11010151	TECHNICAL ENGLISH	IIC	2	1	•	2
HS19151	Common to all branches of B.E./ B.Tech programmes - I semester	HS	2	1	0	3

Objectives:

- To enable learners to acquire basic proficiency in English reading and listening. •
- To write in English precisely and effectively. •
- To speak flawlessly in all kinds of communicative contexts. •

VOCABULARY BUILDING UNIT-I

The concept of word formation - Root words from foreign languages and their use in English - Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives - Synonyms, antonyms, and standard abbreviations. Compound words - abbreviation - single word substitution - Listening: Listening comprehension, listening to motivational speeches, podcasts and poetry. Speaking: Short talks on incidents - place of visit - admiring personalities, etc.

UNIT-II BASIC WRITING SKILLS

Sentence structures - Use of phrases and clauses in sentences - punctuation - coherence - Organizing principles of paragraphs in documents - Techniques for writing precisely. Reading & Writing - Free writing - paragraphs - article reading and writing criticism - change of tense forms in short text or story – inferential reading – rewrite or interpret text - prepare questions based on the text. Speaking everyday situations – conversations and dialogues, speaking for and against.

UNIT-III GRAMMAR AND LANGUAGE DEVELOPMENT

Subject-verb agreement- Noun-pronoun agreement - Articles - Prepositions - Redundancies. Reading & Writing: Read from innovation and ideas that changed the world, newspaper column writing - Speaking: Demonstrative speaking practice using visual aids (charts, graphs, maps, pictures, etc,.). 0

UNIT-IV WRITING FOR FORMAL PRESENTATION

Nature and Style of sensible Writing - Describing - Defining - Classifying - Providing examples or evidence -Writing introduction and conclusion. Reading & Writing – Read from Literary pieces – identify different parts text – difference between print and digital writing. Writing: Recommendations - Foreword - Review of book. Speaking-Formal Presentations - Debate on social issues/taboos and solutions. 9

UNIT-V **EXTENDED WRITING AND SPEAKING**

Writing: Précis writing – Essay writing – workplace communication: Resume – Business letters and emails – Proposals. Speaking: Panel discussion - reporting an event - mock interview - Master Ceremony.

Total Contact Hours

0

45

Course Outcomes:

On completion of course students will be able to

- Discuss and respond to the listening content. •
- Read and comprehend different texts and appreciate them •
- Understand structures and techniques of precise writing •
- Analyze different genres of communication and get familiarized with new words, phrases, and sentence •
- structures.
- Write and speak appropriately in varied formal and informal contexts.

Text Books:

English for Technologists & Engineers, Orient Black Swan Publications, Chennai 2012.

Ref	Reference Books / Web links:							
1	Technical Communication, Meenakshi Raman & Sangeeta Sharma, Oxford University Press							
2	Effective Communication Skills, Kulbushan Kumar, Khanna Publishing House, Delhi							
3	Communication Skills, Pushplata, Sanjay Kumar, Oxford University Press							
4	Practical English Usage. Michael Swan. OUP. 1995.							
5	Remedial English Grammar. F.T. Wood. Macmillan.2007							
6	On Writing Well. William Zinsser. Harper Resource Book. 2001							
7	Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.							
8	Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press							

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	-	-	-	-	-	1	-	2	3	1	3	-	-	-
CO 2	-	3	-	2	-	-	-	-	-	2	1	1	-	-	-
CO 3	-	-	-	1	-	-	-	-	-	3	-	-	-	2	3
CO 4	-	1	-	1	-	-	-	-	-	3	-	2	-	-	-
CO 5	1	1	1	1	1	1	1	1	2	3	1	1	-	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name	Category	L	Т	Р	С
MA19151	ALGEBRA AND CALCULUS Common to I sem. B.E. – Aeronautical Engineering, Automobile Engineering, Civil Engineering, Mechatronics & Mechanical Engineering	BS	3	1	0	4

Objectives:

- To gain knowledge in using matrix algebra techniques and the limitations of using infinite series approximations • for those problems arising in mathematical modelling.
- To understand the techniques of calculus which are applied in the Engineering problems. •

UNIT-I MATRICES

Symmetric and skew – symmetric matrices, orthogonal matrices – Eigen values and Eigen vectors - Cayley – Hamilton theorem (without proof) and applications - orthogonal transformation and quadratic forms to canonical forms - Nature of quadratic forms.

SEQUENCES AND SERIES UNIT-II

Convergence of sequence and series - Test for convergence: Comparison Test, D'Alembert Ratio Test, Leibnitz Test, Integral test - Binomial series, Exponential series and logarithmic series: Summations and approximations. 12

UNIT-III APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature in Cartesian co-ordinates - Centre and radius of curvature - Circle of curvature - Evolutes - Envelopes -Evolute as envelope of normal. 12

UNIT-IV FUNCTIONS OF SEVERAL VARIABLES

Partial differentiation - Homogeneous functions and Euler's theorem - Total derivative - Change of variables -Jacobians - Partial differentiation of implicit functions - Taylor's series for functions of two variables - Maxima and minima of functions of two variables - Lagrange's method of undetermined multipliers.

UNIT-V APPLICATION OF INTEGRATION

Centre of Gravity - Moment of inertia - Double integrals in Cartesian and polar coordinates - Change of order of integration - Area of a curved surface - Triple integrals - Volume of Solids.

Total Contact Hours 60

12

12

12

Cou	Course Outcomes:								
On	On completion of the course students will be able to								
•	Apply the concept of Eigenvalues and eigenvectors, diagonalization of a matrix for solving problems.								
•	Develop skills in solving problems involving sequences and series.								
•	Analyze, sketch and study the properties of different curves and to handle functions of several variables and problems of maxima and minima.								
•	Obtain the Centre of gravity, moment of inertia for rigid bodies and also surface area and volume using multiple integrals.								
•	Processes the data collected and analyze the data for central tendencies.								
Tex	xt Books:								

1	Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
2	T Veerarajan, Engineering Mathematics –I, Mc Graw Hill Education, 2014

Ref	Reference Books / Web links:									
1	Ramana. B.V., "Higher Engineering Mathematics ", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.									
2	Erwin Kreyszig," Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016.									
	Bali, N.P. and Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications Pvt. Ltd., New									
3	Delhi, 2006.									

RO/PSO CO	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO 3
MA19251.1	3	3	3	3	3	2	-	-	-	-	2	2	3	-	1
MA19251.2	3	3	3	3	3	2	-	-	-	-	2	2	3	-	1
MA19251.3	3	3	3	3	2	1	-	-	-	-	2	2	3	-	1
MA19251.4	3	3	2	2	2	1	-	-	-	-	1	1	3	-	1
MA19251.5	3	3	2	2	2	1	-	-	-	-	1	1	3	-	1

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Subject Code	Subject Name	Category	L	Τ	Р	С
PH19141	PHYSICS OF MATERIALS Common to I sem. B.E. – Aeronautical Engineering, Automobile Engineering, Civil Engineering, Mechanical Engineering & Mechatronics	BS	3	0	2	4

Ob	jectives:
	To enhance the fundamental knowledge in Physics and its applications relevant to mechanical engineering
•	streams.
	To familiarize students in various experimental setups and instruments that are used to study / determine the
•	various properties of materials.

MECHANICS & PROPERTIES OF MATTER UNIT-I

Basic definitions - Newton's laws - forces -solving Newton's equations - constraints and friction - cylindrical and spherical coordinates - potential energy function - conservative and non-conservative forces - central forces conservation of angular momentum - non-inertial frames of reference - rotating coordinate system - centripetal and Coriolis accelerations - Elasticity - stress-strain diagram - bending of beams - cantilever depression - Young's modulus determination - I-shape girders.

UNIT-II CRYSTAL PHYSICS

Basis - lattices - symmetry operations and crystal systems -Bravaislattics - atomic radius and packing fraction - SC, BCC, FCC, HCP lattices - Miller indices - diffraction by crystals - reciprocal lattice - interpreting diffraction patterns crystal growth techniques-Czochralski and Bridgmann, crystal defects. 9

UNIT-III PHYSICS OF MATERIALS

Solid solutions - Hume-Rothery's rules -Gibb's phase rule - binary phase diagrams -isomporhpus systems - tie-line and lever rule - eutectic, eutectoid, peritectoid, monotectic and syntectic systems - formation of microstructures homogeneous and non-homogenous cooling - nucleation - iron-carbon phase diagram - eutectoid steel - hypo and hypereutectoid steel - diffusion - Fick's laws - T-T-T diagrams.

9

9

UNIT-IV ENGINEERING MATERIALS & TESTING

 Metallic glasses – preparation and properties - Ceramics – types, manufacturing methods and properties - Composites

 – types and properties - Shape memory alloys – properties and applications - Nano-materials – top down and bottom-
up approaches – properties - Tensile strength – Hardness – Fatigue - Impact strength – Creep - Fracture – types of
fracture.

 UNIT-V
 QUANTUM PHYSICS

 9

Blackbody problem -Planck's radiation law - duality of light -De Broglie hypothesis - properties of matter waves - wave packets –Schrodinger's equations (time dependent and time independent) - Born interpretation (physical significance of wave function) - probability current - operator formalism (qualitative) - expectation values - uncertainty principle - particle in a box -eigen function and eigen values -Dirac notation (qualitative).

Contact Hours:45

0

	List of Experiments
1	Determination of Laser characteristics (wavelength and angular spread).
2	Determination of Young's modulus by non-uniform bending method
3	Determination of thermal conductivity of a bad conductor – Lee's Disc method.
4	Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer
5	Coupled oscillators - Two compound pendulums;
6	Experiment on moment of inertia measurement- Torsional pendulum by resonance,
7	LC circuit, LCR circuit and Resonance phenomena in LCR circuits;
8	Experiments on electromagnetic induction – BH-Curve experiment
9	Determination of thickness of a thin wire – Air wedge method
10	Determination of solar cell characteristics.
11	Measurement of hysteresis loss: B -H curve.
12	Determination of creep characteristics of a metallic wire
	Contact Hours : 30
	Total Contact Hours : 75

Co	urse	Ot	itco	mes	:0	n com	pleti	ion	of the	e co	urse	students	will	be	able	to	

• Apply foundational mechanics and elastic nature of materials and determine the elastic moduli of materials.

• Apply the basic knowledge of crystallography in materials preparation and treatments.

• Create binary phase diagrams and TTT charts and use them to analyse and measure the properties of alloys.

- Use various engineering materials, test or measure their properties and use them in suitable applications.
- Apply the concepts of quantum theory and the nature of light and determine the characteristics of a given laser source.

Text Books:

- 1 Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2018.
- 2 Raghavan, V. "Physical Metallurgy: Principles and Practice". PHI Learning, 2019.

Reference Books / Web links:

1	Balasubramaniam, R. "Callister's Materials Science and Engineering". Wiley India Pvt. Ltd., 2017.
2	Raghavan, V. "Materials Science and Engineering: A First course". PHI Learning, 2019.
3	Resnick, R., Halliday, D., & Walker, J. "Principles of Physics", Wiley India Pvt., 2018.
4	Gaur, R.K. & Gupta, S.L. "Engineering Physics". DhanpatRai Publishers, 2018.

PQ/PSO CO	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	1	1	1	1	2	1	1	2	1	2	1
CO2	3	3	3	2	1	1	1	1	2	1	1	2	1	2	1
CO3	3	3	3	2	1	1	1	1	2	1	1	2	1	2	1
CO4	3	3	2	2	1	1	1	1	2	1	1	2	1	2	1
CO5	3	3	2	2	1	1	1	-	2	1	1	2	1	2	1

Subject Code	Subject Name	Category	L	Т	Р	С
GE19101	ENGINEERING GRAPHICS	ES	2	2	0	4

Objectives:

- To understand the importance of the drawing in engineering applications
- To develop graphic skills for communication of concepts, ideas and design of engineering products
- To expose them to existing national standards related to technical drawings.
- To improve their visualization skills so that they can apply this skill in developing new products.
- To improve their technical communication skill in the form of communicative drawings

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications–Use of drafting instruments– BIS conventions and specifications–Size, layout and folding of drawing sheets– Lettering and dimensioning. Basic Geometrical constructions.

PLANECURVES AND FREE HAND SKETCH UNIT-I Curves used in engineering practices: Conics-Construction of ellipse, parabola and hyperbola by eccentricity method-Construction of cycloids, Construction of involutes of square and circle drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles -Representation of Three-Dimensional objects - Layout of views- Freehand sketching of multiple views from pictorial views of objects UNIT-II PROJECTION OFPOINTS, LINESAND PLANESURFACE 12 Orthographic projection - principles-Principal planes- projection of points. First angle projection - Projection of straight lines inclined to both the principal planes – Determination of true lengths and true inclinations by rotating line method-Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. UNIT-III PROJECTIONOFSOLIDS 12 Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one of the principal planes by rotating object method. UNIT-IV | PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENTOF SURFACES 12 Sectioning of solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of the section.

Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT-V ISOMETRIC AND PERSPECTIVEPROJECTIONS

Principles of isometric projection-isometric scale-Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders and cones.

Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

Total Contact Hours : 60

12

Course Outcomes: After learning the course, the students should be able

- To construct different plane curves and free hand sketching of multiple views from pictorial objects.
- To comprehend the theory of projection and to draw the basic views related to projection of points, lines and planes
- To draw the projection of solids in different views
- To draw the projection of Sectioned solids and development of surfaces of solids
- To visualize and prepare Isometric and Perspective view of simple solids

Text Book (s):

- 1 Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 2 Natarajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2017.

Ref	ference Books(s) / Web links:
1	Varghese P I., "Engineering Graphics", McGraw Hill Education (I) Pvt.Ltd., 2013.
2	Venugopal K. and PrabhuRaja V., "Engineering Graphics", New Age International (P)Limited, 2008.
3	Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2017.
4	Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill Publishing Company Limited, New
4	Delhi, 2018.
5	https://nptel.ac.in/courses/112103019/

						P	0						PSO					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO 1	2	-	-	-	-	-	-	-	-	1	-	2	-	-	1			
CO 2	2	-	-	-	-	-	-	-	-	1	-	2	-	-	1			
CO 3	2	-	-	-	-	-	-	-	-	1	-	2	-	-	1			
CO 4	2	-	-	-	-	-	-	-	-	1	-	2	-	-	1			
CO 5	2	-	-	-	-	-	-	-	-	1	-	2	-	-	1			

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Laboratory Course)	Category	L	Т	Р	С
GE19121	ENGINEERING PRACTICES – Civil & Mechanical	ES	0	0	2	1

Objectives:

To provide exposure to the students with hands on experience on various basic engineering practices in Civil and Mechanical Engineering.

	List of Exercises			
CIVI	L ENGINEERING PRACTICE			
1.	Study of pipeline joints, its location and functions: valves, taps, coupling household fittings.	gs, unions, reducers, and e	elbov	vs in
2.	Preparation of basic plumbing line sketches for wash basins, water heaters,	etc.		
3.	Hands-on-exercise: Basic pipe connections – Pipe connections with differe	nt joining components.		
Carpo	entry Works:			
4.	Study of joints in roofs, doors, windows and furniture.			
5.	Hands-on-exercise: Woodwork, joints by sawing, planning and chiseling.			
MEC	CHANICAL ENGINEERING PRACTICE			
6.	Preparation of butt joints, lap joints and T- joints by Shielded metal arc well	lding.		
7	Gas welding practice.			
Basic	Machining:			
8	Simple Turning and Taper turning			
9	Drilling Practice			
Sheet	t Metal Work:			
10	Forming & Bending:			
11	Model making – Trays and funnels			
12	Different type of joints.			
Mach	nine Assembly Practice:			
13	Study of centrifugal pump			
14	Study of air conditioner			
		Total Contact Hours	:	30

Course Outcomes:

	Juise Outcomes.
	Able to perform plumbing activities for residential and industrial buildings considering safety aspects while gaining
•	clear understanding on pipeline location and functions of joints like valves, taps, couplings, unions, reducers,
	elbows, etc.
	Able to perform wood working carpentry activities like sawing, planning, cutting, etc. while having clear
•	Able to perform wood working carpentry activities like sawing, planning, cutting, etc. while having clear understanding of the joints in roofs, doors, windows and furniture.
	Able to produce joints like L joint, T joint, Lap joint, Butt joint, etc. through arc welding process while acquiring in depth knowledge in the principle of operation of welding and other accessories
•	in depth knowledge in the principle of operation of welding and other accessories
	Able to perform operations like Turning, Step turning, Taper turning, etc. in lathe and Drilling operation in
•	drilling machine
•	Able to perform sheet metal operations like Forming, Bending, etc. and fabricating models like Trays, funnels, etc.

TOTAL: 30 PERIODS

						F	0							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	1	-	-	-	-	-	1	-	1	1
CO 2	1	-	-	-	-	1	-	-	-	-	-	1	-	1	1
CO 3	1	-	-	-	-	1	-	-	-	-	-	1	-	1	1
CO 4	1	-	-	-	-	1	-	-	-	-	-	1	-	1	1
CO 5	1	-	-	-	-	1	-	-	-	-	-	1	-	1	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name	Category	L	Т	Р	С
MC19101	ENVIROMENTAL SCIENCE AND ENGINEERING Common to All Branches	MC	3	0	0	0

Objectives:

• To understand the importance of natural resources, pollution control and waste management.

• To provide the students about the current social issues and environmental legislations.

UNIT-I NATURAL RESOURCES

Environment -definition - scope and importance - forest resources -use and overexploitation -water resources -use and over utilization - dams - benefits and problems - water conservation -energy resources - growing energy needs - renewable and non-renewable energy sources - use of alternate energy sources -land resources -land degradation - role of an individual in conservation of natural resources.

UNIT-II ENVIRONMENTAL POLLUTION

Definition - causes, effects and control measures of air pollution -chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain, and ozone depletion- noise pollution -mitigation procedures - control of particulate and gaseous emission(Control of SO_2 , NO_X , CO and HC).

Water pollution - definition-causes-effects of water pollutants-marine pollution-thermal pollution-radioactive pollution-control of water pollution by physical, chemical and biological processes-waste water treatment-primary, secondary and tertiary treatment.

Soil pollution: definition-causes-effects and control of soil pollution.

UNIT-III SOLID WASTE MANAGEMENT

Solid wastes - sources and classification of solid wastes -solid waste management options - sanitary landfill, recycling, composting, incineration, energy recovery options from wastes

Hazardous waste -definition -sources of hazardous waste-classification (biomedical waste, radioactive waste, chemical waste, household hazardous waste)-characteristics of hazardous waste ignitability (flammable) reactivity, corrosivity, toxicity -effects of hazardous waste -case study- bhopal gas tragedy - disposal of hazardous waste-recycling, neutralization, incineration, pyrolysis, secured landfill - E-waste management -definition-sources-effects -electronic waste recycling technology.

UNIT-IV	SOCIAL ISSUES AND THE ENVIRONMENT	9
Sustainable	development -concept, components and strategies - social impact of growing human population	n and
affluence, fo	ood security, hunger, poverty, malnutrition, famine - consumerism and waste products - environment	nt and
human heal	th - role of information technology in environment and human health -disaster management- f	loods,
earthquake,	cyclone and landslide.	
LINIT V	TOOLS FOR ENVIRONMENTAL MANACEMENT	0

UNIT-V TOOLS FOR ENVIRONMENTAL MANAGEMENT Environmental impact assessment (EIA) structure -strategies for risk assessment–EIS

Environmental impact assessment (EIA) structure -strategies for risk assessment–EIS-environmental audit-ISO 14000precautionary principle and polluter pays principle- constitutional provisions- - pollution control boards and pollution control acts- environmental protection act1986- role of non-government organizations- international conventions and protocols.

Contact Hours : 45

9

9

9

Co	urse Outcomes:
On	completion of the course students will be able to
٠	Be conversant to utilize resources in a sustainable manner.
•	Find ways to protect the environment and play proactive roles.
•	Apply the strategies to handle different wastes
•	Develop and improve the standard of better living.
•	Be conversant with tools of EIA and environmental legislation.

Te	xt Books:
1	Benny Joseph, "Environmental Science and Engineering", 2 nd edition, Tata McGraw-Hill, New Delhi,2008.
2	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 2 nd edition, Pearson Education, 2004.

Ref	ference Books / Web links:
1	Dharmendra S. Sengar, "Environmental law", Prentice hall of India Pvt Ltd, New Delhi, 2007.
2	ErachBharucha, "Textbook of Environmental Studies", 3rd edition, Universities Press(I) Pvt Ltd, Hydrabad, 2015.,
3	Tyler Miller.G and Scott E. Spoolman, "Environmental Science", 15th edition, Cengage Learning India PVT, LTD, Delhi, 2014.
4	Rajagopalan, R, "Environmental Studies-From Crisis to Cure", 3 rd edition, Oxford University Press,2015.
5	De. A.K., "Environmental Chemistry", New Age International, New Delhi, 1996.
6	Wager.K.D, Environmental Management, W. B. Saunders Co., Philadelphia, USA, 1998.

RO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
MC19101.1	1	1	-	-	-	3	3	2	-	-	-	2	-	-	-
MC19101.2	1	1	-	-	-	3	3	2	-	-	-	2	-	-	-
MC19101.3	1	1	-	-	-	3	3	2	-	-	-	1	-	-	-
MC19101.4	1	1	-	-	-	2	3	2	-	-	-	2	-	-	-
MC19101.5	1	1	-	-	-	2	3	1	-	-	-	1	-	-	-

SEMESTER II

Subject Code	Subject Name	Category	L	Т	Р	С
	DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS					
	Common to II sem. B.E. – Aeronautical Engineering, Automobile					
MA19251	Engineering, Civil Engineering, Mechatronics & Mechanical	BS	3	1	0	4
	Engineering and					
	B. Tech Biotechnology, Food Technology & Chemical Engineering					

Objectives:

To handle practical problems arising in the field of engineering and technology using differential equations.
To solve problems using the concept of Vectors calculus, Complex analysis, Laplace transforms.

UNIT-I	SECOND AND HIGHER ORDER DIFFERENTIAL EQUATIONS	12
Second and	higher order Linear differential equations with constant coefficients - Method of variation of param	eters -
Cauchy's a	nd Legendre's linear equations - Simultaneous first order linear equations with constant coefficients.	
UNIT-II	PARTIAL DIFFERENTIAL EQUATIONS	12
Formation	of partial differential equations - Solutions of standard types of first order partial differential equa	tions -
	linear equation Linear partial differential equations of second and higher order with constant coef	ficients
of both hon	nogeneous and non-homogeneous types.	
UNIT-III	VECTOR CALCULUS	12
Gradient, d	ivergence and curl - Directional derivative - Irrotational and solenoidal vector fields - Vector integr	ation –
Green's the	orem in a plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) - Simple appli	cations
involving c	ubes and rectangular parallelopipeds.	
UNIT-IV	ANALYTIC FUNCTIONS	12
		14
0	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Pro-	
Analytic fu – Harmonic	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Pro conjugates – Construction of analytic function - Conformal mapping and Bilinear transformation-Ca	perties uchy's
Analytic fu – Harmonic integral the	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Pro conjugates – Construction of analytic function - Conformal mapping and Bilinear transformation-Ca orem and Cauchy's integral formula (proof excluded) – Taylor's series and Laurent's series – Singu	perties uchy's
Analytic fu – Harmonic integral the	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Pro conjugates – Construction of analytic function - Conformal mapping and Bilinear transformation-Ca orem and Cauchy's integral formula (proof excluded) – Taylor's series and Laurent's series – Singu – Residue theorem (without proof), simple problems.	perties uchy's
Analytic fu – Harmonic integral the	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Pro conjugates – Construction of analytic function - Conformal mapping and Bilinear transformation-Ca orem and Cauchy's integral formula (proof excluded) – Taylor's series and Laurent's series – Singu	perties uchy's
Analytic fu – Harmonic integral the – Residues UNIT-V	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Pro conjugates – Construction of analytic function - Conformal mapping and Bilinear transformation-Ca orem and Cauchy's integral formula (proof excluded) – Taylor's series and Laurent's series – Singu – Residue theorem (without proof), simple problems.	perties nuchy's larities
Analytic fu – Harmonic integral the – Residues UNIT-V Laplace tra	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Proceeding of analytic function - Conformal mapping and Bilinear transformation-Cartesian and Cauchy's integral formula (proof excluded) – Taylor's series and Laurent's series – Singu – Residue theorem (without proof), simple problems.	perties luchy's larities 12 erties –
Analytic fu – Harmonic integral the – Residues UNIT-V Laplace tra Transforms function an	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Proceeding of the construction of analytic function - Conformal mapping and Bilinear transformation-Catorem and Cauchy's integral formula (proof excluded) – Taylor's series and Laurent's series – Singu – Residue theorem (without proof), simple problems. LAPLACE TRANSFORM nsform – Sufficient condition for existence – Transform of elementary functions – Basic proper of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of u d impulse functions, periodic functions. Inverse Laplace transform – Problems using Convolution the function of the function of the function of the function of the functions.	perties nuchy's larities 12 erties – nit step neorem
Analytic fu – Harmonic integral the – Residues UNIT-V Laplace tra Transforms function an	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Pro conjugates – Construction of analytic function - Conformal mapping and Bilinear transformation-Ca orem and Cauchy's integral formula (proof excluded) – Taylor's series and Laurent's series – Singu – Residue theorem (without proof), simple problems. LAPLACE TRANSFORM nsform – Sufficient condition for existence – Transform of elementary functions – Basic prope of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of u	perties nuchy's larities 12 erties – nit step neorem
Analytic fu – Harmonic integral the – Residues UNIT-V Laplace tra Transforms function an – Initial and	nctions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Proceeding of the construction of analytic function - Conformal mapping and Bilinear transformation-Catorem and Cauchy's integral formula (proof excluded) – Taylor's series and Laurent's series – Singu – Residue theorem (without proof), simple problems. LAPLACE TRANSFORM nsform – Sufficient condition for existence – Transform of elementary functions – Basic proper of derivatives and integrals of functions - Derivatives and integrals of transforms - Transforms of u d impulse functions, periodic functions. Inverse Laplace transform – Problems using Convolution the function of the function of the function of the function of the functions.	perties nuchy's larities 12 erties – nit step neorem

Course Outcomes:

On completion of course students will be able to

- Apply various techniques in solving ordinary differential equations.
- Develop skills to solve different types of partial differential equations
- Use the concept of Gradient, divergence and curl to evaluate line, surface and volume integrals.
- Use the concept of Analytic functions, conformal mapping and complex integration for solving Engineering problems.
- Use Laplace transform and inverse transform techniques in solving differential equations.

Tex	xt Books:
1	Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
2	Veerarajan, T. Engineering Mathematics –II, Mc Graw Hill Education, 2018
Ref	ference Books / Web links:
1	Ramana. B.V., "Higher Engineering Mathematics ", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
2	Erwin Kreyszig," Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016.
3	Bali, N.P. and Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications Pvt. Ltd., New Delhi, 2006.
4	T Veerarajan, Transforms and Partial Differential Equations, Third Edition, 2018.

PO/PSO CO	PO 1	PO 2	PO 3	PO 4	PO5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
MA19251.1	3	3	3	3	3	2	-	-	-	-	2	2	3	-	1
MA19251.2	3	3	3	3	3	2	-	-	-	-	2	2	3	-	1
MA19251.3	3	3	3	3	2	1	-	-	-	-	2	2	3	-	1
MA19251.4	3	3	2	2	2	1	-	-	-	-	1	1	3	-	1
MA19251.5	3	3	2	2	2	1	-	-	-	-	1	1	3	-	1

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Subject Code	Subject Name	Category	L	Т	Р	C
CY19241	ENGINEERING CHEMISTRY Common to II sem. B.E. – Aeronautical Engineering, Automobile Engineering, Mechanical Engineering and Mechatronics	BS	3	0	2	4

Objectives:		
•	To understand the theoretical and practical principles of corrosion and its control	
•	To familiarise the fundamentals of chemical energy conversions in batteries and fuels	
•	To acquaint knowledge on alloys and analytical techniques	
UNIT-I	CORROSION AND PROTECTIVE COATINGS	9
Cause and ef	fects of corrosion - theories of chemical and electrochemical corrosion -EMF series- types of corr	osion:
Galvanic, wa	ater-line, intergranular and pitting corrosion - passivity - factors affecting rate of corrosion - cor	rosion
control metho	ods- cathodic protection -sacrificial anode and impressed current cathodic methods - corrosion inhib	itors -
metal claddin	ng - anodizing - electroplating - electroless plating - factors influencing electroplating - polarisa	ation -
decompositio	on potential - over voltage - current density - electrolyte concentration- additives - organic coatings -	paints
- constituents	s - functions - special paints - fire retardant - water repellent - temperature indicating and luminous p	aints.
UNIT-II	ENERGY STORAGE DEVICES	9
and Lithium	imary battery - alkaline battery - secondary battery (Lead acid storage battery, Nickel - Cadmium b – ion battery) -flow battery -components, working principle and applications of hydrogen-oxygen methanol and proton exchange membrane fuel cells.	
UNIT-III	PHASE RULE AND ALLOYS	9
	definition of terms - one component system -water system - reduced phase rule - thermal analysis	- two-
	ystem- eutectic system - lead silver system - safety fuses and solders.	
Alloys - pur	pose of alloying - function and effects of alloying elements - properties of alloys - classification of a	lloys -
Ferrous alloy	rs - nichrome and stainless steel - Non-ferrous alloys - brass and bronze - heat treatment of alloys (anne	ealing,
hardening, te	mpering, normalising, carburizing and nitriding)	
	FUNDAMENTAL SPECTROSCOPIC TECHNIQUES AND THERMAL ANALYSIS	9
applications.	f spectroscopy - UV, visible and IR spectroscopy principle - instrumentation (block diagr Principles, block diagram, instrumentation and applications of TGA, DTA, DSC and Flame photor	,
	FUELS AND COMBUSTION	9
	fication -coal-ranking of coal- proximate and ultimate analysis metallurgical coke - manufacture by	
Hoffmann me	ethod - Petroleum processing and fractions -knocking - octane number and cetane number - synthetic	petrol
- Fischer Tro	psch and Bergius processes -power alcohol, biodiesel- Gaseous fuels CNG and LPG.	
Combustion-	calorific value- Dulongs formula-problems- flue gas analysis - Orsat apparatus-theoretical a	ir for
combustion -	- problems	
	Contact Hours :	45

	List of Experiments			
1	Determination of corrosion rate on mild steel by weight loss method			
2	Estimation of DO by winkler's method			
3	Determination of total, temporary and permanent hardness by EDTA me	thod.		
4	Estimation of alkalinity by indicator method.			
5	Estimation of chloride by argentometric method			
6	Estimation of extent of corrosion of Iron pieces by potentiometry			
7	Estimation of mixture of acids by conductometry.			
8	Estimation of acid by pH metry			
9	Estimation of copper / ferrous ions by spectrophotometry.			
10	Estimation of sodium and potassium in water by flame photometry.			
11	Determination of flash and fire point of lubricating oil			
12	Determination of cloud and pour point of lubricating oil			
13	Determination of phase change temperature of a solid.			
		Contact Hours	:	30
		Total Contact Hours	:	75

Course Outcomes: On completion of the course students will be able to

- Analyse type of corrosion and identify suitable corrosion control method
- Construct electrochemical cells and measure its potential
- Modify metal properties by alloying
- Characterize various material systems
- Appreciate the role of fuels in day-to-day applications

Text Books:1P. C. Jain and Monika Jain, "Engineering Chemistry", DhanpatRai Publishing Company (P) Ltd, New Delhi, 2015.2O.G.Palanna, "Engineering Chemistry", McGraw Hill Education (India) PVT, Ltd, New Delhi, 2017.

Reference Books / Web links:

1Banwell.C.N and McCash,E.M. "Fundamentals of Molecular Spectroscopy", 4th Edn, Tata Mc Graw-Hill
Edition, 1995

- 2 Shashi Chawla, "A Text Book of Engineering Chemistry", Dhanpat Rai & Co, New Delhi, 2017.
- 3 Sharma Y.R., "Elementary Organic Spectroscopy", Sultan Chand & Sons, New Delhi, 2014.
- **4** Sharma B. K., "Analytical Chemistry", Krishna Prakashan Media (P) Ltd., Meerut, 2005.

PQ/PSO CO	PO 1	PO2	PO 3	PO 4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CY19241.1	3	2	2	2	2	1	2	1	1	1	2	2	1	2	1
CY19241.2	3	2	2	2	2	1	3	1	2	1	1	2	1	2	1
CY19241.3	3	2	2	2	2	1	2	-	2	1	1	1	1	2	-
CY19241.4	3	1	1	1	2	1	1	-	1	1	1	1	1	1	-
CY19241.5	3	2	2	2	2	2	2	1	2	1	1	2	2	2	1

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Subject Code	Subject Name (Lab oriented Theory Course)	Category	L	Т	Р	C
GE19141	PROGRAMMING USING C	ES	2	0	4	4

Ob	Objectives:						
•	To develop simple algorithms for arithmetic and logical problems.						
•	To develop C Programs using basic programming constructs						
•	To develop C programs using arrays and strings						
•	To develop applications in C using functions, pointers and structures						
•	To do input/output and file handling in C						

UNIT-I GENERAL PROBLEM-SOLVING CONCEPTS

Computer – components of a computer system-Algorithm and Flowchart for problem solving with Sequential Logic Structure, Decisions and Loops.

UNIT-II C LANGUAGE - TYPES OF OPERATOR AND EXPRESSIONS

Introduction- C Structure- syntax and constructs of ANSI C - Variable Names, Data Type and Sizes, Constants, Declarations - Arithmetic Operators, Relational Operators, Logical Operators, Type Conversion, Increment and Decrement Operators, Bitwise Operators, Assignment Operators and Expressions, Precedence and Order of Evaluation, proper variable naming and Hungarian Notation.

UNIT-III I/O AND CONTROL FLOW

Standard I/O, Formatted Output – Printf, Variable-length argument lists- Formatted Input – Scanf, Statements and Blocks, If-Else-If, Switch, Loops – while, do, for, break and continue, GoTo Labels.

UNIT-IV FUNCTIONS AND PROGRAM STRUCTURE

Basics of functions, parameter passing and returning type, External, Auto, Local, Static, Register Variables, Scope Rules, Block structure, Initialisation, Recursion, C Pre-processor, Standard Library Functions and return types.

UNIT-V POINTERS, ARRAYS AND STRUCTURES

Pointers and addresses, Pointers and Function Arguments, Pointers and Arrays, Address Arithmetic, character Pointers and Functions, Pointer Arrays, Pointer to Pointer, Multi-dimensional arrays, Strings, Initialisation of Pointer Arrays, Command line arguments, Pointers to functions, complicated declarations. Basic Structures, Structures and Functions, Array of structures, Pointer of Structures, Self-referential Structures, Table look up, Typedef, Unions, Bit-fields, File Access -Error Handling, Line I/O, Miscellaneous Functions.

Contact Hours : 30

	List of Experiments	
1	Algorithm and flowcharts of small problems like GCD.	
	Structured code writing with:	
2	Small but tricky codes	
3	Proper parameter passing	
4	Command line Arguments	
5	Variable parameter	
6	Pointer to functions	
7	User defined header	
8	Make file utility	
9	Multi file program and user defined libraries	
10	Interesting substring matching / searching programs	
11	Parsing related assignments	
	Contact Hours :	60
	Total Contact Hours :	90

Co	urse Outcomes:
•	To formulate simple algorithms for arithmetic and logical problems.
•	To implement conditional branching, iteration and recursion.
•	To decompose a problem into functions and synthesize a complete program using divide and conquer
	approach.
•	To use arrays, pointers and structures to formulate algorithms and programs.
	To apply programming to solve matrix addition and multiplication problems and searching and sorting
•	problems.

Te	xt Books:
1	Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education India; 2 nd Edition, 2015.
2	Byron Gottfried, "Programming with C", Second Edition, Schaum Outline Series, 1996.

Reference Books:

- 1 Herbert Schildt, "C: The Complete Reference", Fourth Edition, McGraw Hill, 2017.
- **2** Yashavant Kanetkar, "Let Us C", BPB Publications, 15th Edition, 2016.

Web links for virtual lab:

- 1 <u>https://www.tutorialspoint.com/compile_c_online.php</u>
- 2 <u>https://www.codechef.com/ide</u>
- 3 <u>https://www.jdoodle.com/c-online-compiler</u>
- 4 <u>https://rextester.com/l/c_online_compiler_gcc</u>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	2	1	-	-	-	1	2	1	1	1	-	1
CO2	1	1	1	1	1	-	-	-	-	-	1	1	1	-	-
CO3	1	1	2	1	1	-	-	-	-	-	1	1	1	-	-
CO4	2	2	3	2	1	-	-	-	1	-	2	1	1	-	-
CO5	2	2	3	2	1	-	-	-	-	-	2	1	1	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	C
ME19201	MANUFACTURING PROCESSES	PC	3	0	0	3

Objectives:

- To understand the basic concepts of sand-casting technique and special casting technique.
- To understand the principles, equipment's of different welding techniques.
- To know the various operations and equipment requirements of hot and cold metal forming processes.
- To understand the working principle and applications of different types of sheet metal processes.
- To understand the working principles of different types of thermo plastic manufacturing methods.

UNIT-I	METAL CASTING	9
Sand Castin	g: Sand Mould – Type of patterns - Pattern Materials – Pattern allowances – Moulding sand Properti	es and
testing - Co	res –Types and applications – Moulding machines– Types and applications; Melting furnaces: Bla	st and
Cupola Fur	naces; Principle of special casting processes: Shell - investment - Ceramic mould - Pressure die ca	sting -
Centrifugal	Casting – Continuous casting, Vacuum casting- CO ₂ process – Stir casting; Defects in Sand casting.	-
UNIT-II	METAL JOINING PROCESSES	9
Operating p	rinciple, basic equipment, merits and applications of: Fusion welding processes: Gas Tungsten arc w	elding
Gas metal a	arc welding - Submerged arc welding - Electro slag welding; Operating principle and application	ons of
Resistance v	velding - Plasma arc welding - Thermit welding - Electron beam welding - Laser welding- Friction w	elding
and Friction	Stir Welding; Brazing and soldering; Weld defects: types, causes and cure. Adhesive bonding.	
UNIT-III	METAL FORMING PROCESSES	9
Hot workin	g and cold working of metals - Forging processes - Open, impression and closed die forging - f	orging
	Rolling of metals- Types of Rolling - Flat strip rolling - shape rolling operations-Thread rolling, ring	
– Defects in	rolled parts. Principle of rod and wire drawing - Tube drawing - Principles of Extrusion - Types - H	lot and
cold extrusi	on.	
UNIT-IV	SHEET METAL PROCESSES	9
Sheet metal	characteristics - shearing, bending and drawing operations - Hemming and seaming - Stretch for	orming
operations -	Formability of sheet metal – Test methods –special forming processes-Working principle and applic	ation
- Hydro for	ming – Rubber pad forming – Metal spinning.	
UNIT-V	MANUFACTURE OF PLASTIC COMPONENTS	9
Types and	characteristics of plastics – Moulding of thermoplastics – working principles and typical applicat	ions

Types and characteristics of plastics – Moulding of thermoplastics – working principles and typical applications – injection moulding – Plunger and screw machines – Compression moulding, Transfer Moulding – Typical industrial

applications – introduction to blow moulding –Rotational moulding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics.

Total Contact Hours:45

Cot	urse Outcomes: At the end of this course, students can have the
•	Ability to explain the requirements, process, application and defects of sand casting and special casting processes.
•	Ability to explain the working principles and applications of different arc welding processes, special welding process and defects associated with it.
•	Ability to select the suitable process for manufacturing of components among forging, rolling, drawing, extrusion and its types.
•	Ability to explain the principles and working of shearing, bending, drawing and forming in sheet metal.
•	Ability to appreciate various manufacturing methods of plastic components.
	4 Dealer

Te	ext Books:
1	Hajra Choudhary. S.K and Hajra Choudhary. A.K., "Elements of Workshop Technology", volume I and II, Media
	Promoters and Publishers Private Limited, Mumbai, 2010.
2	Kalpakjian. S, "Manufacturing Engineering and Technology", 7th Edition, Pearson Education India Edition, 2018

Ref	ference Books(s) / Web links:
1	Roy A. Lindberg, "Processes and Materials of Manufacture", PHI / Pearson education, 2006
2	Black J.T and Ronald A. Kosher, "Degarmos Materials and Processes, in Manufacturing" 12th Edition, Wiley
	Publishers, 2017.
3	Sharma, P.C., "A Text book of production Technology", S.Chand and Co. Ltd., 2006.
4	Rao, P.N. "Manufacturing Technology Foundry, Forming and Welding", Vol 1, 4th Edition, McGraw Hill-2017.
5.	https://nptel.ac.in/courses/112107144/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	1	-	-	1	2	-	-	-	1	1	-	1	2
CO 2	2	1	1	-	-	1	2	-	-	-	1	1	-	1	2
CO 3	2	1	1	-	-	1	2	-	-	-	1	1	-	1	2
CO 4	2	1	1	-	-	1	2	-	-	-	1	1	-	1	2
CO 5	2	1	1	-	-	1	2	-	-	-	1	1	-	1	2

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

GE19201	Engineering Mechanics	Category	L	Т	Р	С
	(Common to Mech, Aero, Auto, Civil and MCT)	ES	2	1	0	3

Ob	jectives: Students will be able
	To understand the basics of mechanics and apply the concept of equilibrium of system of forces.
	To understand the concept of equilibrium and to solve problems of rigid bodies.
	To learn about the centroid and centre of gravity of objects and moment of inertia
	To learn the basic concepts of friction.
	To learn the concepts in kinematics and kinetics of rigid bodies in plane motion.

UNIT-I STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – Resolution of forces – Vector operations of forces - Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility.

9

01	IT-II EQUILIBRIUM OF RIGID BODIES		9
Fre	e body diagram - Types of supports - Action and reaction forces - stable equilibrium - Moments a	nd Co	uples
- 1	Aoment of a force about a point and about an axis - Vectorial representation of moments and couple	s – S	Scalar
cor	nponents of a moment - Varignon's theorem - Single equivalent force -Equilibrium of Rigid bod	ies ir	n two
din	ensions – Equilibrium of Rigid bodies in three dimensions – (Descriptive treatment only)		
UN	IT-III PROPERTIES OF SURFACES AND SOLIDS		12
Ce	ntroids and centre of mass - Centroids of lines and areas - Rectangular, circular, triangular areas by	integ	ration
- T	section, I section, - Angle section, Hollow section by using standard formula - Theorems of Pappus - Are	a moi	ments
	nertia of plane areas - Rectangular, circular, triangular areas by integration - T section, I section, Ang		
	llow section by using standard formula - Parallel axis theorem and perpendicular axis theorem		
	ments of inertia of plane areas - Principal axes of inertia-Mass moment of inertia -mass moment of	inert	ia for
pri	smatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia.		
UN	IT-IV DYNAMICS OF PARTICLES		7
	placements, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Ne	wton	's laws
of			
01	notion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.		
UN	IT-V FRICTION AND RIGID BODY DYNAMICS		8
UN Fri	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge		ction,
UN Fri La	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge Ider friction, Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – wedge		ction,
UN Fri La	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedged are friction, Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – one motion of simple rigid bodies such as cylinder, disc/wheel and sphere.	Gener	ction, al
UN Fri Lao Pla	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedged and friction, Rolling resistance - Translation and Rotation of Rigid Bodies – Velocity and acceleration – of the motion of simple rigid bodies such as cylinder, disc/wheel and sphere. Total Contact Hours		ction,
UN Fri Lao Pla	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge Ider friction, Rolling resistance - Translation and Rotation of Rigid Bodies – Velocity and acceleration – of the motion of simple rigid bodies such as cylinder, disc/wheel and sphere. Total Contact Hours urse Outcomes: On the successful completion of the course, students will be able to	Gener	ction, al
UN Fri Lao Pla	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedged and friction, Rolling resistance - Translation and Rotation of Rigid Bodies – Velocity and acceleration – of the motion of simple rigid bodies such as cylinder, disc/wheel and sphere. Total Contact Hours	Gener	ction, al
UN Fri Lac Pla	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge Ider friction, Rolling resistance - Translation and Rotation of Rigid Bodies – Velocity and acceleration – of the motion of simple rigid bodies such as cylinder, disc/wheel and sphere. Total Contact Hours urse Outcomes: On the successful completion of the course, students will be able to	Gener	ction, al
UN Fri Lao Pla Co	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge Ider friction, Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – One motion of simple rigid bodies such as cylinder, disc/wheel and sphere. Image: Total Contact Hours Image: Number of the successful completion of the course, students will be able to Analyze the forces in the system.	Gener	ction, al
UN Fri Lao Pla	IT-V FRICTION AND RIGID BODY DYNAMICS ction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge Ider friction, Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – One motion of simple rigid bodies such as cylinder, disc/wheel and sphere. Total Contact Hours arse Outcomes: On the successful completion of the course, students will be able to Analyze the forces in the system. Analyze the problems in engineering systems using the concept of static equilibrium.	Gener	ction, al

Tex	xt Book (s):
1	Beer, F.P and Johnston Jr. E.R, Cornwell and Sanghi ., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 12 th Edition, McGraw-Hill Publishing company, New Delhi (2018).
2	Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3 rd Edition, Vikas Publishing House Pvt. Ltd., 2005.

Ref	Cerence Books(s) / Web links:
1	Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics - Volume 1, Dynamics- Volume 2", 7th Edition,
T	Wiley India, 2018.
2	Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 14th Edition, Pearson
2	Education 2017.
3	Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics – Statics and Dynamics" 4th Edition,
3	Pearson Education 2006.
4	Bhavikatti S S, Engineering Mechanics, New Age International Publishers, 2016
5	Vela Murali, "Engineering Mechanics", Oxford University Press 2010
6	Palanichamy M S, Nagan S, Elango P, Engineering Mechanics: Dynamics, Tata McGraw-Hill Publishing
	Company Limited, 2004

60							PO							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	0	2	0	-	-	-	-	0	0	0	3	0	-	2
2	3	0	2	0	-	-	-	-	0	0	0	3	0	-	2
3	3	0	2	0	-	-	-	-	0	0	0	3	0	-	2
4	3	0	2	0	-	-	-	-	0	0	0	3	0	-	2
5	3	0	2	0	-	-	-	-	0	0	0	3	0	-	2
1.	Slight	(low)		2. M	odera	te (N	Iediu	m)	3. S	ubstantia	al (High	1)			

Jui	oject Code	S	ubject Name (La	borato	ory Course)		Category	L	Т	Р
GE	19122	ENGINEERING ELECTRONICS	PRACTICES	5 -	ELECTRICA	L AND	ES	0	0	2
Ob	jectives:									
•	To provide	hands on experience	on various basic	enginee	ering practices in	Electrical En	gineering.			
•		ands on experience of								
				of Expe	eriments					
A. 1	ELECTRIC	AL ENGINEERING	G PRACTICE							
1	Residential	house wiring using s	switches, fuse, in	dicator,	lamp and energy	meter.				
2	Fluorescent	lamp wiring.								
3	Stair case w									
4	Measureme	ent of electrical quant	tities – voltage, c	urrent, p	power & power fa	actor in RLC	circuit.			
5	Measureme	ent of resistance to ea	arth of an electric	al equip	oment.					
B.]	ELECTRON	ICS ENGINEERIN	NG PRACTICE							
1	(peak-peak	, rms period, frequen	Study of Electronic components and equipment's – Resistor, colour coding, measurement of AC signal parameter (peak-peak, rms period, frequency) using CRO.							
	Study of logic gates AND, OR, EXOR and NOT.									
			EXOR and NOT							
2 3 4	Generation	of Clock Signal.			- Using general n	urpose PCB				
3 4	Generation Soldering p	of Clock Signal. ractice – Componen	ts Devices and C	rcuits –	- Using general p	urpose PCB.				
3 4	Generation Soldering p	of Clock Signal.	ts Devices and C	rcuits –	- Using general p		Contact Hour	s	:	3
3 4 5	Generation Soldering p Measureme	of Clock Signal. ractice – Componen ent of ripple factor of	ts Devices and C	rcuits –	- Using general p		Contact Hour	S	:	3
3 4 5 Cor	Generation Soldering p Measureme urse Outcom	of Clock Signal. ractice – Componen ent of ripple factor of res:	ts Devices and C HWR and FWR	rcuits –	- Using general p		Contact Hour	S	:	3
3 4 5 Cor On	Generation Soldering p Measureme urse Outcom completion o	of Clock Signal. ractice – Componen ent of ripple factor of es: f the course, the stud	ts Devices and C HWR and FWR	rcuits –	- Using general p		Contact Hour	s	:	3
3 4 5 Cor On	Generation Soldering p Measuremen urse Outcom completion of fabricate ele	of Clock Signal. ractice – Componen ent of ripple factor of res: f the course, the stuc ectrical and electroni	ts Devices and C HWR and FWR	rcuits –	- Using general p		Contact Hour	s	:	3
3 4 5 Cor	Generation Soldering p Measureme urse Outcom completion of fabricate ele formulate th	of Clock Signal. ractice – Componen nt of ripple factor of es: f the course, the stuc ectrical and electroni he house wiring	ts Devices and C FHWR and FWR lents will be able c circuits	rcuits –			Contact Hour	S	:	3
3 4 5 0n •	Generation Soldering p Measureme urse Outcom completion of fabricate ele formulate th	of Clock Signal. ractice – Componen ent of ripple factor of res: f the course, the stuc ectrical and electroni	ts Devices and C FHWR and FWR lents will be able c circuits	rcuits –			Contact Hour	s	:	3
3 4 5 Cor On • • • • RE	Generation Soldering p Measureme urse Outcom completion o fabricate ele formulate th design the A FERENCE	of Clock Signal. ractice – Componen nt of ripple factor of es: f the course, the stuc ectrical and electroni he house wiring	ts Devices and C HWR and FWR lents will be able c circuits ng diode and pas	to sive cor	nponents	Total (S	:	30
3 4 5 0n • • • 1	Generation Soldering p Measureme urse Outcom completion of fabricate eld formulate th design the A FERENCE Bawa H.S., Jeyachandra Publication	of Clock Signal. ractice – Componen ent of ripple factor of res: f the course, the stude ectrical and electroni the house wiring AC-DC converter usi "Workshop Practice an K., Natarajan S. & s, 2007.	ts Devices and C HWR and FWR lents will be able c circuits ng diode and pas ", Tata McGraw z Balasubramania	rcuits – to sive cor – Hill P n S., "A	nponents Publishing Compa A Primer on Engin	ny Limited, 2 neering Practi	2007. ices Laborator	y", <i>1</i>	Anui	radł
3 4 5 0n •	Generation Soldering p Measureme urse Outcom completion o fabricate ele formulate th design the A FERENCE Bawa H.S., Jeyachandra Publication Jeyapoovan Pvt.Ltd, 200	of Clock Signal. ractice – Componen ent of ripple factor of es: of the course, the stuc- ectrical and electroni he house wiring AC-DC converter usi "Workshop Practice an K., Natarajan S. & s, 2007. T., Saravanapandia:	ts Devices and C HWR and FWR lents will be able c circuits ng diode and pas ", Tata McGraw z Balasubramania n M. &Pranitha S	to - Hill P n S., "A S., "Eng	nponents Publishing Compa A Primer on Engin ineering Practice	Total (ny Limited, 2 neering Practi s Lab Manua	2007. ices Laborator il",Vikas Publ	y", <i>1</i>	Anui	radł

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	1	1	-	2	1	3	3	2	-	3
CO2	3	3	3	3	2	2	2	-	2	1	3	3	2	-	3
CO3	3	3	3	3	3	1	1	-	2	1	3	3	1	-	3
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

MC	C19102	INDIAN CONSTITUTION AND FREEDOM MOVEMENT	Category	L	Т	Р	С
		(Common to Mech, Aero, Auto Civil and MCT)	MC	3	0	0	0
Ob	jectives:						
•	To inculcate the values enshrined in the Indian constitution						
•	To create a sense of responsible and active citizenship						
•	To know about Constitutional and Non- Constitutional bodies						
•	To understand sacrifices made by the freedom fighters						

UNIT-I	INTRODUCTION	9					
Historical I	Historical Background - Constituent Assembly of India - Philosophical foundations of the Indian Constitution -						
Preamble -	- Fundamental Rights - Directive Principles of State Policy - Fundamental Duties - Citizens	hip –					
Constitution	nal Remedies for citizens. Constitution' meaning of the term, Indian Constitution: Sources and constitu	tional					
history, Fea	tures: Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy						
UNIT-II	STRUCTURE AND FUNCTION OF CENTRAL GOVERNMENT	9					
Union Gove	ernment - Structures of the Union Government and Functions - President - Vice President - Prime Mi	inister					
- Cabinet -	Parliament – Supreme Court of India – Judicial Review.						
UNIT-III	STRUCTURE AND FUNCTION OF STATE GOVERNMENT AND LOCAL BODY	9					
State Gover	nment – Structure and Functions – Governor – Chief Minister – Cabinet – State Legislature – Judicial S	ystem					
in States –	High Courts and other Subordinate Courts- Role and Importance, Municipalities: Introduction, Mayo	or and					
role of Elec	ted Representative, CEO of Municipal Corporation, Panchayat Raj: Introduction, Elected officials and	l their					
roles,, Villa	ge level: Role of Elected and Appointed officials.						
UNIT-IV	CONSTITUTIONAL FUNCTIONS AND BODIES	9					
Indian Fede	ral System - Center - State Relations - President's Rule - Constitutional Functionaries - Assessm	ent of					
	the Parliamentary System in India- CAG, Election Commission, UPSC, GST Council and						
Constitution	nal bodies NITI Aayog, Lokpal, National Development Council and other Non -Constitutional bodie	es					
UNIT-V	INDIAN FREEDOM MOVEMENT	9					
British Colo	onialism in India-Colonial administration till 1857- Revolt of 1857- Early Resistance to British Rule-I	Rise					
	sm in India-Indian Freedom Struggle under Mahatma Gandhi-Non- Cooperation Movement-Civil						
Disobedien	ce Movement- Quit India Movement-British Official response to National movement- Independence of	of					
India Act 1	947-Freedom and Partition						
	Total Contact Hours :	45					

Cour	Course Outcomes: On the successful completion of the course, students will be able to						
•	Appreciate the functions of the Indian government						
•	Apply as abide the rules of the Indian constitution.						
•	Follow the knowledge on functions of state Government and Local bodies						
•	Adopt the Knowledge on constitution functions and role of constitutional bodies and non-constitutional bodies						
•	Appreciate the sacrifices made by freedom fighters during freedom movement						

Tex	Text Book (s):					
•	Durga Das Basu, "Introduction to the Constitution of India", Lexis Nexis, New Delhi., 21st ed 2013					
•	Bipan Chandra, History of Modern India, Orient Black Swan, 2009					
•	Bipan Chandra, India's Struggle for Independence, Penguin Books, 2016					
•	Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi.2nd ed, 2014					
•	P K Agarwal and K N Chaturvedi, Prabhat Prakashan, New Delhi, 1st ed, 2017					

Reference Books(s) / Web links:

•	Sharma, Brij Kishore, "Introduction to the Constitution of India: Prentice Hall of India, New Delhi.
•	U.R.Gahai, "Indian Political System ", New Academic Publishing House, Jalaendhar.

SEMESTER III

GE	219301	LIFE SCIENCE FOR ENGINEERS	Category	L	Т	Р	С
		Common to all branches of Engineering & Technology	ES	3	0	0	3
Ob	jectives:						
•	Broad obje	ective of this course is to give an introduction of life science to engin	eering students.	The	cou	rse h	elps

students to familiarize with human physiology, life style diseases and their management and basic diagnostic aspects

UNIT-I **OVERVIEW OF CELLS AND TISSUES**

Introduction to Bacteria, virus, fungi and animal cells. Organisation of cells into tissues and organs. Functions of vital organs

HEALTH AND NUTRITION **UNIT-II**

Balanced diet, Importance of RDA, BMR, and diet related diseases. Role of antioxidants PUFA, DHA, Essential amino acids, Essential fatty acids in diet. Water and its significance for human health. Physical and Mental health - Significance of exercise and yoga.

UNIT-III UNHEALTHY PRACTICES AND THEIR IMPACT ON HEALTH

Drug induced toxicity, Unhealthy practices - Drug abuse/Narcotics/Smoking/Alcohol/Self-medication/Undue usage of electronic gadgets. 9

UNIT-IV COMMON DISEASES AND LIFESTYLE DISORDERS

Prevention and management of food, water and airborne illness (Common cold, dehydration, food poisoning etc). Lifestyle disorders - obesity, diabetes, stroke, heart attack, ulcer, renal calculi, cancer, AIDS, hepatitis- prevention and management. 7

UNIT-V DIAGNOSTIC TESTS AND THEIR RELEVENCE

Normal range of biochemical parameters, significance of organ function tests, organ donation.

Total Contact Hours

9

11

9

45 :

Cour	Course Outcomes: The students at the end of this course, should be able to						
•	Classify the living organisms and relate the functions of vital organs						
•	Demonstrate the importance of balanced diet and plan methods for healthy living						
•	Analyse the hazards of unhealthy practices and take preventive measures						
•	Categorise the various life style disorders and recommend ways to manage the common diseases						
•	Evaluate and interpret biochemical parameters and their significance.						

Te	xt Book (s):
1	Diseases of human body, Carol D Tamparo, Marcia A Lewis , Marcia A, Lewis ,EdD, RN, CMA-AC, F.A Davis
	Company, 2011
2	Textbook of Medical Biochemistry, Chatterjea ; Rana Shinde.

Re	ference Books(s) / Web links:
1	Biology for Engineers, Arthur.T., Johnson, CRC Press, Taylor and Francis, 2011
2	Cell Biology and Genetics, Cecie Starr, Ralph Taggart, Christine Evers and Lisa Starr, Cengage Learning, 2008
3	https://nptel.ac.in/courses/122103039/

PO/PSO CO	PO 1	PO 2	PO 3	РО 4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	1	2	2	2	3	1	1	1	2	1	3	-	-	-
CO2	3	1	2	2	2	3	1	1	1	2	1	3	-	-	-
CO3	3	1	2	2	2	3	1	3	1	2	1	3	-	-	-
CO4	3	1	2	2	2	3	1	1	1	2	1	3	-	-	-
CO5	3	1	2	2	3	3	1	1	1	2	1	3	-	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name	Category	L	Т	Р	С
	TRANSFORMS AND APPLICATIONS					
MA19355	Common to III sem. B.E. Mechanical Engineering, Mechatronics	BS	3	1	0	4
	and Civil Engineering					

Objectives:

To indoduce Fourier series and to solve boundary value problems that anse in the field of Engineering.	• To introduce Fourier series and to solve boundary value problems that arise in the field of Engineering.
--	--

• To acquaint the student with different transform techniques used in wide variety of situations.

UNIT-I	FOURIER SERIES		12						
Dirichlet's	Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series –Half range cosine								
series - Par	series – Parseval's identity – Harmonic analysis.								
UNIT-IIBOUNDARY VALUE PROBLEMS – ONE DIMENSIONAL EQUATIONS12									
Classificatio	on of second order quasi linear partial differential equations – Fourie	er series solutions of one-dimen	nsional						
wave equati	on – One dimensional heat equation: Problems with temperature and	temperature gradients.							
UNIT-III BOUNDARY VALUE PROBLEMS – TWO DIMENSIONAL EQUATIONS 12									
Steady state	solution of two-dimensional heat equation in Cartesian coordinates: I	nfinite and finite plates – Stead	y state						
solution of	wo-dimensional heat equation in Polar coordinates: Circular and Sem	icircular disks.	-						
UNIT-IV	FOURIER TRANSFORMS		12						
Statement of	Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and cosine transforms – Properties								
Transforms	of simple functions - Convolution theorem - Parseval's identity - Ap	plication to boundary value pro	blems.						
UNIT-V	Z - TRANSFORMS AND DIFFERENCE EQUATIONS		12						
Z- transforms - Elementary properties – Inverse Z - transform (using partial fraction and residues) – Convolution theorem									
- Formation	- Formation of difference equations – Solution of difference equations using Z- transform.								
		Total Contact Hours :	60						

Course Outcomes:

On completion of course students will be able to

- Develop skills to construct Fourier series for different periodic functions and to evaluate infinite series.
- Classify different types of PDE and solve one dimensional boundary value problems.
- Solve two-dimensional heat equations.
- Solve Engineering problems using Fourier transform techniques.
- Solve difference equations using Z transforms that arise in discrete time systems.

	Te	xt Books:
	1	Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley India, 2015.
Defini, Second reprint, 2016.	2	Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt.Ltd.,New Delhi, Second reprint, 2016.

Reference Books / Web links: 1 Grewal B.S., "Higher Engineering Mathematics", 44rd Edition, Khanna Publishers, Delhi, 2016. 2 Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company Limited, New Delhi, 2017. 3 Glyn James, "Advanced Modern Engineering Mathematics", 4th Edition, Pearson Education, 2016. 4 Ray Wylie C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.

RO/PSO CO	PO 1	PO 2	PO 3	PO 4	PO5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
MA19355.1	3	3	3	3	3	2	-	-	-	-	2	2	3	-	1
MA19355.2	3	3	3	3	3	2	-	-	-	-	2	2	3	-	1
MA19355.3	3	3	3	3	2	1	-	-	-	-	2	2	3	-	1
MA19355.4	3	3	2	2	2	1	-	-	-	-	1	1	3	-	1
MA19355.5	3	3	2	2	2	1	-	-	-	-	1	1	3	-	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19301	Engineering Thermodynamics	PC	3	1	0	4

Objectives:

- To attain knowledge on the basics and application of zeroth and first law of thermodynamics.
- To acquire knowledge on the second law of thermodynamics, availability and applications of it.
- To gain knowledge about properties of pure substances and steam power cycles.
- To attain knowledge on the macroscopic properties of ideal and real gases.
- To gain knowledge about Gas mixtures and Psychrometric processes

UNIT-I BASICS, ZEROTH AND FIRST LAW

Review of Basics – Thermodynamic systems, Properties and processes Thermodynamic Equilibrium - Displacement work - P-V diagram. Thermal equilibrium - Zeroth law – Concept of temperature and Temperature Scales. First law – application to closed and open systems – steady and unsteady flow processes.

UNIT-II SECOND LAW AND AVAILABILITY ANALYSIS

Heat Engine – Refrigerator - Heat pump. Statements of second law and their equivalence & corollaries. Carnot cycle -Reversed Carnot cycle - Performance - Clausius inequality. Concept of entropy - T-s diagram - Tds Equations -Entropy change for a pure substance. Ideal gases undergoing different processes - principle of increase in entropy. Applications of II Law. High- and low-grade energy. Availability and Irreversibility for open and closed system processes - I and II law Efficiency

UNIT-III PROPERTIES OF PURE SUBSTANCES

Steam - formation and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagrams. PVT surface. Determination of dryness fraction. Calculation of work done and heat transfer in non-flow and flow processes using Steam Table and Mollier Chart. Application of I and II law for pure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods – Reheat and Regenerative cycles, Economiser, preheater, Binary and Combined cycles.

UNIT-IV IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases- Reduced properties-. Compressibility factor-. Principle of Corresponding states. Generalised Compressibility Chart and its use-. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations.

UNIT-V GAS MIXTURES AND PSYCHROMETRY

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibb's function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

Total Contact Hours :

12

12

12

12

12

60

Course Outcomes: At the end of this course the students will have the

- Ability to apply the first law of thermodynamics and can apply it to closed and open systems to calculate specified parameters such as work, heat transfer, internal energy, mass flow rate and enthalpy.
 Ability to Implement the second law of thermodynamics and can apply it to closed and open systems to calculate
- specified parameters such as work, heat transfer, or entropy.

	Adopt knowledge on the construction and principles governing the one-component pressure-volume-temperature
•	diagrams. Also have thorough understanding of the basic concepts of vapour power cycles and the use of steam
	tables in the analysis of engineering devices and systems.
	Ability to appreciate the behavior of Ideal gas and the interrelationship between thermodynamic functions and
•	solve practical problems.
	Ability to calculate the properties of gas mixtures and capable to calculate the psychrometric properties for various
•	psychrometric processes.

Text Book (s):

1	Nag.P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw Hill (2017), New Delhi
2	R.K.Rajput, "A text book of Engineering Thermodynamics", Fifth Edition, Lakshmi Publications, New Delhi,

² 2016.

Ref	Reference Books(s) / Web links:						
1	Cengel, Y and M. Boles, Thermodynamics - An Engineering Approach, Tata McGraw Hill,8th Edition, 2015.						
2	Chattopadhyay, P, "Engineering Thermodynamics", 2nd Edition Oxford University Press, 2016.						
3	Gordon Rogers, Yon Mayhew, "Engineering Thermodynamics: Work and Heat Transfer, 4 th Edition, Pearson, 2002.						
4	Claus Borgnakke and Richard E. Sonntag, "Fundamentals of Thermodynamics", 7th Edition, Wiley Eastern, 2009.						
5	Venkatesh. A, "Basic Engineering Thermodynamics", Universities Press (India) Limited, 2007.						
6	https://nptel.ac.in/courses/101104063/						
7	https://nptel.ac.in/courses/112/102/112102255/						
8	https://www.thermal-engineering.org						
9	https://www.grc.nasa.gov > www > airplane > thermo						

CO							PO							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	-	-	1	2	-	-	1	-	3	-	1	2
2	3	2	2	-	-	1	2	-	-	1	-	3	-	1	2
3	3	2	2	-	-	1	2	-	-	1	-	3	-	1	2
4	3	2	2	-	-	1	2	-	-	1	-	3	-	1	2
5	3	2	2	-	-	1	2	-	-	1	-	3	-	1	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19302	METAL CUTTING AND MACHINE TOOLS	PC	3	0	0	3

Objectives: The main learning objectives of this course is to prepare the students

	To Understand the fundamental principles in material removal processes and importance of metal cutting
•	parameters.
•	To Understand the Working principle of turning machines, Semi-automatic and automatic machine tools.
•	To study the working principles of reciprocating machines, milling process and gear manufacturing methods.
•	To impart the basic knowledge on grinding and broaching processes.
•	To understand basics of CNC machine tools and programming of different manufacturing processes

UNIT-I THEORY OF METAL CUTTING

Mechanics of chip formation, , forces in machining, Merchant's Force diagram, Types of chip, cutting tools – single point cutting tool nomenclature, orthogonal and oblique metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability.

9

UNIT-II	TURNING MACHINES	9
Centre lathe	, constructional features, specification, operations – taper turning methods, thread cutting methods, s	special
	, machining time and power estimation. Semi-automatic lathes- Capstan and turret lathes-Bar F	-
Mechanism	- tool layout - automatic lathes- single spindle: Swiss type, automatic screw type - multi spindle mad	chines
UNIT-III	RECIPROCATING, MILLING AND GEAR CUTTING MACHINES	10
reaming, bo	ng machine tools: Construction of shaper and its operation, Basics of Planer, slotter Hole making: Daring, tapping. Milling - type and various milling operations-attachments- types of milling cutter – re–Indexing and machining time calculations – Gear Manufacturing – Gear cutting, Gear generation	Cutte
hobbing and	gear shaping – gear finishing methods.	_
UNIT-IV	ABRASIVE PROCESSES AND BROACHING	9
Maintenanc	ylindrical grinding, surface grinding, centreless grinding, internal grinding - micro finishing meth e of grinding wheels - Typical applications – concepts of surface integrity, broaching machines: 1 – push, pull, surface and continuous broaching machines.	
UNIT-V	COMPUTER NUMERICAL CONTROL MACHINE TOOLS	7
	lumerical Control (CNC) machine tools –types, constructional details, special features, machining gramming fundamentals – manual part programming and computer assisted part programming.	centr
	Total Contact Hours :	45
Course Out	comes: At the end of this course students will have the	
• Ability	to apply the basic principles in material removal processes and importance of metal cutting parameter	ers.
	to apply the basic principles in material removal processes and importance of metal cutting parameter to appreciate the working of various types of turning machines and can able to prepare the tool layou	

- Ability to apply the working of various reciprocating, milling and gear cutting machines
- Ability to implement the working of various abrasive processes and broaching processes
- Ability to adopt the basics of CNC machine tools and to write simple part programme.

Text Books:

Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India, Third Edition, 2009.
 Hajra Choudhury. "Elements of Workshop Technology – Vol.II". Media Publishers & Promoters, India, 2010.

Ref	erence book(s) / Web links:
1	Geofrey Boothroyd, Winston A.Knight"Fundamentals of Machining and Machine Tools", Taylor & Francis,
	CRC press, 2006
2	P.N. Rao."ManufacturingTechnology :Metal Cutting and Machine Tools, Volume McGraw Hill Education
	(India) Private Limited 2019.
3	HMT – "Production Technology", Tata McGraw Hill, 1998.
4	Richerd R Kibbe, John E. Neely, Roland O.Merges and Warren J.White "Machine Tool Practices", Prentice Hall
	of India, 1998.
5	Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006.
6	B.L.Juneja, G.S. Sekhon, Nitin Seth, Fundamentals of Metal cutting and Machine tools Second Edition, New Age
	International (P) Ltd., 2005
5.	https://nptel.ac.in/courses/112105233/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	1	-	-	-	1	2	-	-	-	-	3	-	-	2
CO 2	3	1	-	-	I	1	1	-	-	-	-	3	-	-	2
CO 3	3	1	-	-	-	1	1	-	-	-	-	3	-	-	2
CO 4	3	1	-	-	I	1	1	-	-	-	-	3	-	-	2
CO 5	3	1	-	-	1	1	1	-	-	-	-	3	-	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	C
ME 19303	KINEMATICS OF MACHINERY	PC	2	1	0	3

Ob	jectives:
	To understand the basic concepts of mechanisms and construct the velocity, and acceleration diagram of
•	mechanisms
•	To understand the basic concepts of cam mechanism, gears and gear trains
•	To have the basic knowledge on friction in machine elements
•	To understand the force-motion relationship in components subjected to external forces in simple mechanisms
•	To understand the importance of balancing in machines and analyze the effect of dynamics of undesirable
	vibrations

UNIT-I	BASICS OF MECHANISMS	9						
Classification	of mechanisms - Basic kinematic concepts and definitions - Degree of free	eedom, Mobility – Kutzbach						
criterion, Gruebler's criterion - Grashof's Law - Kinematic inversions of four-bar chain and slider crank chains - Limit								
positions - M	echanical advantage - Transmission Angle - Description of some common	mechanisms – Quick return						
mechanisms, S	Straight line generators, Universal Joint – rocker mechanisms.							
UNIT-II	KINEMATICS OF LINKAGE MECHANISMS	9						
Displacement.	velocity and acceleration analysis of simple mechanisms - Graphical metho	d– Velocity and acceleration						
polygons - V	elocity analysis using instantaneous centres - kinematic analysis of simpl	e mechanisms – Coincident						
points - Corio	lis component of Acceleration - Introduction to linkage synthesis problem	n. Introduction to simulation						
software								
UNIT-III	KINEMATICS OF CAM MECHANISMS	9						
Classification	of cams and followers - Terminology and definitions - Displacement d	liagrams –Uniform velocity,						
parabolic, sim	ple harmonic and cycloidal motions - Derivatives of follower motions - La	ayout of plate cam profiles –						
Specified cont	our cams - Circular arc and tangent cams - Pressure angle and undercutting	g – sizing of cams.						
UNIT-IV	GEARS AND GEAR TRAINS	9						
Law of toothe	d gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology a	nd						
definitions –G	ear tooth action - contact ratio - Interference and undercutting. Helical, Bev	vel, Worm, Rack and Pinion						
gears [Basics	only]. Gear trains - Speed ratio, train value - Parallel axis gear trains - Epic	yclic Gear Trains.						
UNIT-V	FRICTION IN MACHINE ELEMENTS	9						
Surface contac	cts - Sliding and Rolling friction - Friction drives - Friction in screw thread	s – Bearings and lubrication						
- Friction clut	ches – Belt and rope drives – Friction in brakes- Band and Block brakes.							
	Total Contact Hours	: 45						

Note: One assignment should be given to the students on simulation of mechanism.

Соі	urse Outcomes: At the end of this course students will have the
•	Ability to analyze the mechanisms
•	Ability to construct the velocity and acceleration diagrams for a given mechanism
•	Ability to design and analyse the cam mechanisms.
•	Ability to analyze the given gear trains
•	Ability to analyze and predict the influence of friction in machine elements

Tex	Text Books:							
1	Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 4th							
	Edition, Reprint: 2017							
2	Rattan, S.S. "Theory of Machines", McGraw-Hill Education Pyt. Ltd., 5 th edition, 2019.							

Ref	ference Books(s) / Web links:
1	Amitabha Ghosh and Asok Kumar Mallik, "Theory of Mechanisms and Machines", Affiliated East-West Pvt.
	Ltd.,3 rd edition, 1988.
2	Rao.J.S. and Dukkipati.R.V. "Mechanism and Machine Theory", New Age International Pvt. Ltd., 2 nd Edition, 2014
3	Singh.V.P, "Theory of Machine", Dhanpat Rai & Co., 6th Edition, 2017

4	Robert L. Norton, Kinematics and Dynamics of Machinery, McGraw-Hill Education, Special Indian Edition,								
	Reprint-2017								
5.	https://nptel.ac.in/courses/112/104/112104121/								
6.	https://nptel.ac.in/courses/112105268/								
7.	https://nptel.ac.in/courses/112101096/								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	1	-	1	-	-	1	-	-	-	2	-	-	2
CO 2	2	1	1	-	1	-	-	1	-	-	-	2	-	-	2
CO 3	2	1	1	-	1	-	-	1	-	-	-	2	-	-	2
CO 4	2	1	1	-	1	-	-	1	-	-	-	2	-	-	2
CO 5	2	1	1	-	1	-	-	1	-	-	-	2	-	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Subject Code	Subject Name (Lab Integrated Theory Courses)	Category	L	Т	Р	С			
E	E 19241	BASIC ELECTRICAL ENGINEERING (COMMON TO AUTO, ECE, MECH, AND MCT)	ES	3	0	2	4			
Ob	jectives:									
•	To introduce e	lectric circuits and provide knowledge on the analysis of circuits using	network theore	ms.						
•		wledge on the phenomenon of resonance in series and parallel circuits nse of RC, RL and RLC circuits.	and also to obta	in tł	ne					
•		by by the principles of electrical machines.								
 To provide knowledge on the principles of electrical intermines. To learn the concepts of different types of power converter and batteries. 										
•		ods of experimentally analyzing electrical circuits and machines								
UN		IRCUITS				9				
		ements (R, L and C), voltage and current sources, Kirchhoff 's current	and voltage law	s, a	naly	sis	of			
		dc excitation. Superposition, Thevenin and Norton Theorems.	C	-						
UNIT-II AC CIRCUITS 9										
Rep	presentation of s	sinusoidal waveforms, peak and RMS values, phasor representation,	real power, rea	ctiv	e p	owe	er,			
app	arent power, po	wer factor. Analysis of single-phase ac circuits consisting of R, L, C,	RL, RC, RLC	com	bina	atio	ns			
(sei	ries and parallel)	, resonance. Three phase balanced circuits, voltage and current relations	in star and delta	l coi	nneo	ctio	ns			
		IOTORS AND TRANSFORMERS				9				
		ing, torque-speed characteristic and speed control of DC motors C				ple	of			
ope		uation- regulation, losses and efficiency of Single-Phase Transformers	- Auto-transform	ner						
		OTATING MACHINES				9				
		working of Synchronous Generators-EMF Equation - Constructio								
		ing methods of three phase induction motors-Single-phase induction	n motors- Con	stru	ctio	n a	nd			
		ent Magnet Brushless DC Motors and Stepper Motors.				1				
		FERIES AND POWER CONVERTERS				9				
		Important Characteristics for Batteries -DC-DC buck and boost con	verters- duty ra	atio	cor	itro	l -			
Sin	gle-phase and th	ree-phase voltage source inverters – Sinusoidal modulation			1	1				
			Contact Hour	5	:	4	5			
	1	List of Experiments								
1	1	verification of Kirchhoff's voltage and current laws.								
2		Experimental verification of network theorems (Thevenin and, Norton Theorems).								
3	Load test on D	Load test on DC shunt motor.								
	Speed control of DC shunt motor.									
4	Speed condition	of DC shunt motor.								

6 7	Open circuit and short circuit tests on single phase transformer. Speed control of chopper fed DC motor.			
/ 8				
ð	Speed control of 3Φ Induction motor.	Contract Houng		30
		Contact Hours Total Contact Hours	:	- <u>50</u> 75
Co	urse Outcomes:	Total Contact Hours	:	15
	completion of the course, the students will be able to			
•	Analyse DC and AC circuits and apply circuit theorems.			
•	Realize series resonance, parallel resonance and three phase balanced circu	its.		
•	Adopt the principles of electrical machines.			
•	Implement the principles of different types of power converter and batterie	S.		
•	Experimentally analyze the electric circuits and machines.			
Te	xt Book (s):			
1	D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGr	aw Hill, 2010.		
2	M.H.Rashid, "Power Electronics: Circuits, Devices and Applications", Pear New Delhi, 2014.	rson Education, PHI	Third E	litior
3	David Linden and Thomas B. Reddy, "Handbook of Batteries" McGraw-H	Iill Professional,2001		
Ref	ference Books(s) / Web links:			
1	D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.			
2	E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.			
3	D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989			
4	L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford Universit			
5	P.S.Bimbra "Power Electronics", Khanna Publishers, 4th Edition, 2007.			

MAPPING OF COs WITH POs AND PSOs

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	1	1	-	-	-	-	2	1	-	1
CO2	3	3	2	3	3	1	1	-	-	-	-	-	1	-	1
CO3	3	3	2	3	3	2	2	-	1	-	-	2	3	-	2
CO4	3	3	2	3	3	2	2	-	-	-	2	2	1	-	1
CO5	3	3	2	3	3	1	2	1	1	1	2	2	2	-	1
Average	3	3	2	3	3	1.4	1.6	1	1	1	2	2	1.6	-	1.2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Lab course)	Category	L	Т	Р	С
ME19311	MACHINE DRAWING LAB	PC	0	0	3	1.5

Ob	jectives:
•	To familiarize the students with Indian Standards on drawing practices and standard components
	To make the students to draw various thread forms, Welding symbols, Riveted joints, Keys and fasteners. Fits,
•	tolerances and understand the principle of GD&T (Geometric Dimensioning & Tolerance)
	To make the students understand and interpret drawings of machine components so as to prepare assembly drawings either manually and using standard CAD packages
•	drawings either manually and using standard CAD packages
•	To impart knowledge on drawing principal views, two dimensional assembled views with suitable sections of
	different components with an emphasis by applying general projection principles using Computer Aided Drafting
	(CAD).
٠	To impart practical experience in preparing 2D production drawings using CAD software.

DRAWING STANDARDS & FITS AND TOLERANCES

Code of practice for Engineering Drawing, BIS specifications – Thread forms, Welding symbols, riveted joints, keys, and fasteners - Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc. Limits, Fits, Tolerance of individual dimensions- Specification of Fits-Basic principles of GD&T (Geometric Dimensioning & Tolerance).

2-D DRAFTING & CAD PRACTICE (USING APPLICATION PACKAGES)

Manual Preparation assembly drawings and production drawings.

Using CAD packages- Drawing, Editing, Dimensioning, Plotting Commands, Layering Concepts, Hatching, Detailing of Part drawings and preparation of assembled view with suitable sections to the given part details. Suggested assembly drawings are

- Joints Cotter joint (Manual Drawing), Knuckle joint, Universal joint
- Couplings Muff coupling (Manual Drawing), Oldham's coupling, Flange coupling
- Bearings Bushed bearing (Manual Drawing), Footstep bearing
- Engine parts Piston, Connecting Rod, Stuffing box, multi-plate clutch.
- Machine Components Screw Jack, Machine Vice, Lathe Tail Stock, Plummer Block (Manual Drawing)
- Valves Safety valves
- Project

 Note: 25% of assembly drawings must be done manually and remaining 75% of assembly drawings must be done by using any CAD software. The above tasks can be performed manually and using standard commercial 2D CAD software.

 Total Contact Hours
 :
 45

Co	urse Outcomes: At the end of this course, the student able to
1	Read the engineering drawings based on the standards of machine drawing practiced by Bureau of Indian standards (B.I.S)
2	Draw the different types of thread forms, welding symbols, types of Keys, Riveted joints and fasteners.
3	Recognize the basic principles and applications of fits, tolerances and GD&T(Geometrical Dimensioning and Tolerance)
4	Draw 2D manual assembly and Production drawings of various components.
5	Draw different principal views, sectional views of the components or machine parts and their assemblies using CAD software.

NCI	Reference Dooks(s) / web links.							
1	Bhatt.N.D. and Panchal.V.M., "Machine Drawing", Charotar Publishing House, 2016							
2	Gopalakrishna.K.R., "Machine Drawing", SubhasStores, 2013							

3 Ajeet Singh, "Machine Drawing includes AutoCAD" McGraw Hill, 2017

4 https://thesourcecad.com/autocad-tutorials/

Reference Books(s) / Web links

- 5 https://all3dp.com/1/autocad-tutorial-for-beginners/
- 6 https://www.autodesk.in/campaigns/autocad-tutorials

CO		РО												PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	1	-	-	-	3	-	-	-	-	2	-	3	2	-	2		
2	1	-	-	-	3	-	-	-	-	2	-	3	2	-	2		
3	1	-	-	-	3	-	-	-	-	2	-	3	2	-	2		
4	1	-	-	-	3	-	-	-	-	2	-	3	2	-	2		
5	1	-	-	-	3	-	-	-	-	2	-	3	2	-	2		

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19312	MANUFACTURING TECHNOLOGY LAB	PC	0	0	3	1.5

Ob	Objectives: Enable the students							
•	To practice the moulding process using green sand.							
•	To practice different types of sheet metal operatins							
•	To perform various machining operations like facing, turning, knurling, thread cutting, shaping, grinding and milling.							
•	To obtain the knowledge of different gear manufacturing processes.							
•	To acquire knowledge on selection of appropriate processes, machines to complete a given job.							

LIST OF EXPERIMENTS						
1	Preparation of sand mould using single piece pattern					
2	Preparation of sand mould using split piece pattern					
3	Fabrication of tray in sheet metal					
4	Fabrication of funnel in sheet metal					
5	Taper turning using lathe					
6	Knurling and external thread cutting using lathe					
7	Step turning and drilling using Capstan / Turret lathe					
8	Drilling and Tapping					
9	Cube formation using shaper					
10	Study of Indexing mechanism in milling machine					
11	Hexagonal milling using vertical milling machine					
12	Spur gear cutting using milling machine					
13	Gear generation in gear hobbing machine					
14	Surface grinding					
15	Cylindrical grinding					
		Total Contact Hours	:	45		

Course Outcomes: At the end of this course students will have the						
٠	Ability to make a mould in green sand using different types of patterns.					
٠	Ability to create different objects using sheet metal.					
•	Ability to perform different possible machining processes in lathe, shaper, grinders and milling machines.					
•	Ability to select and perform different gear generating process based on requirements.					
	Ability to select suitable manufacturing method, machines, equipment and tools to make a job based on given					
•	requirements.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	-	-	-	-	1	1	-	2	-	-	3	-	1	2
CO 2	1	-	-	-	-	1	1	-	2	-	-	3	-	1	2
CO 3	1	-	-	-	-	1	1	-	2	-	-	3	-	1	2
CO 4	1	-	-	-	-	1	1	-	2	-	-	3	-	1	2
CO 5	1	-	-	-	-	1	1	-	2	-		3	-	1	2

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

SEMESTER-IV

Subject Code	Subject Name	Category	L	Т	Р	С
MA19455	STATISTICS AND NUMERICAL METHODS	BS	3	1	•	4
WIA19455	Common to IV sem. B.E. Mechanical Engineering and Mechatronics	DS	3	1	U	4

Ob	Objectives:					
•	To provide the necessary basic concepts of a few statistical methods in designing and solving problems.					
•	To provide various numerical methods in solving problems that occur in the field of Engineering and Technology.					

TESTING OF HYPOTHESIS UNIT-I

Statistical hypothesis - Large sample test based on Normal distribution for single mean and difference of means -Tests based on t, F and Chi-square test for single sample standard deviation. Chi-square tests for independence of attributes and goodness of fit. 12

UNIT-II DESIGN OF EXPERIMENTS

One way and two-way classifications - Completely randomized design - Randomized block design - Latin square design - 2²factorial design.

	UNIT-III	SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS	12
ſ	Newton Rap	hson method - secant method - Gauss Jordan method - Iterative method of Gauss Seidel - Eigen val	ue of
	a matrix by	power method and by Jacobi method for symmetric matrix.	

UNIT-IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL **INTEGRATION**

Curve fitting (y = a + bx, $y = a + bx + cx^2$)-Lagrange's interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical integration using Trapezoidal and Simpson's 1/3 rules. 12

UNIT-V NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Taylor's series method - Modified Euler's method - Fourth order Runge - Kutta method for solving first order equations - Finite difference methods for solving second order equations- Finite difference solution of onedimensional heat equation by explicit and implicit methods - Two-dimensional Laplace equation. 60

Total Contact Hours

12

12

C	Course Outcomes: On completion of course, students will be able to
•	Obtain statistical data from experiments and able to analyze the same using statistical test.
•	Design experiments using suitable ANOVA techniques and draw conclusions.
•	Solve algebraic equations and Eigen value problems that arise during the study of engineering problems.
•	Use interpolation methods to solve problems involving numerical differentiation and integration

Solve differential equations numerically that arise in course of solving engineering problems. •

Text Books

	IUA	A DOORS.
	1	Veerarajan T., 'Statistics and Numerical methods" Mc Graw Hill, 2018
Ī	2	Kandasamy P., Thilagavathi and K. Gunavathi., "Statistics and Numerical Methods", S. Chand & Company Ltd. (2010).

Re	ference Books / Web links:
1	Johnson R.A., and Gupta. C.B., "Miller and Freund's Probability and Statistics for Engineers", 11th Edition,
1	Pearson Education, , Asia, 2011.
2	Walpole R.E., Myers. R.H., Myers. S.L., and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th
4	Edition, Pearson Education, Asia, 2011.
3	Spiegel M.R., Schiller. J., and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata
3	McGraw Hill Edition, 2004.
4	Grewal B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science", 11th Edition, Khanna
4	Publishers, New Delhi, 2013.
5	Gerald C.F., and Wheatley. P.O. "Applied Numerical Analysis" 7th EditionPearson Education, Asia, New Delhi,
5	2006.

Subject Code	Subject Name	•							
ME19401	THERMAL ENGINEERING	PC	3	0	0 3				
Objectives: Th	e main learning objective of this course is to prepare the students								
• To integrat	te the laws and concepts of thermodynamics into the analysis of gas power cy	ycles							
• To analyse	e the working of internal combustion engines and its auxiliary systems								
	tand the working and performance of the steam nozzles and steam turbines								
• To underst	tand the working of air compressors and to evaluate their performance								
• To analyse	e various refrigeration cycles and air conditioning systems								
	refrigerant property data book, Steam Tables, Mollier diagram and Psychrom	netric chart ar	e						
ermitted)					0				
	AS POWER CYCLES ual, Brayton cycles, Calculation of mean effective pressure, and air standard effective pressure.				8				
				21100					
	ual, brayton cycles, calculation of mean effective pressure, and an standard of	efficiency - C	omp	anso	on				
of cycles.		entency - C	omp						
of cycles.	NTERNAL COMBUSTION ENGINES	-	-		10				
of cycles. UNIT-II I Classification -	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagram	am - actual an	d the	oret	10 tical				
of cycles. UNIT-II IN Classification - p-V diagram of	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI,	am - actual an Diesel pump	d the	oret	10 tical				
of cycles. UNIT-II I Classification - p-V diagram of system. Battery	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in S	am - actual an Diesel pump	d the	oret	10 tical				
of cycles. UNIT-II I Classification - p-V diagram of system. Battery Lubrication and	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St Cooling systems. Performance calculation.	am - actual an Diesel pump	d the	coret	10 tical ctor				
of cycles. UNIT-II IN Classification - p-V diagram of system. Battery Lubrication and UNIT-III S	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES	am - actual an Diesel pump I and CI Engi	d the and i nes.	oret	10 tical				
of cycles. UNIT-II IN Classification - p-V diagram of system. Battery Lubrication and UNIT-III S' Flow of steam t	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St Cooling systems. Performance calculation.	am - actual an Diesel pump I and CI Engi upersaturated	d the and i nes.	oret	10 tical ctor				
of cycles. UNIT-II IN Classification - p-V diagram of system. Battery Lubrication and UNIT-III S' Flow of steam t Impulse and Re	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, su eaction principles, compounding, velocity diagram for simple and multi-stage	am - actual an Diesel pump I and CI Engi upersaturated	d the and i nes.	oret	10 tical ctor				
of cycles. UNIT-II I Classification - p-V diagram of system. Battery Lubrication and UNIT-III S Flow of steam t Impulse and Re regulations –Go	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, su eaction principles, compounding, velocity diagram for simple and multi-stage	am - actual an Diesel pump I and CI Engi upersaturated	d the and i nes.	eoret injec	10 tical ctor				
of cycles. UNIT-II IN Classification - p-V diagram of pystem. Battery Lubrication and Lubrication and S Flow of steam t Impulse and Re regulations – Ge UNIT-IV	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in S Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, su eaction principles, compounding, velocity diagram for simple and multi-stage overnors.	am - actual an Diesel pump I and CI Engi upersaturated turbines, spe	d the and i nes. flow ed	eoret injec	10 tical ctor 9				
of cycles. UNIT-II I Classification - p-V diagram of system. Battery Lubrication and UNIT-III S' Flow of steam t Impulse and Re regulations –Ge UNIT-IV A Classification a clearance, Volu	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St d Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, su eaction principles, compounding, velocity diagram for simple and multi-stage overnors. IR COMPRESSOR and working principle of various types of compressors, work of compression variantic efficiency, Isothermal efficiency and Isentropic efficiency of reciprocation.	am - actual an Diesel pump I and CI Engi upersaturated turbines, spe with and with	d the and ines. flow ed	coret injec	10 tical ctor 9				
of cycles. UNIT-II I I Classification - p-V diagram of system. Battery Lubrication and UNIT-III S' Flow of steam t Impulse and Re regulations –Ge UNIT-IV A Classification a clearance, Volu Multistage air c	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagram four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in State a Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, subscripts, compounding, velocity diagram for simple and multi-stage overnors. IR COMPRESSOR and working principle of various types of compressors, work of compression variantic efficiency, Isothermal efficiency and Isentropic efficiency of reciprocation compressor and inter cooling –work of multistage air compressor	am - actual an Diesel pump I and CI Engi upersaturated turbines, spe with and with	d the and ines. flow ed	coret injec	10 tical ctor 9				
of cycles. UNIT-II I Classification - p-V diagram of system. Battery Lubrication and UNIT-III S' Flow of steam t Impulse and Re regulations -Go UNIT-IV A Classification a clearance, Volu Multistage air c UNIT-V R	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagram Four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St 1 Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, su eaction principles, compounding, velocity diagram for simple and multi-stage overnors. IR COMPRESSOR and working principle of various types of compressors, work of compression valuetric efficiency, Isothermal efficiency and Isentropic efficiency of reciprocations EFRIGERATION AND AIR CONDITIONING	am - actual an Diesel pump I and CI Engi upersaturated turbines, spe with and with ating compres	d the and i nes. flow ed	coret	10 tical ctor 9 9 9				
of cycles. UNIT-II I Classification - p-V diagram of system. Battery Lubrication and UNIT-III S Flow of steam t Impulse and Re regulations –Ge UNIT-IV A Classification a clearance, Volu Multistage air c UNIT-V R Refrigerants - V	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St 1 Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, su eaction principles, compounding, velocity diagram for simple and multi-stage overnors. IR COMPRESSOR and working principle of various types of compressors, work of compression varietic efficiency, Isothermal efficiency and Isentropic efficiency of reciprocation compressor and inter cooling –work of multistage air compressor EFRIGERATION AND AIR CONDITIONING Vapour compression refrigeration cycle- super heat, sub cooling – Performance	am - actual an Diesel pump I and CI Engi upersaturated turbines, spe with and with ating compres	d the and i nes. flow ed out ssors, s - w	coret injec	10 tical ctor 9 9 9				
of cycles. UNIT-II I Classification - p-V diagram of system. Battery Lubrication and UNIT-III S Flow of steam t Impulse and Re regulations -G UNIT-IV A Classification a clearance, Volu Multistage air c UNIT-V R Refrigerants - V principle of var	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagram four stroke and two stroke engines. Simple and complete Carburetor. MPFI, a and Magneto Ignition System - Principles of Combustion and knocking in Stat Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, succition principles, compounding, velocity diagram for simple and multi-stage overnors. IR COMPRESSOR and working principle of various types of compressors, work of compression varietric efficiency, Isothermal efficiency and Isentropic efficiency of reciprocation principles of an inter cooling –work of multistage air compressor EFRIGERATION AND AIR CONDITIONING Vapour compression refrigeration cycle- super heat, sub cooling – Performance our absorption system, Ammonia –Water, Lithium bromide – water systems	am - actual an Diesel pump I and CI Engi upersaturated turbines, spe with and with ating compres	d the and i nes. flow ed out ssors, s - w only	coret injec	10 tical ctor 9 9 9 9				
of cycles. UNIT-II I Classification - p-V diagram of system. Battery Lubrication and S UNIT-III S' Flow of steam t Impulse and Regulations – Ge UNIT-IV A Classification a clearance, Volu Multistage air c UNIT-V Refrigerants - V principle of var conditioning sy	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagra four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in St 1 Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, su eaction principles, compounding, velocity diagram for simple and multi-stage overnors. IR COMPRESSOR and working principle of various types of compressors, work of compression varietic efficiency, Isothermal efficiency and Isentropic efficiency of reciprocation compressor and inter cooling –work of multistage air compressor EFRIGERATION AND AIR CONDITIONING Vapour compression refrigeration cycle- super heat, sub cooling – Performance	am - actual an Diesel pump I and CI Engi upersaturated turbines, spe with and with ating compres	d the and i nes. flow ed out ssors, s - w only	coret injec	10 tical ctor 9 9 9 9 ing ir				
of cycles. UNIT-II I I Classification - p-V diagram of system. Battery Lubrication and UNIT-III S Flow of steam t Impulse and Re regulations – Ge UNIT-IV A Classification a clearance, Volu Multistage air c UNIT-V R Refrigerants - V principle of var	NTERNAL COMBUSTION ENGINES Components and their function. Valve timing diagram and port timing diagram four stroke and two stroke engines. Simple and complete Carburetor. MPFI, and Magneto Ignition System - Principles of Combustion and knocking in State 1 Cooling systems. Performance calculation. TEAM NOZZLES AND TURBINES through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, subscription principles, compounding, velocity diagram for simple and multi-stage overnors. IR COMPRESSOR and working principle of various types of compressors, work of compression varietic efficiency, Isothermal efficiency and Isentropic efficiency of reciprocate compression and inter cooling –work of multistage air compressor EFRIGERATION AND AIR CONDITIONING Vapour compression refrigeration cycle- super heat, sub cooling – Performance our absorption system, Ammonia –Water, Lithium bromide – water systems stem - Processes, Types and Working Principles Concept of RSHF, GSHF,	am - actual an Diesel pump I and CI Engi upersaturated turbines, spe with and with ating compres	d the and i nes. flow ed out ssors, s - w only ing I	coret injec	10 tical ctor 9 9 9 9 ing ir				

Course Outcomes: At the end the course, the students will be able to

- Integrate the laws and concepts of thermodynamics into the analysis of gas power cycles
- Explain the working of internal combustion engines and analyse their performance
- Evaluate the performance of the steam nozzles and steam turbines
- Explain the working of air compressors and analyse their performance. •
- Analyse the performance of various refrigeration and air conditioning systems •

Text Book (s):

- Rajput. R. K., "Thermal Engineering", 10th Edition, Laxmi Publications, 2018.
 Ballaney. P, "Thermal Engineering", 25th Edition, Khanna Publishers, 2017.

Ref	Reference Books(s) / Web links:						
1	Mahesh. M. Rathore, "Thermal Engineering", 1st Edition, Tata McGraw Hill, 2010.						
2	Kothandaraman.C.P., Domkundwar. S,Domkundwar. A.V., "A course in thermal Engineering", Fifth Edition,						
4	"Dhanpat Rai & sons, 2004						
3	Ganesan V" Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill 2007						
4	Rudramoorthy, R, "Thermal Engineering ", Tata McGraw-Hill, New Delhi, 2003						
5	https://nptel.ac.in/courses/112103262/						
6	https://nptel.ac.in/content/storage2/courses/112105129/pdf/R&AC%20Lecture%2018.pdf						
7	https://nptel.ac.in/courses/112/103/112103275/						
8	https://www.thermal-engineering.org						
9	https://www.mheducation.co.in > engineering > thermal-engineering						

60	РО											PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3
1	3	3	1	1	-	1	-	-	-	1	-	2		2	2	2
2	3	3	2	1	-	2	2	-	-	1	-	3		2	2	2
3	3	3	1	1	-	1	-	-	-	1	-	2		2	2	2
4	3	3	1	1	-	1	1	-	-	1	-	2		2	2	2
5	3	3	3	2	-	2	2	-	-	1	-	3		2	2	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19402	STRENGTH OF MATERIALS	PC	3	0	0	3

Objectives:

- To understand the fundamental concepts of stress, strain and elastic constants of solids under external loading
- To learn about the transverse loading and bending loads acting on structural components •
- To learn about the deformation of shafts and springs subjected to torsion •
- To know about the various methods for calculating deflection of beams •
- To learn about the various stresses acting in shell structures like thin cylinders and spheres

STRESS, STRAIN AND DEFORMATION OF SOLIDS UNIT-I

Rigid bodies and deformable solids - Tension, Compression and Shear Stresses - Deformation of simple and compound bars – Thermal stresses – Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial loads – Volumetric strains – Stresses on inclined planes – principal stresses and principal planes – Mohr's circle of stress. 12

UNIT-II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

Beams - types transverse loading on beams - Shear force and bending moment in beams - Cantilevers - Simply supported beams and over hanging beams. Theory of simple bending-bending stress distribution - Load carrying capacity - Proportioning of sections - Flitched beams - Shear stresses in beams - Shear flow.

UNIT-III TORSION ON SHAFTS AND SPRINGS

Torsion formulation stresses and deformation in circular and hollows shafts - Stepped shafts- Deflection in shafts fixed at the both ends - Stresses in helical springs - Maximum shear stress in spring section including Wahl Factor - Deflection of helical springs, carriage springs.

UNIT-IV DEFLECTION OF BEAMS AND COLUMNS

Double Integration method - Macaulay's method - Area moment method for computation of slopes and deflections in beams - Columns - End conditions - Equivalent length of a column - Euler equation - Slenderness ratio - Rankine formula for columns. 9

UNIT-V THIN CYLINDERS, SPHERES AND THICK CYLINDERS

Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin and thick cylinders – spherical shells subjected to internal pressure –Deformation in spherical shells – Lame's theorem.

> **Total Contact Hours** : 45

12

12

9

Co	Course Outcomes: At the end of this course, students able to				
٠	Determine the principal planes and stresses and draw Mohr's circle for the given stress conditions.				
٠	Draw the shear force diagram and bending moment diagram for beams subjected to different loading conditions.				
•	Calculate the deformation of shafts subjected to torsional loads.				
٠	Calculate the deflection of beams through Macaulay's method, Moment area method and strain energy methods.				
٠	Determine stresses acting on thin cylinders and spheres and calculate the deformation.				

Text Books:

1	Bansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2015.
2	Jindal U.C., "Strength of Materials", Pearson Pvt. Ltd., New Delhi, 2012.

Ref	ference Books(s) / Web links:
1	Egor. P.Popov "Engineering Mechanics of Solids" Prentice Hall of India, New Delhi, 2001.
2	Ramamurtham S., "Strength of Materials", Dhanpat rai publishing company, 2011.
3	Hibbeler, R.C., "Mechanics of Materials", Pearson Education, 2018.
4	Ferdinand P. Been, Russell Johnson, J.r. and John J. Dewole "Mechanics of Materials", Tata McGraw Hill
	Publishing 'co. Ltd., New Delhi, 2016.
5.	https://nptel.ac.in/courses/112107146/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	2	-	-	-	-	-	-	-	-	3	-	-	2
CO 2	3	3	2	-	-	-	-	-	-	-	-	3	-	-	2
CO 3	3	3	2	-	-	-	-	-	-	-	-	3	-	-	2
CO 4	3	3	2	-	-	-	-	-	-	-	-	3	-	-	2
CO 5	3	3	2	-	-	-	-	-	-	-	-	3	-	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19403	Fluid Mechanics and Machinery	РС	3	0	0	3

Objectives: T	The main learning	objective of this	course is to prepa	re the students for
----------------------	-------------------	-------------------	--------------------	---------------------

• To introduce about properties of the fluids, behaviour of fluids under static and dynamic conditions

• To understand the difference between laminar and turbulent flow through circular conduits and losses in pipe flow

• To Gain the knowledge of dimensional and model analysis

• To understand the basic knowledge of types of turbines and its velocity triangle.

• To improve the knowledge on types of pumps and its application.

UNIT-I FLUID PROPERTIES AND FLOW CHARACTERISTICS

Properties of fluids- Pressure Measurements-Buoyancy and floatation-Flow characteristics- Eulerian and Lagrangian Principle of fluid flow- concept of control volume and system – Reynold's transportation theorem- continuity equation, energy equation and momentum equation-Applications.

UNIT-II FLOW THROUGH PIPES AND BOUNDARY LAYER

Reynold's Experiment- Laminar flow through circular conduits- Darcy Weisbach equation – friction factor- Moody diagram- minor losses- Hydraulic and energy gradient – Pipes in series and parallel Boundary layer concepts – types of boundary layer thickness.

UNIT-III DIMENSIONAL ANALYSIS AND MODEL STUDIES

Fundamental dimensions - Dimensional homogeneity - Rayleigh's method and Buckingham Pi theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted models.

UNIT-IV TURBINES

Impact of jets - Velocity triangles - Theory of roto-dynamic machines - Classification of turbines – Pelton wheel, Francis turbine (inward and outward) and Kaplan turbine- Working principles - Work done by water on the runner - Efficiencies – Draft tube - Specific speed - Performance curves for turbines – Governing of turbines.

UNIT-V PUMPS

Classification of pumps- Centrifugal pumps- working principle - Heads and efficiencies- Velocity triangles- Work done by the impeller - performance curves - Reciprocating pump working principle - indicator diagram and it's variations - work saved by fitting air vessels.

Total Contact Hours : 45

9

9

9

10

9

Course Outcomes: On completion of the course, the student is expected to be able to

• Distinguish the difference between solid and fluid, its properties and behaviour in static conditions.

- Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel.
- Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies.
- Analyse the performance of turbines and its characteristics
- Analyse the performance of pumps and its characteristics

Text Book(s):

- 1 Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, (2017)
- 2 Yunus A. Cengel ; John M. Cimbala, Fluid Mechanics, McGraw Hill Education Pvt. Ltd., 2014

Reference Books(s) / Web links:

- 1 R K Bansal, Fluid mechanics and Hydraulic machines, Laxmi Publications Pvt Ltd, Ninth Edition 2012.
- 2 S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill Education Pvt. Ltd., 2012

3 Subramanya, K. Fluid Mechanics and Hydraulic Machines, Tata McGraw-Hill Pub. Co., New Delhi, 2011

4 Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014.

5 Streeter, V. L. and Wylie E. B., Fluid Mechanics, McGraw Hill Publishing Co.(2010)

- 6 <u>https://nptel.ac.in/courses/112/104/112104117/</u>
- 7 <u>https://nptel.ac.in/courses/112/105/112105182/</u>
- 8 <u>https://nptel.ac.in/courses/105101082/</u>
- 9 <u>http://www2.eng.cam.ac.uk/~mpj1001/learnfluidmechanics.org/LFM_L0.html</u>

CO							PO						PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	3	2	2	-	-	-	-	-	-	-	1	-	-	-		
2	3	3	3	2	-	-	-	-	-	-	-	1	-	-	-		
3	3	3	3	3	-	-	-	-	-	-	-	1	-	-	-		
4	3	3	3	3	-	-	1	-	1	-	-	2	-	2	1		
5	3	3	3	3	-	-	1	-	1	-	-	2	-	2	1		

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory Courses)	Category	L	Т	Р	C
ME19404	Engineering Materials and Metallurgy	PC	3	0	0	3

Objectives:

• To impart knowledge on the structure, properties, treatment, testing and applications of metals and non-metallic materials so as to identify and select suitable materials for various engineering applications.

UNIT-1	ALLOYS AND PHASE DIAGRAMS	9							
Constitution of alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphous, eutectic,									
eutectoid, peritectic, and peritectoid reactions, Iron - carbon equilibrium diagram. Classification of steel and cast Iron									
microstructu	microstructure, properties and application.								
UNIT - II	HEAT TREATMENT	9							
Definition -	Full annealing, stress relief, recrystallisation and spheroidising - normalising, har	dening and Tempering							
of steel. Isothermal transformation diagrams - cooling curves superimposed on I.T. diagram CCR - Hardenability,									
Jominy end	quench test - Austempering, martempering - case hardening, carburizing, Nitridin	g, cyaniding,							

carbonitriding – Flame and Induction hardening – Vacuum and Plasma hardening.

UNIT-III	FERROUS AND NON-FERROUS METALS		9					
Effect of all	oying additions on steel- α and β stabilisers– stainless and t	ool steels – HSLA, Ma	araging steels – Cast					
Iron – Grey	white, malleable, spheroidal - alloy cast irons, Copper and	l copper alloys– Brass,	Bronze and					
Cupronicke	– Aluminium and Al-Cu – precipitation strengthening trea	tment –Bearing alloys	, Mg-alloys, Ni-based					
super alloys	and Titanium alloys.							
UNIT -	NON-METALLIC MATERIALS		9					
IV								
Polymers -	types of polymer, commodity and engineering polymers – l	Properties and applicat	ions of various					
thermosettin	g and thermoplastic polymers (PP, PS, PVC, PMMA, PET	,PC, PA, ABS, PI, PA	I, PPO, PPS, PEEK,					
	mers - Urea and Phenol formaldehydes)- Engineering Cera							
SiC, Si3N4,	PSZ and SIALON -Composites. Classifications- Metal Ma	atrix and FRP – Applic	cations of Composites.					
UNIT - V	MECHANICAL PROPERTIES AND DEFORMATIC	ON MECHANISMS	9					
Mechanism	s of plastic deformation, slip and twinning - Types of fractu	ure - Testing of materi	als under tension,					
compression	n and shear loads - Hardness tests (Brinell, Vickers Rockwe	ell and Shore), hardnes	s tests, Nano					
Indentation	test, Impact test- lzod and Charpy, fatigue and creep failure	e mechanisms.	-					
		Contact Hours :	45					

Course Outcomes: Upon completion of this course, the students will be able to:

- Construct the phase diagram and using of iron-iron carbide phase diagram for microstructure formation. •
- Select and applying various heat treatment process and its microstructure formation. •
- Apply the different types of ferrous and non-ferrous alloys and their uses in engineering field. •
- Apply the different polymer, ceramics and composites and their uses in engineering field.
- Apply the various testing procedures and failure mechanism in engineering field. •

Tey	Text Book (s):						
1	Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials-", Pearson 2009.						
2	V Ragavan, "Physical Metallurgy- Principles and Practice", PHI, 2015						

Ref	ference Books(s) / Web links:
1	Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, Revised Indian edition 2007.
2	A. Alavudeen, N. Venkateshwaran, and J. T.WinowlinJappes, A Textbook of Engineering Materials and Metallurgy, Laxmi Publications, 2006.
3	Sydney H.Avner, "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1994
4	R. Balasubramaniam. Callister's Materials Science and Engineering, Wiley Publication, 2014.
5	https://nptel.ac.in/courses/113102080/
6	https://nptel.ac.in/courses/113107078/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2	PSO3
CO 1	3	3	2	1	-	-	-	-	2	1	2	-
CO 2	3	2	3	-	-	-	-	-	2	1	2	-
CO 3	3	-	3	-	-	-	3	-	2	1	2	-
CO 4	3	-	3	-	-	-	3	-	2	1	2	-
CO 5	3	-	3	2	-	-	3	-	2	1	2	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Cod	e Subject Name (Theory course)	Category	L	Т	P C					
GE19303	ECONOMICS FOR ENGINEERS	ES	3	0	0 3					
• in the ed in the lo	rse will cover the determination of income, employment, the price level, interest conomy. The economy will be analysed in the short run (e.g. business cycle and ng run (e.g. economic growth). The insights of Keynesian and classical theorie conomics is an empirical discipline the course will cover case studies and statist	l stabilization s will be integ	policy grated.	/) ai . As	nd					
UNIT-I	MICROECONOMICS: Principles of Demand and Supply — Supply C Elasticity of Supply; Demand Curves of Households — Elasticity of Deman Comparative Statics (Shift of a Curve and Movement along the Curve); W Consumers' and Producers' Surplus.	Curves of Fir nd; Equilibriu	ms — m anc	-	9					
UNIT-II	PRICE AND CONSUMER BEHAVIOUR: Price Ceilings and Price Floors; Consumer Behaviour — Axioms of Choice — Budget Constraints and Indifference Curves; Consumer's Equilibrium — Effects of a Price Change, Income and Substitution Effects —Derivation of a Demand Curve; Applications — Tax and Subsidies — Intertemporal Consumption — Suppliers' Income Effect.									
UNIT-III	PRODUCTION FUNCTION AND COMPETITION: Theory of Production Function and Iso-quants — Cost Minimization; Cost Curves — Total, Averag Costs — Long Run and Short Run Costs; Equilibrium of a Firm Under Perfec Monopoly and Monopolistic Competition.	e and Margina	al		9					
UNIT-IV	NATIONAL INCOME AND KEYNESIAN MULTIPLIER: National Income and its Components — GNP, NNP, GDP, NDP; Consumption Function; Investment; Simple Keynesian Model of Income Determination and the Keynesian Multiplier: Government Sector — Taxes and									
UNIT-V	IS, LM MODEL, MONETARY, FISCAL POLICY AND TAXES: IS, L Cycles and Stabilization — Monetary and Fiscal Policy — Central Bank and th Classical Paradigm — Price and Wage Rigidities — Voluntary and Involunt Introduction to individual Income Tax-and Corporate Income Tax- GST, GST	ne Governmer ary Unemploy	nt; The	e	9					
	Total (Contact Hour	s	:	45					

Course Outcomes: On completion of the course the students will be able to distinguish with both principles of micro and macroeconomics. They would also become familiar with application of these principles to appreciate the functioning of both product and input markets as well as the economy. Students will be able to improve their economic vocabulary- the knowledge of the terms and concepts commonly • used in discussions of economic issues. Students will be able to demonstrate the ability to employ 'the economic way of thinking'. ٠ Students will learn to apply economic theories and concepts to contemporary social issues, as well as analysis of • policies. Students will be able to formulate informed opinions on policy issues and recognize the validity of opposing • viewpoints. Text Book (s): Paul A. Samuelson, William D. Nordhaus, Sudip Chaudhuri and Anindya Sen, Economics, 19thedition, Tata 1 McGraw Hill, New Delhi, 2010. D N Dwivedi, Managerial Economics, 8th Edition, Vikas Publishing House, 2018. 2 N. Gregory Mankiw, Principles of Economics, 3rd edition, Thomson learning, New Delhi, 2007. 3 Richard Lipsey and Alec Charystal, Economics, 12th edition, Oxford, University Press, New 4 Delhi, 2011.

Re	ference Books(s) / Web links:													
1	Karl E. Case and Ray C. fair, Principles of Economics, 6th edition, Pearson, Education Asia, New Delhi, 2002.													
2	William Boyes and Michael Melvin, Textbook of economics, Biztantra, 2005.													

PO/PSO CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO9	PO1 0	PO1 1	PO1 2	PS O1	PS O2	PS O3
GE19303. 1	1	1	-	-	-	2	1	-	-	-	2	2	-	-	-
GE19303. 2	1	1	-	-	-	2	1	-	-	-	2-	2	-	-	-
GE19303. 3	1	1	-	-	-	2	1	-	-	-	2	2	-	-	-
GE19303. 4	1	1	-	-	-	2	1	-	-	-	2	2	-	-	-
GE19303. 5	1	1	-	-	-	2	1	-	-	-	2	2	-	-	-
Average	1	1 Slight (-	-	-	2	1	-	-	-	2	2	-	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

ME10411	STRENGTH OF MATERIALS AND FLUID MECHANICS	Category	L	Т	Р	С
ME19411	AND MACHINERY LABORATORY	PC	0	0	3	1. 5
Objectives:						5
To supple	ment the theoretical knowledge gained in Mechanics of Solids with pr	actical testing f	for de	term	ining	g th
	f materials under externally applied loads. This would enable the stud	lent to have a c	lear u	nder	stan	ding
of the desi	gn for strength and stiffness.					
	ERIMENTS- Strength of Materials Lab					
	on a mild steel rod					
	r test on Mild steel and Aluminium rods					
	on mild steel rod					
	n metal specimen – Charpy and Izod test					
01 11 an e 1000 10 0	t on metals – Brinell and Rockwell Hardness Number					
6. Deflection te	est on beams					
7. Compression	test on helical springs					
		Total (Conta	ct H	ours	s: 1
	At the end, the students have the					
1. Abilit	y to perform different destructive testing					
	y to characterize and compare different materials					
	ERIMENTS- Fluid mechanics and Machinery Lab					
	n of the Coefficient of discharge of given Orifice meter.					
	on of the Coefficient of discharge of given Venturi meter.					
	of the rate of flow using Rota meter.					
	on of friction factor for a given set of pipes.					
	experiments and drawing the characteristic curves of centrifugal pump		oump			
6. Conducting	experiments and drawing the characteristic curves of reciprocating/Ge	ar pump.				

7. Conducting experiments and drawing the characteristic curves of Pelton wheel.

8. Conducting experiments and drawing the characteristics curves of Francis/Kaplan turbine

Total Contact Hours: 27

OUTCOMES: At the end, the students have the

- 3. Ability to measure the discharge of fluid using various measuring device
- 4. Ability to calculate various losses during the fluid flow.

5. Ability to Evaluate and estimate the characteristic study of pumps and turbines

СО						Р	0						PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	-	-	-	2		-	-	-	2	-	-	-	-	-	-		
2	-	-	-	2		-	-	-	2	-	-	-	-	-	-		
3	-	-	-	2		-	-	-	2	-	-	-	-	-	-		
4	-	-	-	2		-	-	-	2	-	-	-	-	-	-		
5	-	-	-	2		-	-	-	2	-	-	-	-	-	-		

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Laboratory Course)	Category	L	Т	Р	С
ME19412	Thermal Engineering Lab - I	PC	0	0	3	1.5

Objectives: The main learning objective of this lab course is to provide hands on training to the students in:

- Understanding the proper valve and port timing in IC engines •
- Testing the characteristics of fuels/Lubricates used in IC engines
- Analysing the performance characteristics of various engines •
- Finding the frictional power of a diesel engine by retardation test

Understanding the boiler operation and conducting the performance test on a boiler and steam turbine •

	List of Experiments
1	Valve Timing and Port Timing diagrams
2	Determination of Flash Point and Fire Point of various fuels / lubricants
3	Determination of Viscosity – Red Wood Viscometer
4	Performance Test on 4 – stroke Diesel Engine
5	Heat Balance Test on 4 – stroke Diesel Engine
6	Morse Test on Multi-cylinder Petrol Engine
7	Retardation Test on a Diesel Engine
8	Study on Steam Generators and Turbines
9	Performance and Energy Balance Test on a Steam Generator
10	Performance and Energy Balance Test on Steam Turbine
	Total Contact Hours : 45

Course Outcomes: Upon completion of this lab course, the students will be able:

- To understand the proper valve and port timing in IC engines •
- To test the characteristics of fuels/Lubricates used in IC engines •
- To analyse the performance characteristics of various engines •
- To find the frictional power of a diesel engine by retardation test •
- To understand the boiler operation and conduct the performance test on a boiler and steam turbine •

CO							PO							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	2	1	-	1	2	-	-	-	-	1	2	2	2
2	3	1	1	-	-	-	-	-	-	-	-	1	-	2	1
3	3	1	2	-	-	-	-	-	-	-	-	1	-	2	1
4	3	1	1	-	-	-	-	-	-	-	-	1	-	2	1
5	3	1	-	-	-	-	1	-	-	-	-	1	1	2	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

GE	19421	SOFTSKILLS -I	Category	L	Т	Р	С
			EEC	0	0	2	1
Pro	ogramming	g Learning Goal					
•	1 2	ram will help our students to build confidence and improve their Englis rate world as well as providing them with opportunities to grow within			orde	er to	face
Co	urse Objec	tives					
	a. [Γo help students break out of shyness.					
	b. 7	Γο build confidence					
	c. 7	To enhance English communication skills.					
	d. 7	To encourage students' creative thinking to help them frame their	r own opinions	5			
Lea	arning and	Teaching Strategy:					

The program is completely student centric where the focus is on activities led by students which include role plays, discussions, debates other games as well. These activities would be supplemented by interactive use of technology and brief trainer input

Week	Activity Name	Description	Objective
1	Introduction	The trainer and the college facilitator talk to the students about the course and in turn the students introduce themselves.	To set expectations about the course and the students are made aware of the rules and regulations involved in this program
2	If I ruled the world	This is a quick and useful game by getting students to form a circle and provide their point of view. Each student then repeats what the other has said and comes up with their own opinion.	The aim of this activity is to for students to get to know each other and also develop their listening skills as well as learning how to agree and disagree politely.
3	Picture Narrating	This activity is based on several sequential pictures. Students are asked to tell the story taking place in the sequential pictures by paying attention to the criteria provided by the teacher as a rubric. Rubrics can include the vocabulary or structures they need to use while narrating.	The aim of this activity is to make the students develop creative way of thinking.
4	Brainstorming	On a given topic, students can produce ideas in a limited time. Depending on the context, either individual or group brainstorming is effective and learners generate ideas quickly and freely. The good characteristics of brainstorming are that the students are not criticized for their ideas so students will be open to sharing new ideas.	The activity aims at making the students speak freely without the fear of being criticized. It also encourages students to come up with their own opinions.
5	Debate	Is competition necessary in regards to the learning process?	The aim of this activity is to develop the students ability to debate and think out of the box
6	Short Talks	Here the students are given topics for which they take one minute to prepare and two minutes to speak. They can write down points but can't read them out they can only use it as a reference.	The activity aims at breaking the students' shyness and encouraging them to standup in front of the class and speaks. It also aims at creating awareness that they are restricted for time so they only speak points that are relevant and important.
7	Debate	Will posting students' grades on bulletin boards publicly motivate them to perform better or is it humiliating?	This activity aims at enhancing the students unbiased thought process when it comes to exams and grades as well as develop their skills to debate

8	The Art of diplomacy	The facilitator proceeds to share multiple concepts of	The aim of the lesson is to provide an
		conversation and helps the participants to identify the	opportunity for the participants to
		various methods of being diplomatic and how do	learn about body language and
		deal with misinformation.	choosing the appropriate words for
			conversation.
9	Debate	Are humans too dependent on computers?	The aim of this activity is to test the
			students debating skills and thought
			process with a topic that affects
			everybody in daily life.
10	Story Completion	The teacher starts to tell a story but after 2 sentences	This activity aims at building their
		he/she asks students to work in groups to create the	narrating skills as well as their
		rest of the story which includes the plot and the	creativity and ability to work in a
		ending.	team.
11	Role play debate	Students scrutinize different points of view or	The aim of this activity is to get
		perspectives related to an issue. For example, a	students to speak based on other
		debate about the question "Should students be	people's perspective instead of their
		required to wear uniforms at school?" might yield a	own. The students take the role of
		range of opinions. Those might include views	various characters and debate
		expressed by a student (or perhaps two students -	accordingly.
		one representing each side of the issue), a parent, a	
		school principal, a police officer, a teacher, the	
		owner of a clothing store, and others.	
12	I Couldn't Disagree	This is a game where students practice rebuttal	The aim of this activity is to improve
	More	techniques where one student provides a thought or	general communication skills and
		an idea and the other students starts with the phrase I	confidence.
		couldn't disagree more and continues with his	
		opinion	
	Feedback	At the end of the session in the final week (12) the	The aim is to do both give feedback to
		trainer would provide feedback to the students on	students as well as obtain feedback on
		best practices for future benefits	the course from them.
			Total Hours: 30

Total Hours:30

Co	urse Outcomes: On successful completion of the course, students should be able to:
1	Be more confident
2	Speak in front of a large audience
3	Be better creative thinkers
4	Be spontaneous
5	Know the importance of communicating in English

СО						Р	0						PSO				
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	-	-	-	-		-	-	-	-	1	-	-	-	-	-		
2	-	-	-	-		-	-	-	-	1	-	-	-	-	-		
3	-	-	-	-		-	-	-	-	1	-	-	-	-	-		
4	-	-	-	-		-	-	-	-	1	-	-	-	-	-		
5	-	-	-	-		-	-	-	-	1	-	-	-	-	-		

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Sul	oject Code	Category	L	Т	Р	С				
N	IC19301	Essence of Indian Traditional Knowledge	MC	3	0	0	0			
Ob	Objectives:									
•	core of Ind wisdom are course mai	e aims at imparting basic principles of thought process, reasoning and inferen ian traditional knowledge system connecting society and nature. Holistic life e important in modern society with rapid technological advancements and so nly focuses on introduction to Indian knowledge system, Indian perspective of Yoga and holistic healthcare system, Indian philosophical, linguistic and a	e style of yogic cietal disruption of modern scie	c sci ons. ence	enc The	e ai e				

Pedagogy: Problem based learning, group discussions, collaborative mini projects.

UNIT-I	Introduction to Indian Knowledge System: Basic structure of the Indian Knowledge System – Veda – Upaveda - Ayurveda, Dhanurveda-Gandharvaveda, Sthapathyaveda and Arthasasthra. Vedanga (Six forms of Veda) – Shiksha, Kalpa, Nirukta, Vyakarana, Jyothisha and Chandas- Four Shasthras - Dharmashastra, Mimamsa, Purana and Tharkashastra.	9
UNIT-II	Modern Science and Yoga: Modern Science and the Indian Knowledge System – a comparison – Merits and demerits of Modern Science and the Indian Knowledge System - the science of Yoga- different styles of Yoga – types of Yogaasana, Pranayam, Mudras, Meditation techniques and their health benefits – Yoga and holistic healthcare – Case studies.	9
UNIT-III	Indian Philosophical Tradition: Sarvadharshan/Sadhdharshan – Six systems (dharshans) of Indian philosophy - Nyaya, Vaisheshika, Sankhya, Yoga, Mimamsa, Vedanta-Other systems- Chavarka, Jain (Jainism), Boudh (Buddhism) – Case Studies.	9
UNIT-IV	Indian Linguistic Tradition: Introduction to Linguistics in ancient India – history – Phonetics and Phonology – Morphology –Syntax and Semantics-Case Studies.	9
UNIT-V	Indian Artistic Tradition: Introduction to traditional Indian art forms – Chitrakala (Painting), Murthikala / Shilpakala (Sculptures), Vaasthukala, Sthaapathya kala (Architecture), Sangeeth (Music), Nruthya (Dance) and Sahithya (Literature) – Case Studies.	9
	Total Contact Hours :	45

Co	ourse Outcomes:
•	At the end of the course, students will be able to appreciate the importance of traditional Indian knowledge system, Yoga and other Indian traditions that are important in a modern society with technological advancements and lifestyle changes.
Tey	xt Book (s):

1	V. Sivaramakrishnan (Ed.), Cultural Heritage of India-course material, Bharatiya Vidya Bhavan, Mumbai. 5th
1	Edition, 2014.
2	Swami Jitatmanand, Modern Physics and Vedant, Bharatiya Vidya Bhavan.
3	Swami Jitatmanand, Holistic Science and Vedant, Bharatiya Vidya Bhavan.
4	Fritzof Capra, Tao of Physics.
5	Fritzof Capra, The Wave of life.
Ref	ference Books(s) / Web links:
1	VN Jha (Eng. Trans.), Tarkasangraha of Annam Bhatta, International Chinmay Foundation, Velliarnad,
1	Arnakulam.
2	Yoga Sutra of Patanjali, Ramakrishna Mission, Kolkata.
3	GN Jha (Eng. Trans.), Ed. RN Jha, Yoga-darshanam with Vyasa Bhashya, Vidyanidhi Prakashan, Delhi 2016.
4	RN Jha, Science of Consciousness Psychotherapy and Yoga Practices, Vidyanidhi Prakashan, Delhi 2016.

SEMESTER -V

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	0
ME19501	DESIGN OF MACHINE ELEMENTS	DC	-	•	•	
	(Design Data Book is permitted to use in Exam)	PC	3	0	0	
Objectives: T	ne main learning objective of this course is to prepare the students					
• To unders	tand the methods of determining steady and variable stresses in machin	ne members				
• To unders	tand the principle involved in the design of shaft and couplings					
To provid	e knowledge on design of Temporary and Permanent joints					
• To know	he design procedure in designing the Springs and Engine components					
• To study	he design steps and selection procedure involved in Bearings.					
UNIT-I S	TEADY STRESSES AND VARIABLE STRESSES IN MACHINI	E MEMBER	S		10)
Direct, Bending a for various load	of materials based on mechanical properties - Preferred numbers, and torsional stress equations – Impact and shock loading – Calculation combinations, eccentric loading – Curved beams – crane hook and of failure – Design based on strength and stiffness – stress com-	of principle d'C' frame	stre: - I	sses Fact	or	
Ŭ.	HAFTS AND COUPLINGS				9	
	d hollow Shaft –For Static and Varying Loads, For Strength and Rigic	lity-Design o	f Co	unl		г.
	Flexible Rubber Bushed Coupling– Keys, keyways and splines - Rigid					
	EMPORARY AND PERMANENT JOINT		000	.p.m.	9	-
Threaded fastener	s - Design of Bolts under Static Load, Design of Bolts subjected to Fat					
Applications.	tts – Design of Riveted Joints and Welded Joints for structures - Theor	ry of bonded	Join	ts ai	10 1	ts
	NERGY STORING ELEMENTS AND ENGINE COMPONENTS	S			9	
	Spring under Static and Variable Loads – Design of leaf spring, Optin		lica	1. le	-	
	springs – Design of Connecting Rods, Crank shafts and Piston.			, -		
	BEARING				8	
Eqn Sommerfie	ng contact and rolling contact bearings – Antifriction Bearing - Reliabi eld Number - Raimondi & Boyd - Design of hydrodynamic journal bea g contact bearings.					
		Contact Hou	rs	:	45	;
Course Outco	omes: On successful completion of the course, the student will be a	ble to				
• Use the c	odes in general practice and design the machine members under variou	us loading con	ndit	ions		
Design th	e Shaft and Couplings under various loading conditions					
-	sign of Temporary and Permanent joints.					
	he design of springs and engine components					
	ad select the standard bearing from the catalogue.					
	······································					

Tex	xt Book(s):
1	Bhandari V, "Design of Machine Elements", 4th Edition, McGraw-Hill Book Co, 2016.
2	Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design",
2	10thEdition, McGraw-Hill, 2014.
Ref	ference Books(s) / Web links:
1	R.B. Patel, "Design of Machine Elements", MacMillan Publishers India P Ltd., Tech-Max Educational resources,
1	2011.
2	Sundararajamoorthy T. V. Shanmugam. N, "Machine Design", Anuradha Publications, Chennai, 2015.
3	P.C. Gope, "Machine Design – Fundamental and Application", PHI Learning Private Ltd, New Delhi, 2012.
4	Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", McGraw-Hill Book Co.(Schaum's Outline),
4	2010.
5	Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine components Design",4th Edition,
3	John Wileyand Sons,2011.
6.	https:// nptel.ac.in/courses/112/105/112105125/

60		РО													PSO			
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3		
1	2	2	3	1	1	1	1		2	1	2	1		2	3	1		
2	2	2	3	1	1	1	1		2	1	2	1		2	2	2		
3	2	2	3	1	1	1	1		2	1	2	1		2	2	2		
4	2	2	3	2	1	1	1		2	1	2	1		2	2	2		
5	2	2	3	1	1	1	1		2	1	2	1		2	1	2		

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	L	Т	Р	С	
ME19502	HEAT AND MASS TRANSFER	РС	2	0	0	2
MIE19502	(Use of Data Book is permitted in Exam)	PC 3	U	U	3	

Objectives: The main learning objective of this course is to prepare the students

|--|

- To understand the concepts of natural and forced convection in internal and external flows
- To provide knowledge about the phase change heat transfer and heat exchangers
- To know the radiation and study the various laws of radiation, shape factor
- To study convective mass transfer and its types and applications

UNIT-I	CONDUCTION	9
General Dif	ferential equation of Heat Conduction- Cartesian and Polar Coordinates - One Dimensional Steady St	tate
Heat Condu	ction - plane and Composite Systems - Conduction with Internal Heat Generation - Extended Surface	es –
Unsteady He	eat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use of Heisler's charts.	
UNIT-II	CONVECTION	9
Free and For	rced Convection - Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during	
external flow	v over Plates and Cylinders and Internal flow through tubes.	
UNIT-III	PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS	9
Nusselt's the	eory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and	
condensation	n. Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors - Analysis – LMTD	
method - NT	ſU method.	
UNIT-IV	RADIATION	9
Black Body	Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. Radiation	
through gase	25.	
UNIT-V	MASS TRANSFER	9
Basic Conce	pts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion– Conver	ctive
Mass Transf	Fer – Momentum, Heat and Mass Transfer Analogy –Convective Mass Transfer Correlations.	
	Total Contact Hours :	45
-		
Course Out	comes: On the successful completion of this course students will be able to	

- Apply steady state heat conduction problems for composite systems and fins
- Solve problems in natural and forced convection for internal and external flows
- Calculate the effectiveness of heat exchanger using LMTD and NTU methods
- Illustrate radiation shape factors for various geometries
- Demonstrate the phenomenon of diffusion and convective mass transfer

Te	Text Book (s):							
1	Yunus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 2015							
2	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2011							

Re	ference Books(s) / Web links:
1	Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 2011.
2	Ghoshdastidar, P.S, "Heat Transfer", Oxford, 2012. 5. Nag, P.K., "Heat Transfer", Tata McGraw Hill, New
2	Delhi, 2011.
2	Sachdeva R C, "Fundamentals of Engineering Heat and Mass Transfer" New Age International, 2010, 4th
3.	edition.
4.	https://nptel.ac.in/courses/112/101/112101097/
5.	https://nptel.ac.in/courses/112/108/112108149//

CO	РО										PSO					
СО	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3
1	2	3	3	1	1	2	1	-	-	-	-	2		1	2	3
2	2	3	3	1	1	1	1	-	-	-	-	1		2	3	3
3	2	3	3	1	1	1	1	-	-	-	-	1		2	2	2
4	2	3	3	1	1	2	1	-	-	-	-	1		2	2	2
5	2	3	3	1	1	2	2	-	-	-	-	3		1	2	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory Integrated with Laboratory)	Category		Т	I '
ME19541	DYNAMICS OF MACHINES	PC	3	0	2 4
Objectives: The	main learning objective of this course is to prepare the students				
To derive th	e force-motion relationship in components subjected to external forces and	l analysis of st	anda	rd	
mechanisms					
	he undesirable effects of unbalances resulting from prescribed motions in n	nechanism. To	con	vers	sant
	ing problems of machines.				
Ĩ	the effect of free vibrations and forced vibration.				
• To develop	analytical competency in solving vibration problems.				
• To justify th	e principles in mechanisms used for speed control and stability control.				
UNIT-I FO	PRCE ANALYSIS				9
Dynamic force a	nalysis – Inertia force and Inertia torque– D Alembert's principle –Dynam	ic Analysis in	reci	oroc	ating
	rces – Inertia effect of connecting rod– Bearing loads – Crank shaft torque –				
	Tywheels of punching presses.	1 4111119 111011			,
– Fly Wheels – F	Ty wheels of punching presses.				
-					
UNIT-II BA Static and dynan	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylir				
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M	achines -Field	bala	anci	ng of ng of
UNIT-II BA Static and dynam Multi-cylinder in discs and rotors. Self-study: Balat	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons	achines -Field	bala	anci	ng of ng of
UNIT-IIBAStatic and dynamMulti-cylinder indiscs and rotors.Self-study:Baladuring a visit to i	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin aline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons industry / workshop.	achines -Field	bala	anci	ng o ng o ncing
UNIT-IIBAStatic and dynamMulti-cylinder indiscs and rotors.Self-study:Baladuring a visit to iUNIT-IIISI	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin aline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons industry / workshop. NGLE DEGREE FREE VIBRATION	achines -Field stration of wh	bala eel t	anci Dalar	ng o ng o ncing 9
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.Self-study:Balarduring a visit to irUNIT-IIISINBasic concepts of	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons industry / workshop. NGLE DEGREE FREE VIBRATION of S.H.M, Causes and effects of vibration - Degrees of freedom – Single	achines -Field stration of wh	bala eel b	ancin Dalar n –	ng o ng o ncing <u>9</u> Free
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.Self-study:Balaxduring a visit to itUNIT-IIISIBasic concepts ofvibration – Equal	Image: Interview of the second state of the second stat	achines -Field stration of wh e degree of fre tion– Torsiona	bala eel b	ancin Dalar n –	ng o ng o ncing 9 Free
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.Self-study:Balarduring a visit to irUNIT-IIISINBasic concepts ofvibration – Equashaft – Critical sp	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons industry / workshop. NGLE DEGREE FREE VIBRATION of S.H.M, Causes and effects of vibration - Degrees of freedom – Single	achines -Field stration of wh e degree of fre tion– Torsiona	bala eel b	ancin Dalar n –	ng o ng o ncing 9 Free
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.Self-study:Balarduring a visit to irUNIT-IIISINBasic concepts orvibration – Equashaft – Critical spUNIT-IVFO	Image: Interview of the second system Image: Interview of the second system Inic balancing – Balancing of rotating masses – Balancing a single cylin Inic, V-engines – Partial balancing in engines – Study on Balancing M Incing of wheel / rotor on computerized balancing machine OR Demonstructure Industry / workshop. NGLE DEGREE FREE VIBRATION of S.H.M, Causes and effects of vibration - Degrees of freedom – Single tions of motion – Natural frequency – Types of Damping – Damped vibration peeds of shafts – Torsional vibration – Two and three rotor torsional system	achines -Field stration of wh e degree of fre tion– Torsiona ns.	bala eel b eedor l vib	ancin palar n – pratio	ng o ng o ncing 9 Free on o 9
UNIT-IIBAStatic and dynamMulti-cylinder indiscs and rotors.Self-study:Balarduring a visit to iUNIT-IIISINBasic concepts ofvibration – Equashaft – Critical spUNIT-IVFOResponse of one	Image: Interventional and the second structure in the second structure	achines -Field stration of wh e degree of free tion– Torsiona ns. es –Disturbance	bala eel b eedon l vib	ancin palar n – pratio	ng o ng o ncing 9 Free on o 9 ed by
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.Self-study:Baladuring a visit to iUNIT-IIISIBasic concepts ofvibration – Equashaft – Critical spUNIT-IVFOResponse of oneunbalance – Sup	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demonstindustry / workshop. NGLE DEGREE FREE VIBRATION of S.H.M, Causes and effects of vibration - Degrees of freedom – Single tions of motion – Natural frequency – Types of Damping – Damped vibration PRCED VIBRATION e degree freedom systems to periodic forcing – Harmonic disturbance	achines -Field stration of wh e degree of fre tion– Torsiona ns. es –Disturbance ent- Selection	bala eel b eedon l vib	ancin palar n – pratio	ng o ng o ncing 9 Free on o 9 ed by
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.Self-study:Balarduring a visit to irUNIT-IIISIPBasic concepts ofvibration – Equashaft – Critical spUNIT-IVFOResponse of oneunbalance – Supinstruments – accoUNIT-VMI	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons industry / workshop. NGLE DEGREE FREE VIBRATION of S.H.M, Causes and effects of vibration - Degrees of freedom – Single tions of motion – Natural frequency – Types of Damping – Damped vibrat peeds of shafts – Torsional vibration – Two and three rotor torsional system DRCED VIBRATION e degree freedom systems to periodic forcing – Harmonic disturbance oport motion –transmissibility – Vibration isolation, Vibration measureme celerometer – dynamic properties and selection of structural materials for v ECHANISM FOR CONTROL	achines -Field stration of wh e degree of fre tion– Torsiona ns. es –Disturbanc ent- Selection vibration contr	bala eel b eedon l vib ce ca of m ol.	ancin palar m – prativ ause neas	ng or ng or ncing 9 Free on or 9 with by uring 9
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.Self-study:Balarduring a visit to irUNIT-IIISIBasic concepts ofvibration – Equashaft – Critical spUNIT-IVFOResponse of oneunbalance – Supinstruments – actUNIT-VMIGovernors – Ty	ILANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons industry / workshop. NGLE DEGREE FREE VIBRATION of S.H.M, Causes and effects of vibration - Degrees of freedom – Single tions of motion – Natural frequency – Types of Damping – Damped vibrat peeds of shafts – Torsional vibration – Two and three rotor torsional system DRCED VIBRATION e degree freedom systems to periodic forcing – Harmonic disturbance oport motion – transmissibility – Vibration isolation, Vibration measureme celerometer – dynamic properties and selection of structural materials for v ECHANISM FOR CONTROL rpes – Centrifugal governors – Gravity controlled and spring controlled	achines -Field stration of wh e degree of free tion– Torsiona ns. es –Disturbanc ent- Selection vibration contr ed centrifugal	bala eel b eedon l vib ce ca of m ol.	ancin palan m – prati- neas neas	ng o ng o ncing 9 Free on o 9 uring 9 Orrs -
UNIT-IIBAStatic and dynamMulti-cylinder irdiscs and rotors.Self-study:Balarduring a visit to irUNIT-IIISIBasic concepts ofvibration – Equashaft – Critical spUNIT-IVFOResponse of oneunbalance – Supinstruments – actUNIT-VMIGovernors – Ty	LANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons industry / workshop. NGLE DEGREE FREE VIBRATION of S.H.M, Causes and effects of vibration - Degrees of freedom – Single tions of motion – Natural frequency – Types of Damping – Damped vibrat peeds of shafts – Torsional vibration – Two and three rotor torsional system DRCED VIBRATION e degree freedom systems to periodic forcing – Harmonic disturbance oport motion –transmissibility – Vibration isolation, Vibration measureme celerometer – dynamic properties and selection of structural materials for v ECHANISM FOR CONTROL	achines -Field stration of wh e degree of free tion– Torsiona ns. es –Disturbanc ent- Selection vibration contr ed centrifugal	bala eel b eedon l vib ce ca of m ol.	ancin palan m – prati- neas neas	ng o: ng o: ncing 9 Free on o: 9 ed by uring 9 Ors -
UNIT-IIBAStatic and dynamMulti-cylinder indiscs and rotors.Self-study:Balarduring a visit to inUNIT-IIISIPBasic concepts ofvibration – Equationshaft – Critical spUNIT-IVFOResponse of oneunbalance – Supinstruments – acconUNIT-VMIGovernors – TyCharacteristics –	ILANCING nic balancing – Balancing of rotating masses – Balancing a single cylin nline, V-engines – Partial balancing in engines – Study on Balancing M ncing of wheel / rotor on computerized balancing machine OR Demons industry / workshop. NGLE DEGREE FREE VIBRATION of S.H.M, Causes and effects of vibration - Degrees of freedom – Single tions of motion – Natural frequency – Types of Damping – Damped vibrat peeds of shafts – Torsional vibration – Two and three rotor torsional system DRCED VIBRATION e degree freedom systems to periodic forcing – Harmonic disturbance oport motion – transmissibility – Vibration isolation, Vibration measureme celerometer – dynamic properties and selection of structural materials for v ECHANISM FOR CONTROL rpes – Centrifugal governors – Gravity controlled and spring controlled	achines -Field stration of wh e degree of free tion– Torsiona ns. es –Disturbanc ent- Selection vibration contr ed centrifugal	bala eel b eedon l vib ce ca of m ol.	ancin palan m – prati- neas neas	ng of ng of ncing 9 Free on of 9 uring 9 Ors -

•	Predict the force analysis in mechanical system/ engine.
•	Analyse unbalanced forces and bearing reactions for a system of rotating masses and reciprocating engines.
•	Determine natural frequency of mechanical systems represented in lumped form.
•	Select the critical speed of shaft with unbalanced rotors and basic working principle of measuring devices.
•	Identify the gyroscopic couple or effect for stabilization of ship, aeroplane, two-wheeler and four-wheeler vehicle.
Tex	xt Book:
1	Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 3rd Edition, Oxford University
	Press, 2010.
2	Rattan, S.S, "Theory of Machines", 3rd Edition, McGraw-Hill, 2014.

Reference Books(s) / Web links:

ILC	Terenee Dooks(s) / Web miks:
1	Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2010.
2	Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2015.
3	Robert L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw-Hill, 2009.
4.	Ghosh. A and Mallick, A.K., "Theory of Mechanisms and Machines", 3rd Edition, Affiliated East-West Pvt.
	Ltd., New Delhi, 2006.
5.	Rao.J.S. and Dukkipati.R.V. "Mechanisms and Machine Theory", New Age International., New Delhi, 2006.
6.	https://nptel.ac.in./courses/112/104/112104114
7.	https://nptel.ac.in./courses/112/101/112101096

DYNAMICS LABORATORY

OBJECTIVES:

- To supplement the principles of kinematics involved in various mechanisms.
- To explain the principles of dynamics involved in various experiments.

List of experiments:

- 1. Study of gear parameter.
- 2. Epicyclic Gear Train and Differential Gear Train.
- 3. Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.
- 4. Undamped free vibration of Equivalent Spring mass system.
- 5. Torsional Vibration (Undamped) of single rotor shaft system.
- 6. Dynamic analysis of cam mechanism.
- 7. Balancing of rotating masses.
- 8. Experiment of Hartnell Governor.
- 9. Experiment of motorized gyroscope.

10. Determination of critical speed of shaft.

OUTCOMES:

- Ability to measure the various kinematic parameters.
- Ability to measure the vibration parameters in various experiments.

Total contact Hours: 30

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	1	2	2	-	-	-	3	3	3	3	3	3	3
CO 2	3	3	1	2	2	-	-	-	3	3	3	3	3	3	3
CO 3	3	3	1	2	2	-	-	-	3	3	3	3	3	3	3
CO 4	3	3	1	2	2	-	-	-	3	3	3	3	3	3	3
CO 5	3	3	1	2	2	-	-	-	3	3	3	3	3	3	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory Integrated with Laboratory)	Category	L	Т	Р	С
ME19542	METROLOGY AND MEASUREMENTS	PC	3	0	2	4

Objectives: The students can be able to

- Understand the importance of measurements in engineering and the factors affecting measurements and to familiar
- with standards in measurements.
- Know the working principle and applications of various linear and angular measuring instruments, assembly and transmission elements.
- Identify the various tolerance symbols given in engineering assembly drawings and collect critical information to . choose the appropriate manufacturing process
- Understand the working principles and methods of form and surface metrology. •
- Familiar with the advances in measurements for quality control in manufacturing Industries. •

UNIT-I **BASICS OF METROLOGY**

Measurement - Need, Process, Role in quality control; Factors affecting measurement - SWIPE; Errors in Measurements - Types - Control - Measurement uncertainty - Types, Estimation, Problems on Estimation of Uncertainty, Statistical analysis of measurement data, Measurement system analysis, Calibration of measuring instruments, ISO standards.

UNIT-II MEASUREMENT OF LINEAR, ANGULAR DIMENSIONS AND ASSEMBLY & 12 TRANSMISSION ELEMENTS

Linear Measuring Instruments - Vernier caliper, Micrometer, Vernier height gauge, Depth Micrometer, bore gauge, telescoping gauge; Gauge blocks - Use and precautions, Comparators - Working and advantages; Opto-mechanical measurements using measuring microscope and Profile projector - Angular measuring instruments - Bevel protractor, Clinometer, Angle gauges, Precision level, Sine bar, Autocollimator, Angle dekkor, Alignment telescope.

Measurement of Screw threads – Floating carriage micrometer - Single element measurements – Pitch Diameter, Lead, Pitch. Measurement of Gears - purpose - Analytical measurement - Runout, Pitch variation, Tooth profile, Tooth Thickness-Constant chord method and base tangent method, Lead – Functional checking – Rolling gear test

UNIT-III TOLERANCE ANALYSIS 9 Tolerancing - Interchangeability, Selective assembly, Tolerance representation, Terminology, Limits and Fits, Problems (using tables); Fundamentals of GD & T- Conventional vs Geometric tolerance, Datums, Design of Limit gauges, Problems. Tolerance analysis in manufacturing, Process capability, tolerance stack up, tolerance charting

UNIT-IV METROLOGY OF SURFACES

Inspection of geometric deviations like straightness, flatness, roundness deviations, etc. Simple problems Measurement of Surface finish - Functionality of surfaces, Parameters, Comparative, Stylus based and Optical Measurement techniques, Filters, Introduction to 3D surface metrology- Parameters. 10

UNIT-V ADVANCES IN METROLOGY

Lasers in metrology - Advantages of lasers - Laser scan micrometers; Laser interferometers - Applications -Straightness, Alignment; Ball bar tests, Computer Aided Metrology - Basic concept of CMM - Types of CMM -Constructional features - Probes - Accessories - Software - Applications - Multi sensor CMMs. Machine Vision - Basic concepts of Machine Vision System - Elements - Applications - On-line and in-process

monitoring in production - Computed tomography – White light Scanners. 45

Total Contact Hours :

6

8

	List of Experiments			
1	Calibration and use of linear measuring instruments - Vernier caliper /	/Micrometer / Vernier height	gau	ige /
	Comparators.			
2	Measurement of angles using bevel protractor and sine bar.			
3	Measurement of assembly and transmission elements - screw thread param	neters - Screw thread Microme	ter,	Two
	wire method.			
4	Measurement of gear parameters – Gear Tooth Vernier caliper.			
5	Non-contact (Optical) measurement using Toolmaker's microscope / Profi	ïle projector.		
6	Measurement of Force and Torque.			
7	Measurement of Surface finish in components manufactured using v	various processes using style	us-b	ased
	instruments.			
	La	ab Contact Hours	:	30
	То	otal Contact Hours	:	75

 measurement uncertainty. Demonstrate the working principle and select the appropriate measuring instruments for linear, angular, assen and transmission elements. Interpret the various tolerance symbols given in engineering assembly drawings to choose the approprimanufacturing process. Demonstrate the importance and procedure of form and surface metrology. 	C	ourse Outcomes: Upon completion of this course, the students will be able to:
 Demonstrate the working principle and select the appropriate measuring instruments for linear, angular, assen and transmission elements. Interpret the various tolerance symbols given in engineering assembly drawings to choose the appropriate manufacturing process. Demonstrate the importance and procedure of form and surface metrology. 		Explain the importance of measurements in engineering and the factors affecting measurements and to estimate
 and transmission elements. Interpret the various tolerance symbols given in engineering assembly drawings to choose the approprimanufacturing process. Demonstrate the importance and procedure of form and surface metrology. 	•	measurement uncertainty.
 Interpret the various tolerance symbols given in engineering assembly drawings to choose the approprimanufacturing process. Demonstrate the importance and procedure of form and surface metrology. 		Demonstrate the working principle and select the appropriate measuring instruments for linear, angular, assembly
 manufacturing process. Demonstrate the importance and procedure of form and surface metrology. 	•	and transmission elements.
Demonstrate the importance and procedure of form and surface metrology.	-	Interpret the various tolerance symbols given in engineering assembly drawings to choose the appropriate
	•	manufacturing process.
Emphasize the importance and choose the recent advancements in measurements for quality contr	•	Demonstrate the importance and procedure of form and surface metrology.
		Emphasize the importance and choose the recent advancements in measurements for quality control in
manufacturing industries.	•	

Tex	xt Books:
1	Jain R.K. "Engineering Metrology", Khanna Publishers, 25th Reprint 2019.
2	Raghavendra N.V. and Krishnamurthy. L., Engineering Metrology and Measurements, Oxford University Press, 2013.

Ref	Reference Books(s) / Web links:					
1	Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2009.					
2	Venkateshan, S. P., "Mechanical Measurements", Second edition, John Wiley &Sons, 2015.					
3	Ammar Grous, J "Applied Metrology for Manufacturing Engineering", Wiley-ISTE, 2011.					
4	National Physical Laboratory Guide No. 40, No. 41, No. 42, No. 43, No. 80, No. 118, No. 130, No. 131.					
	http://www.npl.co.uk.					
5.	Duraivelu, K and Karthikeyan. S, Engineering Metrology and Measurement, The Orient Blackswan Publisher,					
	2018.					
-						

6. https://nptel.ac.in/courses/112/104/112104250/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	2	-	-	-	-	-	-	-	-	-	3	-	-	2
CO 2	2	2	1	-	-	-	-	-	-	-	-	3	-	-	2
CO 3	3	3	3	-	-	-	-	-	-	-	-	3	-	-	2
CO 4	3	3	1	-	1	-	-	-	-	-	-	3	-	-	2
CO 5	2	-	-	-	2	-	-	-	-	-	-	3	-	-	2

1: Slight (Low) 2: Moderate (Mediu	um) 3: Substantial (High)
------------------------------------	---------------------------

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
EC19351	Basic Electronics Engineering	ES	3	0	0	3

Objectives:

- To study the operation of semiconductor devices and their characteristics.
- To understand the concepts of operational amplifiers with its applications.
- To acquire knowledge about the operation of timing circuits and Oscillators.
- To gain knowledge about digital logic circuits.
- To introduce the basics of electronic communication systems.

UNIT-I	SEMICONDUCTOR DEVICES AND APPLICATIONS	9						
Introduction	Introduction to P-N Junction Diode and V-I characteristics, Half wave and Full-wave rectifiers. Zener diode and its							
characteristi	characteristics, Zener diode as voltage regulator. Introduction to BJT and its input and output characteristics, BJT as a							
single stage	CE amplifier.							
UNIT-II	OPERATIONAL AMPLIFIER AND APPLICATIONS	9						
Introduction	to operational amplifiers, Op-amp input modes and parameters, Op-amp in open loop configuration,	Op-						
amp with no	egative feedback, study of practical Op-amp IC 741, inverting and non-inverting amplifier applica	tions:						
summing an	d difference amplifier, unity gain buffer, comparator, integrator and differentiator.							
UNIT-III	TIMING CIRCUITS AND OSCILLATORS	9						
RC-timing	circuits, IC 555 and its applications as a stable and mono-stable multi-vibrators, positive feed	lback,						
Barkhausen	criteria for oscillation, R-C phase shift and Wein bridge oscillator.							

UNIT-IV	DIGITAL ELECTRONICS FUNDAMENTALS		9				
Boolean algebra, Basic and Universal Gates, Symbols, Truth tables, logic expressions, Logic simplification							
using K- map, half and full adder/subtractor, multiplexers, de-multiplexers, flip-flops, shift registers, counters,							
Block diagra	am of 8086 microprocessor and 8051 microcontroller and their applic	ations.					
UNIT-V	ELECTRONIC COMMUNICATION SYSTEMS		9				
The element	s of communication system, Transmission media: wired and wireless	, need of modulation, AM and F	FM				
modulation	schemes, Mobile communication systems: cellular concept and block	diagram of GSM system.					
		Total Contact Hours :	45				

Co	Course Outcomes: On completion of the course the students will be able to							
•	Demonstrate the characteristics of the diode and transistors.							
•	Design suitable amplifiers for simple applications.							
•	Analyze the timing circuits and design oscillators.							
•	Construct simple digital logic circuits.							
•	Develop a high degree of familiarity with the Electronic Communication Systems.							

Text Book(s):

- **1** Floyd, "Electronic Devices" Pearson Education, 9th edition, 2012.
- **2** R.P. Jain, "Modern Digital Electronics", Tata McGraw Hill, 3rd Edition, 2007.

Re	ference Books(s) / Web links:
1	Donald.A. Neamen, Electronic Circuit Analysis and Design – 2nd Edition, Tata McGraw Hill, 2009.
2	David A., "Bell Electronic Devices and Circuits", Oxford Higher Education Press, 5th Edition, 2010
3	M. Morris Mano, "Digital Design", 4th Edition, Prentice Hall of India Pvt. Ltd., 2008 / Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.
4	Simon Haykin, Communication Systems, John Wiley & sons, NY, 4th Edition, 2001.
5	Salivahanan. S, Suresh Kumar. N, Vallavaraj.A, "Electronic Devices and circuits", Third Edition, Tata McGraw-Hill, 2008
6.	Frenzel, "Communication Electronics: Principles and Applications", Tata McGraw Hill, 3rd Edition, 2001

Subject Code	Subject Name (Laboratory Course)	Category	L	Т	Р	С
ME 19511	CAD / CAM LABORATORY	PC	0	0	3	1.5

Objectives: The students can be able to

- Learn various modelling technique in software.
- Learn to model various machine components
- Learn to assemble various machine components
- To Generate of CNC part programs for various machining operations in CNC Lathe.

• To Generate of CNC part programs for various machining operations in CNC Milling

LIST OF EXERCISES

GEOMETRIC MODELLING	30								
Introduction of 3D solid modelling and assembly using CAD packages - Extrude, Revolve, Sweeps, Loft - prepare									
assembly models like Flange Coupling, Plummer Block, Screw Jack, Universal Joint, Stuffing box, Lathe Tailstock,									
Safety Valves, Connecting rod, Piston etc.									
Project- Student has to select a component and complete its part and assembly model.									
MANUAL PART PROGRAMMING	15								
1. Part Programming - CNC Milling Machine									
 Linear Cutting. 									
 Circular cutting. 									
 Cutter Radius Compensation. 									
Canned Cycle Operations.									

2. Part Programming - CNC Turning Machine

- Straight, Taper and Radius Turning.
- o Thread Cutting.
- Rough and Finish Turning Cycle.
- Drilling and Tapping Cycle.

Total Contact Hours

s : 45

Course Outcomes: On successful completion of the course, the student will be able to

	•
1	Model any 3D machine component.
2	Assemble the 3D machine component
3	Generate the different views of the machine component.
4	Write CNC manual part program and simulate for CNC Lathe operations,

5 Write CNC manual part program and simulation for CNC Milling operations.

Reference Books(s) / Web links:

2

1 Ken Evans, Programming of CNC Machines, Industrial Press Inc.,2016

SolidWorks 2019 for Engineers and Designers by Prof. Sham Tickoo- BPB Publications (2019)

3 https://www.solidworks.com/partner-product/solidworks-online-training-and-books

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	-		3	3	-	-	-	-	-	1	1	3	3	2
CO 2	2	-		3	3	-	-	-	-	-	1	1	3	3	2
CO 3	2	2		3	2	-	-	-	-	-	1	1	3	3	3
CO 4	2	-		2	3	-	-	-	-	-	2	1	3	3	3
CO 5	2	-		3	3	-	-	-	-	-	2	1	3	3	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Laboratory Course)	Category	L	Т	Р	С
ME19512	Thermal Engineering Lab-II	PC	0	0	3	1.5

Objectives: The main learning objective of this lab course is to provide hands on training to the students in

- Demonstrating the fundamentals of heat transfer including modes of heat transfer
- Predicting the coefficient used in heat transfer application
- Study the performance of the refrigeration and air-conditioning systems
- Understanding the Performance of a reciprocating air compressor
- Study the performance of a fluidized Bed Cooling Tower

List of Experiments

1	Thermal conductivity measurement using guarded plate apparatus
2	Thermal conductivity measurement of pipe insulation using lagged pipe apparatus
3	Determination of heat transfer coefficient under natural convection from a vertical cylinder
4	Determination of heat transfer coefficient under forced convection from a tube
5	Determination of Thermal conductivity of composite wall
6	Determination of Thermal conductivity of insulating powder
7	Heat transfer from pin-fin apparatus (natural & forced convection modes)
8	Determination of Stefan – Boltzmann constant
9	Determination of emissivity of a grey surface
10	Effectiveness of Parallel / counter flow heat exchanger
11	Determination of COP of a refrigeration system
12	Determination of COP of an air-conditioning system
13	Performance test on a reciprocating air compressor
14	Performance test in a fluidized bed cooling tower
	Total Contact Hours : 45

Course Outcomes: On successful completion of this course, students will be able to

- Demonstrate the fundamentals of heat transfer including modes of heat transfer
- Predict the coefficient used in heat transfer application
- Analyze the performance of the refrigeration and air-conditioning systems
- Analyze the Performance of a reciprocating air compressor
- Analyze the performance of a fluidized bed cooling tower

CO				PSO												
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3
1	3	-	-	-	-	-	-	-	-	-	-	2		-	-	1
2	3	1	-	1	-	-	-	-	-	-	-	2		-	-	2
3	3	2	-	1	-	-	-	-	-	-	-	2		-	-	3
4	3	1	-	1	-	-	-	-	-	-	-	2		-	-	2
5	3	1	-	2	-	-	-	-	-	-	-	2		-	-	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course Code	:	GE19521
Course Title	:	Soft Skills-II
Teaching Period	:	5 th Semester
Credit Points	:	L T P C – 0 0 2 1
Course Category	:	EEC

Course Objectives:

The major course objectives are:

- a. To help students break out of shyness.
- b. To build confidence
- c. To enhance English communication skills.
- d. To encourage students' creative thinking to help them frame their own opinions,

Learning and Teaching Strategy:

The program is completely student centric where the focus is on activities led by students which include role plays, discussions, debates other games as well. These activities would be supplemented by interactive use of technology and brief trainer input.

Week	Activity Name	Description	Objective
1	The News hour	Students are made to read news articles from the	The aim of this activity is not only to
		English newspapers. The students also have to find	get the students to read the newspaper
		words and their meaning from the article they have	but also aims at enhancing the
		not come across before and share it with the group.	students' vocabulary.
		They then use these words in sentences of their own	
2	Court Case	The facilitator provides the participants the premise	The aim of the lesson is to encourage
		of a story and proceeds to convert the story into a	creative and out-of-the -box thinking
		court case. The students are required, department-	to ensure a good debate and defense
		wise to debate and provide their points to win the	skills.
		case for their clients.	
3	The ultimate weekend	The students design activities they are going to do	The aim of this activity is to develop
		over the weekend and they have to invite their	the art of conversation among
		classmates to join in the activity. The students move	students. It also aims at practicing the
		around the class and talk to other students and invite	grammatical structures of "going to"
		them.	"have to" and asking questions.
4	The Four Corners	This is a debate game that uses four corners of the	This activity aims at getting students
		classroom to get students moving. The following is	to come up with their own opinions
		written on the 4 corners of the room "Strongly	and stand by it instead of being

		Agree, Somewhat Agree, Somewhat Disagree and Strongly Disagree". The topics are then given to the class and students move to the corner that they feel best explains their opinions	overshadowed by others and forcing themselves to change based on others opinions.
5	Debate	Boarding school or day school? Which is more beneficial for a student?	The aim of this activity is to encourage students to draw up feasible points on the advantages and benefits of both. And enhance their debating ability
6	Grand Master	The facilitator starts the session by keeping an individual in mind, upon which the students guess it only through "Yes or No" questions. Post few trials the students are given same opportunity to do the same with the crowd.	The aim of the lesson is designed to teach the art of questioning. It also helps to enhance the students' speaking and listening skills.
7	Debate	Does violence on the TV and Video games influence children negatively?	This activity aims at encouraging the students to debate on real life scenarios that most students spend a lot of time on.
8	Turn Tables	This is a speaking activity where the students need to speak for and against the given topics when the facilitator shouts out 'Turn Table'.	The aim of this activity is to make the participants become spontaneous and have good presence of mind.
9	Debate	Do marks define the capabilities of a student?	This debate activity aims at allowing the students to argue on this worrisome adage of marks.
10	FictionAD	The Participants are asked to create an Ad for a challenging topic only using fictional characters.	The activity aims at developing their creativity and presentation skills.
11	Debate	Are social networking sites effective, or are they just a sophisticated means for stalking people?	This activity aims at refining the students debating skills on a very real life situation
12	Talent Hunt	Talent Hunt is a fun activity where the students are selected at random and supported to present any of their own skills.	The aim of this activity is designed to evoke their inner talents and break the shyness and the fear of participating in front of a crowd
	Feedback	At the end of the session in the final week (12) the trainer would provide feedback to the students on best practices for future benefits.	The aim is to do both give feedback to students as well as obtain feedback on the course from them.

Total Hours:30

Course Learning Outcome:

On successful completion of the course, students should be able to:

- 1. Be more confident
- 2. Speak in front of a large audience without hesitation
- 3. Think creatively
- 4. Speak impromptu
- 5. Communicate in English

CO							PO						PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	1		
2	-	-	-	-	-	-	-	-	-	1	-	-	-	-	1		
3	-	-	-	-	-	-	-	-	-	1	-	-	-	-	1		
4	-	-	-	-	-	-	-	-	-	1	-	-	-	-	1		
5	-	-	-	-	-	-	-	-	-	1	-	-	-	-	1		

SEMESTER -VI

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19601	FINITE ELEMENT ANALYSIS	PC	3	0	0	3

Objectives: To introduce the students about the

- Mathematical formulation and solution for engineering problem. •
- Fundamentals of 1D Finite elements for structural analysis •
- Application of 1D finite element to Heat transfer and Vibration domain ٠
- Fundamentals of 2D Finite elements for structural analysis. •
- Need for Isoparametric formulation and numerical integration. •

INTRODUCTION UNIT-I

Historical Background - Mathematical Modeling of field problems in Engineering -Governing Equations - Discrete and continuous models - Boundary, Initial and Eigen Value problems- Weighted Residual Methods - Variational Formulation of Boundary Value Problems - Ritz Technique - Basic concepts of the Finite Element Method. 0

UNIT-II ONE DIMENSIONAL ANALYSIS

One Dimensional Second Order Equations - Discretization - Element types- Linear and Higher order Elements -Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of problems from solid mechanics. Fourth Order Beam Equation- Problems on it. 0

APPLICATION OF ONE-DIMENSIONAL ELEMENT TO HEAT TRANSFER AND UNIT-III VIBRATION

Derivation of matrices and vector for heat transfer. Problems on Heat transfer. Natural frequencies of longitudinal vibration and mode shapes. Transverse Natural frequencies of beams.

UNIT-III TWO-DIMENSIONAL ANALYSIS

Second Order 2D Equations involving Scalar Variable Functions - Variational formulation - Finite Element formulation - Triangular elements and Quadrilateral elements- Shape functions and element matrices and vectors. Application to Field Problems. Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Constitutive matrices and Strain displacement matrices - Stiffness matrix - Stress calculations.

UNIT-IV | ISOPARAMETRIC FORMULATION and NUMERICAL INTEGRATION

Natural co-ordinate systems - Isoparametric elements - Shape functions for isoparametric elements - One and two dimensions - Serendipity elements - Numerical integration - Introduction to non-linearity.

Total Contact Hours 45

|--|

- Apply the concepts of Finite Element Analysis to solve one dimensional problem in structural analysis •
- Apply the concepts of Finite Element Analysis to solve one dimensional problem in Heat transfer and Dynamics
- Apply the concepts of Finite Element Analysis to solve two dimensional problems in structural analysis •
- Apply the Isoparametric transformation and the use of numerical integration for various analysis

Text Books:

1	Rao, S.S., "The Finite Element Method in Engineering", 6th Edition, ButterworthHeinemann,2018.
2	Tirupathi R.Chandrupatla and Ashok D.Belegundu, "Introduction to Finite Elements in Engineering",

International Edition, Pearson Education Limited, 2014.

Ref	ference Books(s) / Web links:
1	David Hutton, "Fundamentals of Finite Element Analysis", Tata McGrawHill, 2017
2	Reddy, J.N. "Introduction to the Finite Element Method", 4thEdition, Tata McGrawHill, 2018.
3	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite
	Element Analysis", 4th Edition, Wiley Student Edition, 2007.
4	Seshu.P, "Text Book of Finite Element Analysis", PHI Learning Pvt. Ltd., NewDelhi, 2013.
6	https://nptel.ac.in/content/storage2/courses/112104116/ui/Course mod 1.htm

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	3	3	3	-	2	-	-	-	-	3	3	-	-
CO 2	3	3	3	3	3	-	2	-	-	-	-	3	3	-	-
CO 3	3	3	3	3	3	-	2	-	-	-	-	3	3	-	-
CO 4	3	3	3	3	3	-	2	-	-	-	-	3	3	-	-
CO 5	3	3	3	3	3	-	2	-	-	-	-	3	3	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	P	С
ME19602	GAS DYNAMICS AND JET PROPULSION	PC	3	0	0	3

Objectives: The main learning objective of this course is to prepare the students

To understand the concept of compressible flow and isentropic flow through nozzles and

• diffusers

To understand the flow through constant area ducts with heat transfer and friction and variation of fluid properties • • To understand the phenomenon of shock waves, its effect on flow and applications

To gain knowledge of theory and analysis of jet propulsion and operating principles of various types of aircraft • engines

To understand theory of rocket propulsion, rocket engines, propellant feeding systems, equations and applications •

UNIT-I	BASIC CONCEPTS AND ISENTROPIC FLOWS	9								
Energy and	Energy and momentum equations of compressible fluid flows - Stagnation states, Mach waves and Mach cone - Effe									
of Mach nur	of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers									
UNIT-II	FLOW THROUGH DUCTS	9								
Flows throu	Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) - variation of flo									
properties.	properties.									
UNIT-III	NORMAL AND OBLIQUE SHOCKS	9								
Governing e	Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer relations									
- Applicatio	ons.									
UNIT-IV	JET PROPULSION	9								
Theory of j	et propulsion - Thrust equation - Thrust power and propulsive efficiency - Operating principle,	cycle								
analysis and	use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines.									
UNIT-V	UNIT-V SPACE PROPULSION									
Types of roo	Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion –									
Performance	Performance study – Staging – Terminal and characteristic velocity – Applications – space flights.									
	Total Contact Hours :	45								

Cou	Course Outcomes: Upon completion of this course the student will be able to							
•	Explain basic concepts of gas dynamics and analyze the compressible flow in ducts with area changes							
•	Analyse the simple flows such as Fanno flow and Rayleigh flow with applications to nozzle							
•	Derive the conditions for the change in pressure, density, temperature and strength of shock for flow through a							
•	normal and oblique shock							
•	Describe the jet propulsion engines							
•	Explain about propellants and concepts of rocket propulsion system							

Tex	Text Book (s):									
1	Anderson, J.D., Modern Compressible flow, ISBN-10: 1259027422, 3rdEdition, McGraw Hill, 2017									
2	Yahya, S.M. Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion, New Age International (P) Limited, New Delhi, Fifth edition, 2016									

Reference Books(s) / Web links:

1	Hill. P. and C. Peterson, Mechanics and Thermodynamics of Propulsion, Addison –Wesley	Publishing
T	company, Second Edition, 2016	

2 Zucrow. N.J., Aircraft and Missile Propulsion, Vol.1 & II, Joh	1 Wiley, 2013	
--	---------------	--

Ganesan. V., Gas Turbines, Tata McGraw Hill Publishing Co., New Delhi, 3rdEdition, 2017 3

Babu. V., Fundamentals of Gas Dynamics, ANE Books India, Second Edition, 2014 4

Cohen. H., G.E.C. Rogers and Saravanamutto, Gas Turbine Theory, Longman Group Ltd., 5

Seventh Edition, 2017

6 Somasundaram. PR.S.L., Gas Dynamics and Jet Propulsions, New Age International Publishers, 2008

60	РО										PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3
1	2	2	2	1	1	1	3	-	-	1	1	1		1	2	3
2	2	2	2	1	2	1	1	-	-	-	-	1		2	2	3
3	2	2	2	1	2	1	1	-	-	-	-	1		2	2	3
4	2	2	3	1	2	1	1	-	-	-	-	1		2	2	3
5	2	2	2	1	2	2	2	-	-	-	-	1		1	2	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19603	Total Quality Management	PC	3	0	0	3

Objectives:

L	00	jeeuves.
	•	To facilitate the understanding of basic quality management in engineering.
	•	To facilitate the understanding of various principles of TQM.
	•	To be acquainted with management tools, six sigma and benchmarking.
	•	To be acquainted with quality functions, TPM concepts &continuous improvement tools.
Γ	•	To learn various quality systems and TQM implementation in manufacturing and service sectors.

UNIT-I INTRODUCTION

9 Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TOM - TOM Framework - Contributions of Deming, Juran and Crosby - Barriers to TOM - Quality statements - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention.

UNIT-II TQM PRINCIPLES

Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen, 8D methodology - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT-III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma, Lean Six Sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT-IV TOM TOOLS AND TECHNIQUES II

Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM -Concepts, improvement needs - Performance measures, POKA-YOKE, JIT Concepts.

UNIT-V QUALITY MANAGEMENT SYSTEM

Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector-Specific Standards—AS 9100, TS16949 and TL 9000- ISO 9001 Requirements-Implementation-Documentation-Internal Audits-Registration-ENVIRONMENTAL MANAGEMENT SYSTEM: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001-Requirements of ISO 14001-Benefits of EMS.

> **Total Contact Hours** 45

9

9

9

Course Outcomes: At the end of this course, students can have the

- Ability to explain the importance of quality in engineering. •
- Ability to explain various principles in TQM. •
- Explore the knowledge of implementing various TQM tools.

- Ability to create rapport among workers to form a quality team.
- Ability to explain the benefits of implementing ISO-9000 & ISO-14000 in manufacturing and service sectors.

Text Book:

1 Dale H.Besterfield, Carol Besterfield- Michna, Glen H. Besterfield, Mary Besterfield - Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe —Total Quality Management, Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

Ref	Reference Books(s) / Web links:										
1	James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian										
	Edition, Cengage Learning, 2012.										
2	Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.										
3	Janakiraman. B and Gopal .R.K., "Total Quality Management - Text and Cases", Prentice Hall (India) Pvt. Ltd.,										
	2006.										
4.	ISO9001-2015 standards-A Complete Guide to Quality Management Systems by ItayAbuhav.										
5.	Poka - Yoke, "Improving Product Quality by Preventing Defects", Productivity Press, 2004.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	1	1	1	1	1	1	-	2	-	2	2	-	-	2
CO 2	1	1	-	1	2	1	1	-	2	-	2	2	-	-	2
CO 3	1	1	-	1	2	-	1	-	2	-	2	1	-	-	2
CO 4	1	1	-	1	2	1	1	-	2	-	2	2	-	-	2
CO 5	1	1	1	1	2	1	1	-	2	-	2	2	-	-	2

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Subject Code	e Subject Name (Theory course) Category L T 1										
ME19604	DESIGN OF TRANSMISSION SYSTEMS	PC	3	0	0	į					
	(Use of Design Data Book is Permitted)										
COURSE OB	ECTIVES: The main learning objective of this course is to prepare the stude	ents to know t	he c	lesiş	gn						
procedure											
• For fle	xible elements like belt, ropes and chain drives for engineering applications.										
• For sp	ur and helical gear drives for power transmission.										
• For be	vel and worm drives for power transmission.										
• For m	It is speed gear box for machine tool and automotive applications.										
• For cl	tch and brake systems for engineering applications.										
UNIT-I I	ESIGN OF FLEXIBLE ELEMENTS				9						
Motor power c	apacity for various applications - Design of Flat belts and pulleys - Selection	of V belt sand	she	ave	s –						
Selection of wi	re ropes and pulleys – Design of Transmission Chains and Sprocket.										
UNIT-II S	PUR AND HELICAL GEARS				9						
Gear materials	- Design of straight tooth spur & helical gears based on speed ratios, number	of teeth, Fati	gue	stre	ngtl	h,					
Factor of safet	y, strength and wear considerations. Force analysis -Tooth stresses - Dynam	ic effects - He	elica	ıl ge	ars	_					
i actor or salet	, suchgur and wear considerations. Force analysis -10001 successes - Dynam										
Module - norm	al and transverse, Equivalent number of teeth – forces.	ie enteets in									
Module - norm					9						
Module - normUNIT-IIIHStraight bevel g	al and transverse, Equivalent number of teeth – forces. EVEL AND WORM GEARS ear: Gear materials - Tooth terminology, tooth forces and stresses, equivalent r	number of teet	h, e		atio	on					
Module - normUNIT-IIIHStraight bevel g	al and transverse, Equivalent number of teeth – forces. EVEL AND WORM GEARS	number of teet	h, e		atio	on					
Module - norm UNIT-III E Straight bevel g of dimensions	al and transverse, Equivalent number of teeth – forces. EVEL AND WORM GEARS ear: Gear materials - Tooth terminology, tooth forces and stresses, equivalent r	number of teet	h, e		atio	on					
Module - normUNIT-IIIStraight bevel gof dimensionsstresses, efficient	al and transverse, Equivalent number of teeth – forces. EVEL AND WORM GEARS ear: Gear materials - Tooth terminology, tooth forces and stresses, equivalent r of straight bevel gears. Worm Gear: Gear materials - Tooth terminology, Th	number of teet	h, e		atio	on					
Module - norm UNIT-III Straight bevel a of dimensions stresses, efficient UNIT-IV	al and transverse, Equivalent number of teeth – forces. EVEL AND WORM GEARS ear: Gear materials - Tooth terminology, tooth forces and stresses, equivalent r of straight bevel gears. Worm Gear: Gear materials - Tooth terminology, Th ncy, estimation of dimensions of worm gear pair.	number of teet ermal capacit	h, e: y, fo	orce	atio s an 9	or nc					
Module - norm UNIT-III F Straight bevel g of dimensions stresses, efficie unit-IV UNIT-IV C Need - Design Ray diagram, I	al and transverse, Equivalent number of teeth – forces. EVEL AND WORM GEARS ear: Gear materials - Tooth terminology, tooth forces and stresses, equivalent no of straight bevel gears. Worm Gear: Gear materials - Tooth terminology, Th ncy, estimation of dimensions of worm gear pair. EAR BOXES of sliding and constant mesh gear boxes: Speed selection - Geometric progress inematic layout – Determination of number of teeth. Design of multi speed	number of teet ermal capacity ssion - Standar gear box for	h, e: y, fo rd st mac	orce: ep r hine	atio s an <u>9</u> ratio e too	on nc					
Module - norm UNIT-III F Straight bevel g of dimensions stresses, efficie unit-IV UNIT-IV C Need - Design Ray diagram, I	al and transverse, Equivalent number of teeth – forces. EVEL AND WORM GEARS ear: Gear materials - Tooth terminology, tooth forces and stresses, equivalent r of straight bevel gears. Worm Gear: Gear materials - Tooth terminology, Th ncy, estimation of dimensions of worm gear pair. EAR BOXES of sliding and constant mesh gear boxes: Speed selection - Geometric progress	number of teet ermal capacity ssion - Standar gear box for	h, e: y, fo rd st mac	orce: ep r hine	atio s an <u>9</u> ratio e too	on nc					
Module - norm UNIT-III F Straight bevel g of dimensions stresses, efficie unit-IV UNIT-IV C Need - Design Ray diagram, I	al and transverse, Equivalent number of teeth – forces. EVEL AND WORM GEARS ear: Gear materials - Tooth terminology, tooth forces and stresses, equivalent r of straight bevel gears. Worm Gear: Gear materials - Tooth terminology, Th ncy, estimation of dimensions of worm gear pair. EAR BOXES of sliding and constant mesh gear boxes: Speed selection - Geometric progress inematic layout – Determination of number of teeth. Design of multi speed ariable speed gear box, Fluid Couplings, Torque Converters for automotive	number of teet ermal capacity ssion - Standar gear box for	h, e: y, fo rd st mac	orce: ep r hine	atio s an <u>9</u> ratio e too	on nd					

Design of single and multi-plate clutches, cone clutches, internal expanding rim clutches and Electromagnetic clutches. Design of brakes: External shoe brakes - Single and Double Shoe, Internal expanding shoe brakes and Band brakes.

Total Contact Hours : 45

Note: (Use of standard Design Data Book is permitted in the End Semester Examination)

Co	urse Outcomes: On successful completion of the course, the student will be able to
	• Design flexible elements like belt, ropes and chain drives for engineering applications.
	• Apply to spur and helical gear drives for power transmission.
	• Design bevel and worm drives for power transmission.
	• Design multi speed gear box for machine tool and automotive applications.
	• Design clutch and brake systems for engineering applications.
ТЕ	XT BOOKS:
1	Shigley. J., Mischke. C., Budynas, R., and Nisbett. K., "Mechanical Engineering Design", 10thEdition, Tata
1	McGraw-Hill, 2014.
2	Sundararajamoorthy. T. V. and Shanmugam. N., "Machine Design", 9th Edition, AnuradhaPublications, Chennai,
2	2003.
RE	FERENCES/WEBLINKS
1	Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd
1	Edition, Tata McGraw Hill, 2006.
2	Sundararajamoorthy. T. V. and Shanmugam. N., "Machine Design", 9th Edition, AnuradhaPublications, Chennai,
2	2003. x
3	Sen and Bhattacharya, "Principles of Machine Tools", New Central Book Agencies, 1975.
4.	https://nptel.ac.in/courses/112/106/112106137/

CO - PO – PSO matrices of course

PO/PSO CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	1	1	-	-	-	-	-	1	1	-	2	2	-	1
CO 2	3	1	1	-	-	-	-	-	1	1	-	2	2	-	1
CO 3	3	1	1	-	-	-	-	-	1	1	-	2	2	-	1
CO 4	3	1	1	-	-	-	-	-	1	1	-	2	2	-	1
CO 5	3	1	1	-	-	-	-	-	1	1	-	2	2	-	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course Code	:	GE19621
Course Title	:	Problem-Solving Techniques
Teaching Period	:	6 th Semester
Credit Points	:	L T P C – 0 0 2 1
Course Category	:	EEC

Course Objectives:

- To improve the numerical ability
- To improve problem-solving skills.

Course topics:

S.No.	Topics
1	Number's system
2	Reading comprehension

3	Data arrangements and Blood relations
4	Time and Work
5	Sentence correction
6	Coding & Decoding, Series, Analogy, Odd man out and Visual reasoning
7	Percentages, Simple interest and Compound interest
8	Sentence completion and Para-jumbles
9	Profit and Loss, Partnerships and Averages
10	Permutation, Combination and Probability
11	Data interpretation and Data sufficiency
12	Logarithms, Progressions, Geometry and Quadratic equations.
13	Time, Speed and Distance

Total Hours:30

Course Outcome:

On successful completion of the course, students should be able to:

- 1. Have mental alertness
- 2. Have numerical ability
- 3. Solve quantitative aptitude problems with more confident

Subject Code	Subject Name (Lab course)	Category	L	Т	Р	С
ME19611	SIMULATION AND ANALYSIS LABORATORY	PC	0	0	3	1.5

Co	Course Objectives: The main learning objective of this course is to provide hands on training to the students in:							
•	Simulating various mechanisms and robot configuration							
•	Analyzing the force, stress, deflection in mechanical components.							
٠	Analyzing thermal stress and heat transfer in mechanical components.							
٠	Analyzing the vibration of mechanical components.							
	Analyzing the modal harmonic transient and spectrum concents in mechanical components							

Analyzing the modal, harmonic, transient and spectrum concepts in mechanical components.

LIST OF EXPERIMENTS

1	Stress analysis of Trusses.
2	Stress and deflection analysis in beams with different support conditions.
3	Stress analysis of rectangular plate and rectangular plate with hole
4	Stress analysis of axis-symmetric components.
5	Thermal Analysis of Fin and chip.
6	Unsteady Thermal analysis of fin.
7	Modal analysis of Beams.
8	Stress analysis in pressure vessel
9	Linear Column Buckling Analysis
10	Project Work – Analysis of any one mechanical component
	Total contact periods: 45

Course Outcomes: On successful completion of the course, the students will be able to

• Perform Stress analysis of beam.

- Stress analysis of Axisymmetric component
- Do heat transfer analysis of mechanical components.
- Perform modal analysis of mechanical components.
- Analyse the buckling in column.

Reference Books/Weblink

- 1 ANSYS for Designer by Prof. Shyam Tickoo and Vivek Singh, CADCIM Technologies, USA,
- 2 www.confluence.cornell.edu

	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	_	1	_	3	-	_	_	_	2	_	3	2	-	2
CO 2	2	-	1	-	3	-	-	-	-	2	-	3	2	-	2
CO 3	2	-	1	-	3	-	-	-	-	2	-	3	2	-	2
CO 4	2	-	1	-	3	-	-	-	-	2	-	3	2	-	2
CO 5	2	-	1	-	3	-	-	-	-	2	-	3	2	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Practical course)	Category	L	Т	P	С
ME19612	INNOVATION and DESIGN THINKING FOR MECHANICAL ENGINEER	EEC	0	0	3	1.5

Ob	jectives: The main learning objectives of this course is to provide exposure to the students to
•	Work in a group and to identify the potential areas in the field of mechanical Engineering.
•	Recognize the creative thinking skills to compare and contrast the several existing solutions for the identified problem.
•	Understand the project plan for creating a solution for the work identified.
•	Acquire fundamental principles of planning and carrying out the work plan of the project through observations, discussions and decision-making processes.
•	Understand on preparing the project report and present the findings of the work conducted.

Design thinking is a comprehensive approach to solutions, which stimulates creativity in working groups of participants. It is an innovating process, which allows the development of new solutions for any given problem. Concepts are created and then revised in various cycles and tested using prototypes. This holistic approach with creative solutions enables companies to develop innovations.

GUIDELINE FOR REVIEW AND EVALUATION

The students may be grouped into 2 or 3 should select an existing mechanical component/ assembly and they should identify, define, ideate, fabricate and test. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor.

A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a committee constituted by the Head of the Department. At the end semester examination, the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

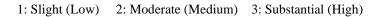
COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

1. Work in a group and identify the potential research areas in the field of Mechanical Engineering.

2. Apply their creative thinking skills to Compare and contrast the several existing solutions for the problems identified.

3. Formulate and propose a plan for creating a solution for the work identified.


4. Apply fundamental principles of planning and carrying out the work plan of the project through observations, discussions and decision-making process

5. Prepare the project report and present the findings of the work conducted.

Scheme for Internal Evaluation:

S.No	Description	Marks
1	Review – I	10
2	Review – II	20
3	Review – III	20

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	2	1	1	-	-	-	-	3	2	2	2	2	-	2
CO 2	2	2	1	1	-	1	-	-	3	2	3	2	2	-	2
CO 3	2	2	2	1	1	1	-	-	3	2	3	2	2	-	2
CO 4	2	2	2	1	-	1	-	-	3	2	3	2	2	-	2
CO 5	-	-	2	-	1	-	-	-	3	3	3	2	2	-	2

SEMESTER-V	II
------------	----

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	C
ME19701	Automobile Engineering	PC	3	0	0	3

Objectives: The main learning objective of this course is to prepare the students

To understand the various types of automobiles, their power packs, and types of vehicle bodies.

To understand the various types of power train and fuel supply and management systems. •

To know the various types of transmission systems for a vehicle. ۲

To understand the working parameters of various braking and suspension system in a vehicle. •

To understand the working parameters of various electrical and electronic devices in a vehicle. •

UNIT-I **INTRODUCTON TO AUTOMOBILE AND TYPES**

An overview of different types of automobiles and their power sources. Specifications, Performance Parameters, Types of power delivery, Safety standards, Trends in automobile design. Two and Types, Regulations, Car body construction. Bus Body Details, General consideration relating to chassis layout. Introduction to MV Act, Pollution Norms.

UNIT-II POWERTRAIN AND FUEL MANAGEMENT SYSTEMS Reciprocating Engine systems, Hybrid systems. Pollutant emissions and their control; Catalytic converter systems, Electronic Engine Management systems for SI and CI engines. Liquid and gaseous alternate fuels - Alcohol, LPG, CNG, and Hydrogen 9

UNIT-III CLUTCH AND TRANSMISSION SYSTEMS

Clutch system and types, Gear box and types - manual, automatic, and AMT, propeller shafting, Differential, Axles function, and types, Wheels, Tyres - types, construction and specification, suspension system - types and functioning. UNIT-IV BRAKING AND SUSPENSION SYSTEMS 9

Braking system - requirements and types, Steering system - working, types and steering geometry parameters. Wheel balancing & Alignment Wind Tunnel testing, Servicing of Vehicles,

ELECTRICAL AND ELECTRONIC SYSTEMS UNIT-V

Introduction to Battery, Alternator, and Starter Motor systems, working principle, and circuitry, Safety systems - seat belts, air-bag, ABS, Modern electronic features in vehicles like tyre pressure monitoring, ESP, EBD, Automatic headlamp ON, Rain sensing wipers, speed sensing auto locking, OBD. HVAC system.

Total Contact Hours 45

9

Course Outcomes: On successful completion of this course, students will be able to

•	Explain the various types of automobiles, their power packs, and types of vehicle bodies.

- Explain the various types of power train and fuel supply and management systems. •
- Select the various types of transmission systems for a vehicle. •

Explain the working parameters of various braking and suspension system in a vehicle •

Explain the working parameters of various electrical and electronic devices in a vehicle. •

Tex	xt Books:					
1	Jack Erjavek, "Automotive Technology - A Systems Approach", Thomson Learning, 3rdEdition, 1999					
2	William H. Crouse and Donald L. Anglin, "Automotive Mechanics", Tata McGraw Hill, 10thEdition, 2004					
Ref	Reference Books(s) / Web links:					
1	Gill P.S., "A Textbook of Automobile Engineering - Vol. I, II and III", S.K.Kataria and Sons, 2ndEdition, 2012					
2	Giri, N.K., "Automotive Technology", Khanna Publishers, 2ndEdition, 2002.					
3	Kirpal Singh, Automobile Engineering Volume I and II, Standard Publishers & Distributors, 14th Edition, 2017.					
4	Kumar D.S., "Automobile Engineering", S.K.Kataria and Sons, 2nd Edition, 2017.					
5	Robert Bosch GmbH, "Automotive Handbook", Robert Bosch, 2004.					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	1	1	-	-	1	-	-	-	-	1	-	-	2
CO 2	2	1	1	1	-	-	1	-	-	-	-	1	-	-	2
CO 3	2	1	1	1	-	-	1	-	-	-	-	1	-	-	2
CO 4	2	1	1	1	-	-	1	-	-	-	-	1	-	-	2
CO 5	2	1	1	1	-	-	1	-	-	-	-	1	-	-	2

1: Slight (Low) 2: Moderate (Medium) 3: 5	Substantial (High)
---	--------------------

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19702	AUTOMATION IN MANUFACTURING	PC	3	0	0	3

Oh	jectives:	
•	To understand the basics of Manufacturing and Automation concepts.	
•	To understand about the design, analysis and implementation of manufacturing support systems.	
•	To understand about the design, analysis and imperior internation of manufacturing support systems.	
•	To understand group technology concepts, coding systems and implementation of flexible manufacturing	
•	systems.	
•	To understand the anatomy, configuration and application of Industrial robots and basics of smart manufactu	rina
•	To understand the anatomy, configuration and application of industrial robots and basies of smart manufactu	mg.
UN	IT-I FUNDAMENTALS OF MANUFACTURING & AUTOMATION	9
Bri	ef introduction to CAD and CAM – Manufacturing Planning, Manufacturing control- Axiomatic Design- Concu	ırrent
	zineering-CIM concepts - Computerized elements of CIM system - Types of production - Manufacturing model	
Me	trics - Mathematical models of Production Performance- Simple problems - Manufacturing Control - S	imple
	blems - Basic Elements of an Automated system - Levels of Automation - Lean Production and Just-In-	
Pro	duction.	
UN	IT-II MANUFACTURING SUPPORT SYSTEMS	9
Pro	cess planning – Computer Aided Process Planning Logical steps in Computer Aided Process Planning – Aggr	egate
	duction Planning and the Master Production Schedule – Material Requirement planning – Capacity Plan	
Co	ntrol Systems-Shop Floor Control-Inventory Control –Brief on Manufacturing Resource Planning-II-ERP &	LM.
UN	IT-III MATERIAL HANDLING & STORAGE SYSTEMS	9
Ma	terial Handling Systems - Conveyors, Feeders, Stackers & Reclaimers, automatic pallet changers-Types	s and
app	lications- AGV-Guidance, steering, routing& Vehicle Management- Tool Handling Systems, ATC, Tool	Fault
Det	ection Systems- AS/RS, Functions and its types	
UN	IT-IV CELLULAR MANUFACTURING & FLEXIBLE MANUFACTURING SYSTEMS	9
Gro	oup Technology, Product and Process based Layouts-Types of Coding & Classification systems, Optiz Co	oding
Sys	tems, Composite Part Concept, Production Flow Analysis- Cellular Manufacturing- FMS & its Composite	nents,
Ap	plication & Benefits, Planning and Implementation, Quantitative Analysis of FMS, Fundamentals and Analy	sis of
Tra	nsfer Lines	
UN	IT-V INDUSTRIAL ROBOTICS & SMART MANUFACTURING	9
Rol	pot Configuration & Anatomy, Industrial robots Applications & Case Study- Manufacturing processes, Asser	mbly,
	pection, Material handling & Warehousing. Digital manufacturing- Need & Case study, Advantages	~
Ins	peerion, material handling & warehousing. Digital manufacturing freed & case study, ravanages	over
	ventional manufacturing-Smart manufacturing Techniques-IOT, Dark Factory, Big data processing, Cyber-Phy	
con		

Co	urse Outcomes: At the end of this course, students can have the
•	Ability to understand the basics of Manufacturing, its fundamentals, types and Automation principles used in
	Manufacturing Industries.
	Ability to convert customer requirements into product related data and its subsequent plan for manufacturing it
	effectively and to improve productivity.
	Ability to understand the use and application of modern material handling, tool handling systems and storage
٠	systems.
•	Ability to group the work parts, identify and design the proper layout for manufacturing them.
	Ability to identify and implement a proper robotic system for any application and understand the significance of
•	smart manufacturing.
Tex	xt Books:
1	

Tex	xt Books:						
1	Automation, Production Systems and Computer Integrated Manufacturing, M.P. Groover, Pearson Education.						
2	ndustrial Automation: W.P.David, John Wiley and Sons.						
Ref	Reference Books(s) / Web links:						
1	Hand book of design, manufacturing and Automation: R.C. Dorf, John Wiley and Sons.						
2	Computer Based Industrial Control, Krishna Kant, EEE- PHI						
3	Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003.						

4 Rao. P, N Tewari &T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill Publishing Company, 2000.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	1	-	-	1	1	-	-	-	1	2	-	-	2
CO 2	2	2	2	-	1	1	1	-	-	-	1	2	-	-	2
CO 3	2	2	2	-	-	1	1	-	-	-	1	2	-	-	2
CO 4	2	1	1	-	-	1	1	-	-	-	1	2	-	-	2
CO 5	2	1	1	-	-	1	1	-	-	-	1	2	-	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19741	MECHATRONICS	PCC	3	0	2	4

Ob	jectives:
•	To Select the sensors to develop mechatronics systems based on applications.
	To explain the architecture and timing diagram of microprocessor, Arduino, Raspberry Pi and also interpret and
•	develop programs
٠	To Design appropriate interfacing circuits to connect I/O devices with microprocessor
٠	To Apply PLC and SCADA system as a controller in mechatronics system.
•	To Design and develop the apt mechatronics system for an application

UNIT-I INTRODUCTION AND SENSORS

Introduction to Mechatronics – Systems – Concepts of Mechatronics approach - Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and Dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance Sensors – Strain Gauges – Eddy Current Sensor – Hall Effect Sensor – Temperature Sensors – Light Sensors – Selection of Sensors – Application of Sensors in Healthcare, Agriculture, Manufacturing, Chemical Industries.

UNIT-II 8085 MICROPROCESSORS

Introduction – Architecture of 8085 – Pin Configuration- Addressing Modes – Instruction set, Timing diagram of 8085 – Concepts of 8051 microcontroller – Block diagram – Introduction to Arduino and Raspberry Pi.

UNIT-III PROGRAMMABLE PERIPHERAL INTERFACE

Introduction – Architecture of 8255, Keyboard Interfacing, LED display – Interfacing, ADC and DAC Interface, Temperature Control – Stepper Motor Control – Traffic Control Interface

UNIT-IV PROGRAMMABLE LOGIC CONTROLLER & SCADA

Introduction – Architecture – Input / Output Processing – Programming – Mnemonics - Timers, Counters, Shift Registers and Internal relays – Data Handling – Selection of PLC – Introduction to SCADA - SCADA System Components – Functions – RTU Technology - Applications.

UNIT-V ACTUATORS AND MECHATRONICS SYSTEM DESIGN

 Types of Stepper and Servo motors – Construction – Working Principle – Characteristics, Stages of Mechatronics

 Design Process – Comparison of Traditional and Mechatronics Design Concepts – Case studies of Mechatronics

 Systems – Pick and Place Robot – Engine Management system – Automatic Car Park Barrier –IoT based Case studies

 Total Contact Hours
 :

 45

Co	urse Outcomes: At the end of this course, students can have the
•	Ability to select sensors to develop mechatronics systems based on the applications.
•	Ability to explain the architecture and timing diagram of microprocessor, Arduino, Raspberry Pi and also interpret and develop programs.
•	Ability to design appropriate interfacing circuits to connect I/O devices with microprocessor.
•	Ability to apply PLC and SCADA system as a controller in mechatronics system.

9

9

9

9

9

•	Ability to Design and develop the apt mechatronics system for an application
Tex	xt Book:
1	Bolton W., "Mechatronics", Pearson Education, 6th Edition, 2015.
2	Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram
	International Publishing Private Limited, 6th Edition, 2013.

Ref	ference Books(s) / Web links:
1	Bradley D.A., Dawson D., Buru N.C. and Loader A.J., "Mechatronics", Chapman and Hall, 1993.
2	Davis G.Alciatore and Michael B.Histand, "Introduction to Mechatronics and Measurement systems", McGraw Hill Education, 2011.
3	Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", McGraw Hill Education, 2015.
4.	Smaili.A and Mrad.F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.
5.	Frank Lamb, Industrial Automation: Hands On, McGraw-Hill Professional, 2013
6.	Krishna Kant, "Microprocessor & Microcontrollers", Prentice Hall of India, 2007

LIST OF EXPERIMENTS

1. Assembly language programming of 8085 – Addition – Subtraction – Multiplication – Division – Sorting Code Conversion.

2. Stepper motor interface.

3. Traffic light interface.

4. Speed control of DC motor.

5. Study of various types of transducers.

6. Study of hydraulic, pneumatic and electro-pneumatic circuits.

7. Modeling and analysis of basic hydraulic, pneumatic and electrical circuits using software.

8. Study of PLC and its applications.

9. Study of image processing technique

Total Contact Hours: 30

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	1	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 2	3	1	1	-	2	-	-	-	-	-	-	2	2	2	1
CO 3	3	2	2	-	-	-	-	-	-	-	-	-	2	-	2
CO 4	3	1	1	1	2	-	-	-	-	-	-	2	2	2	1
CO 5	2	2	3	2	2	1	1	-	-	-	-	2	2	-	2

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Subject Code	Subject Name (Laboratory course)	Category	L	Т	Р	С
ME19711	PROJECT PHASE-I	EEC	0	0	2	1

OBJECTIVES

- Discovering potential research areas in the field of Mechanical Engineering.
- Comparing and contrast the several existing solutions for the problem identified through literatures.
- Formulate and propose a plan for the identified work.
- To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 2 to 3 works on a topic approved by the Head of the Department under the guidance of a faculty member and prepare a comprehensive project report after completing the project work including Literature survey/Methodology to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL:30 PERIODS

Scheme for Internal Evaluation

S.NO	Description	Marks
1	Review –I	10
2	Review –II	20
3	Review-III	20

COURSE OUTCOMES:

The students can able to

- Formulate the objectives of the project work
- o Know the recent developments in their project area through Literature survey
- Identify the research Gap from the literature survey
- Formulate the methodology of the project work.
- Prepare the time line for each stage of their project Work.

Subject Code	Subject Name (Laboratory course)	Category	L	Т	Р	C
ME19712	COMPREHENSION	EEC	0	0	2	1

Objectives:

- To encourage the students to comprehend the knowledge acquired from the first Semester to Sixth Semester of
- B.E Degree Course through periodic exercise.

METHOD OF EVALUATION

The students will be assessed 100% internally through weekly test and an end semester examination with objective type questions in Mechanical Engineering domain.

TOTAL: 30 PERIODS

OUTCOMES: At the end of this course, students are:

Able to apply the fundamental knowledge gained for solving the engineering problems.

Able to apply the knowledge gained to write the competitive exams

Able to apply the knowledge gained to face technical interviews.

Subject Code	Subject Name (Laboratory course)	Category	L	Т	Р	С
ME19811	PROJECT PHASE-II	EEC	0	0	1	8
					6	

SEMESTER-VIII

OBJECTIVES

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 2 to 3 works on a topic approved by the Head of the Department under the guidance of a faculty member and prepare a comprehensive project report after completing the project work including Literature survey/Methodology to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

TOTAL: 240 PERIODS

Scheme for Internal Evaluation		
S.NO	Description	Marks
1	Review –I	10
2	Review –II	20
3	Review-III	20

COURSE OUTCOMES:

- On completion the students can able to execute the proposed plan and identify and overcome the bottlenecks during each stage.
- On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.
- Students will obtain a hands-on experience in converting a small novel idea / technique into a working model / prototype involving multi-disciplinary skills and / or knowledge and working in at team.
- Students will be able to interpret the outcome of their project.
- Students will take on the challenges of teamwork, prepare a presentation in a professional manner, and document all aspects of design work.

PROFESSIONAL ELECTIVES FOR B.E. MECHANICAL ENGINEERING

SEMESTER VI

ELECTIVE I

Sub	Subject Code Subject Name (Theory course) Category I								
N	AE19P61	COMPOSITE MATERIALS AND MECHANICS	PE	0	0	3			
Ob	Objectives: The main learning objective of this course is to prepare the students								
•	To understand the fundamentals of composite materials and its properties								
•	To have the fundamental knowledge of the Polymer matrix composites and its manufacturing methods								
٠	To have the	fundamental knowledge of the Metal matrix composites and its manufactur	ing methods						
٠	To have knowledge about the Ceramic matrix composites and its manufacturing processes								
•	To possess l	knowledge on laminate constitutive equation and its application to various t	ypes of lamina	ites.					

UNIT-I INTRODUCTION TO COMPOSITE MATERIALS	7
Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fiber	rs, metal
filaments- ceramic fibers- fiber fabrication- natural composite - Advantages and drawbacks of composite	ites over
monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced of	omposite
Materials, Dispersion-Strengthened composite, Fiber-reinforced composites. Rule of mixtures, Testing of com	posite.
UNIT-II POLYMER MATRIX COMPOSITES	9
Polymer resins - Thermosetting resins, thermoplastic resins - Reinforcement fibres - Rovings - woven fabr	cs – Non
woven random mats - Various types of fibres - PMC processes - Hand layup processes - Spray up pr	ocesses –
Compression moulding - Reinforced reaction injection moulding - Resin transfer moulding - Pultrusion -	Filament
winding - Injection moulding - Fibre reinforced plastics (FRP), glass fibre reinforced plastics (GRP). Land	ninates –
Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates - Applications of	PMC in
aerospace, automotive industries.	
UNIT-III METAL MATRIX COMPOSITES	9
Characteristics of MMC, advantages of MMC, limitations of MMC, rule of mixtures – Processing of MMC	– Powder
metallurgy process - Diffusion bonding - Stir casting - Squeeze casting. In-situ reactions - Interface - measu	rement of
interface properties – Applications of MMC in aerospace, automotive industries.	
UNIT-IV CERAMIC MATRIX COMPOSITE & SPECIAL COMPOSITES	9
Need for CMC -Toughening Mechanism - Processing- Sintering - Hot pressing - Cold Isostatic Pressing (CIPing) –
Hot Isostatic Pressing (HIPing) - Applications of CMC in aerospace, automotive industries - Carbon	/ carbon
composites - Advantages of carbon matrix - Limitations of carbon matrix carbon fiber - Chemical vapour c	eposition
of carbon-on-carbon fiber perform – Sol-gel technique.	
UNIT-V INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS	11
Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized	
Hooke's Law. Reduction to Homogeneous Orthotropic Lamina - Isotropic limit case, Orthotropic Stiffness ma	
Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated and	
plates. Laminate Constitutive Equations - Coupling Interactions, Balanced Laminates, Symmetric Laminate	
Ply Laminates, Cross Ply Laminates, Quasi-Isotropic Laminates. Determination of Lamina stresses within La	ninates.
Total Contact Hours	: 45

Total Contact Hours	:	45	
---------------------	---	----	--

Cou	urse Outcomes: Upon the completion of the course, students will be able to									
•	Understand the fundamentals of composite materials.									
•	Know the types and various manufacturing methods of PMC.									
•	Know the types and various manufacturing methods of PMC									
•	Know the types and various manufacturing methods of CMC.									
•	Calculate the composite lamina properties using fundamentals of composite mechanics.									
Tex	xt Book:									
1	Krishnan K Chawla, Composite Materials Science and Engineering, 2013, Springer Publication.									

2 M. Balasubramanian, Composite Material and Processing, 2017, CRC Press.

Ref	ference Books(s) / Web links:
1	Ronald Gibson, Principles of Composite materials and Mechanics, McGraw Hill Publication.
2	Madhujit Mukhopadhyay, "Mechanics of Composite Materials and Structures", University Press, (India) Pvt. Ltd., Hyderabad, 2004 (Reprinted 2008).
3	P.K. Mallick, Fiber reinforced Composites Materials, Manufacturing, and Design, CRC Press, 2007
4.	https://nptel.ac.in/courses/112104168/.
5.	https://nptel.ac.in/courses/112104249/

	PO 1	PO 2	PO 3	PO 4	PO5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO 2	PSO 3
CO 1	3	-	-	-	-	-	-	-	-	-	-	1	-	2	1
CO 2	3	-	-	-	-	-	-	-	-	-	-	1	-	2	1
CO 3	3	-	-	-	-	-	-	-	-	-	-	1	-	2	1
CO 4	3	-	-	-	_	_	-	-	-	-	-	1	-	2	1
CO 5	3	3	1	-	-	-	-	-	-	-	-	1	-	2	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	P	С
ME19P62	Unconventional Machining Processes	PE	3	0	0	3

Objectives: Students can understand the

- Importance of non-traditional machining and mechanical energy-based processes. •
- Working principles of different chemical and electro chemical energy based processes and its process parameters. •
- Working principles of thermo-electric energy-based processes and its process parameters. .
- Various nano finishing processes.
- Different types of Hybrid non-traditional machining processes. •

INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES UNIT-I 9 Introduction - Need for non-traditional machining processes - Classification of non-traditional machining processes-Brief overview - Abrasive jet machining, Water jet Machining, Ultrasonic machining their principles, equipment, effect of process parameters, applications, advantages and limitations.

UNIT-II CHEMICAL AND ELECTRO CHEMICAL ENERGY BASED PROCESSES

Principles, effect of process parameters, applications, advantages and limitations of Chemical machining, Maskant applying techniques. Principles, equipment, effect of process parameters, applications, advantages and limitations of Electro-chemical machining, Electro-chemical honing, Electro-chemical grinding and Electro chemical deburring 9

UNIT-III THERMO-ELECTRIC ENERGY BASED PROCESSES

Principles, equipment, effect of process parameters, applications, advantages and limitations of Electric discharge machining, Wire electric discharge machining, Laser beam machining, Plasma arc machining, Electron beam machining, Ion beam machining. 0

UNIT-IV NANO FINISHING PROCESSES

Principles, equipment, effect of process parameters, applications, advantages and limitations of Abrasive flow machining - Chemo mechanical polishing, Magnetic abrasive finishing, Magnetorheological finishing-Magneto rheological abrasive flow finishing.

UNIT-V HYBRID NON-TRADITIONAL MACHINING PROCESSES

Introduction and classification of Hybrid Machining processes, Principles, equipments of Assisted hybrid processes and combined or mixed-type processes. Assisted hybrid processes-Vibration assisted EDM, Ultrasonic-Assisted ECM

0

(USECM),Laser assisted ECM (LAECM), Laser-Assisted EDM (LAEDM).Combined hybrid machining -Electrochemical Discharge Machining (ECDM), Electric Discharge Grinding (EDG), Abrasive water jet machining

Total Contact Hours : 45

Course Outcomes: At the end of this course, students can have the

- Ability to explain different types of non-traditional machining processes and explain mechanical energy based
- non-traditional machining processes.
- Ability to explain the working principles of chemical and electro chemical energy-based processes.
- Ability to explain the working principles of thermo-electric energy-based processes.
- Ability to explain various nano finishing processes.
- Ability to understand hybrid non-traditional machining processes.

Text Books:

- 1 Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd., New Delhi, 2007.
- 2 Kapil Gupta, Neelesh K. Jain and Laubscher R.F., "Hybrid Machining Processes: Perspectives on Machining and Finishing", 1st edition, Springer International Publishing., Switzerland, 2016.

Reference Books(s) / Web links:

1 Adithan. M., "Unconventional Machining Processes", Atlantic, New Delhi, India, 2009.

2 Gary F. Benedict, "Non-traditional Manufacturing Processes", Routledge, 2017.

- 3 Vijay.K. Jain "Nanofinishing Science and Technology: Basic and Advanced Finishing and Polishing Processes" CRC Press, 2016.
- 4 XichunLuo, Yi Qin, Hybrid Machining, Elsevier, 2018
- 5 <u>https://nptel.ac.in/courses/112/103/112103202/-:</u>Advanced MachiningProcesses

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	-	-	1	1	-	-	-	-	-	2	-	1	1
CO 2	2	1	-	-	1	1	-	-	-	-	-	2	-	1	1
CO 3	2	1	-	-	1	1	-	-	-	-	-	2	-	1	1
CO 4	2	1	-	-	1	1	-	-	-	-	-	2	-	1	1
CO 5	2	1	-	-	1	1	-	-	-	-	-	2	-	1	1

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P63	Renewable Sources of Energy	PE	3	0	0	3

- Objectives: The main learning objective of this course is to prepare the students
- To identify the sources available to mankind, in relation to available technologies.
- To discuss the human being's, need for energy.
- To Understand basic characteristics of renewable sources of energy and technologies for their utilization.
- To Apply the principle of energy conversion technologies of various renewable energy resources.
- To give effective review on utilization trends of renewable sources of energy.

UNIT-I	ENERGY SCENARIO													
Introduction	to energy - Present energy status - Global and Indian energy scenario - sector wise energy consump	tion												
in India – Er	in India – Energy needs of growing economy – Integrated energy policy – Energy intensity on purchasing power													
parity -Long	term energy scenario for India – Energy security - Potential of renewable energy – Economics of													
renewable en	nergy sources - Sustainability development - Global Environmental issues - Emission of carbon diox	ide –												
Review on n	ew technologies and future energy plans.													
UNIT-II	SOLAR ENERGY	9												

Solar radiation - Availability of solar energy - Solar radiation measurement - Solar thermal collectors - Flat plate and concentrating collectors - Basics of solar concentrators - Solar thermal power generation - Solar thermal energy storage - Solar thermal applications - Physics of solar cells - Cell types - Fundamentals of solar photo voltaic conversion - PV system configurations - System components: Battery, charge controller and inverter - Solar PV applications - Building Integrated Solar.

UNIT-III

WIND ENERGY Power in the wind-Wind data and energy estimation – Wind rose diagram - Betz limit - Site selection for windfarms -Types of wind mills - Horizontal axis wind turbine - Vertical axis wind turbine - components of wind mill - Wind turbine generators and its performance - Building Integrated Wind Energy - Environmental issues - Applications -Indian wind potential.

UNIT-IV	BIO-ENERGY	9
Bio resource	s - Biomass direct combustion - biochemical conversion-thermochemical conversion - mechanical	
conversion -	Biomass combustion and power generation- Biomass gasifier - Types of gasifiers - Cogeneration -	
Carbonizatio	on - Pyrolysis - Biogas plants - Digesters - Biodiesel production - Ethanol production - Waste to energy	gy
technologies	- Heat Pumps.	
UNIT-V	WATER AND OTHER RENEWABLE ENERGY RESOURCES	9

Technologies for harnessing Water energy - small hydro - Tidal energy - types of Tidal energy - Wave energy - Ocean Thermal Energy - Open and Closed OTEC – Geothermal energy – Types of Geothermal energy – Hydrogen energy technology - Fuel Cells - Types of fuel cell - Energy storage technology - Hybrid technology - Environmental impact assessment. 45

Total Contact Hours

9

Course Outcomes: Upon completion of this course, the students will be able to

- Describe the current energy scenario in terms of conventional renewable energy and future plan. •
- Define basic properties of different renewable sources of energy and technologies for their utilization •
- Describe main elements of technical systems designed for utilization of renewable source of energy. •
- Explain the correlation between different operational parameters. •
- Select Engineering approach to problem solving when implementing the projects to renewable sources of energy. •

Text Book(s):

- John Twidell, Tony Weir, and Anthony D. Weir, Renewable Energy Resources, Taylor & Francis, 2006. 1
- 2 G.D. Rai, "Non-Conventional Energy Sources", Standard Publishers Distributors, 1992.

Ref	feren	ce Book	s(s) / '	Web	links:											
1	N.K	. Bansa	l, Non	-Conv	ventic	nal E	nergy	Reso	ources	s, Vik	as Publ	ishing 1	House,	2014.		
2	God	lfrey Bo	yle, "I	Renev	vable	Energ	gy, Po	wer f	for a S	Sustai	nable F	uture",	Oxford	l University	Press, 2012.	
3	B.H	. Khan,	"Non-	-Conv	rentio	nal Ei	nergy	Reso	urces	", Mc	Graw I	Hill, 20	09.			
4		John A. Duffie and William A. Beckman (2006), Solar Engineering of Thermal Process, 3rd Edition, John Wiley & Sons.														
5	Gilbert M. Masters (2004), Renewable and Efficient Electric Power Systems, Wiley Interscience.															
6	Frank Kreith and D.Yogi Goswami (2007), Handbook of Energy Efficiency and Renewable Energy, CRC Press.															
]	90							PSO	
C	0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	3	-	-	1	-	2	1	1	-	-	-	2	-	1	1
,	2	3	-	-	1	1	1	1	1	-	-	-	2	-	1	1
	3	3	-	-	1	1	1	1	1	-	-	-	2	-	1	1
4	4	3	-	-	1	-	1	1	1	-	-	-	2	-	1	1
4	5	3	-	-	1	-	1	1	1	-	-	-	2	-	1	1

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	C
ME 19P64	INDUSTRY 4.0	PE	3	0	0	3

Objectives:

- To understand the basics, drivers and enablers of Industry 4.0 •
- To learn about the smartness in smart manufacturing factories, smart devices, smart cities and smart services. •
- To learn about the different enabling technologies and its role in establishing Industry 4.0 •
- To study different design principles of Industry 4.0 •
- To understand the impact of industry 4.0 on different sectors and challenges in implementing 4.0.

UNIT-I Introduction to Industry 4.0

Introduction to Industry 4.0- The Various Industrial Revolutions, Digitalisation and the Networked Economy, Drivers, Enablers, Comparison of Industry 4.0 Factory and Today's Factory, Trends of Industrial Big Data and Predictive Analytics for Smart Business Transformation.

UNIT-II Road to Industry 4.0

Internet of Things (IoT) & Industrial Internet of Things (IIoT) & Internet of Services, Big data, Value chains in Manufacturing companies, Smart factories, Smart Devices and Products, Smart Logistics, Smart Cities, smart services, Predictive Analytics, Case studies.

UNIT-III Technologies for enabling Industry 4.0

Cyber Physical Systems, Robotic Automation and Collaborative Robots, Support System for Industry 4.0, Mobile Computing, Cyber Security, Augmented / Virtual reality, Artificial Intelligence, System integration, digital twin, 3D printing, Case studies.

UNIT-IV Industry 4.0 Design principles

Introduction to Industry 4.0 design principles - Interoperability, Communication systems and standards for Industry 4.0 , virtualization, Decentralization, Modularity, real time capability, information transparency - Foundation of Industry 4.0 - Could Manufacturing and the connected factories.

UNIT-V Impact of Industry 4.0

Impact of Industry 4.0 on – service and business models, IT security, manufacturing, machine safety, product life cycle, socio economic factors, textile industries, healthcare industries, real estate industries, maritime industries, tourism industries - Compelling Forces and Challenges in implementing Industry 4.0. Case studies. 45

Total Contact Hours

0

10

8

9

Co	urse Outcomes: At the end of this course, students will have
	The basic knowledge on Industry 4.0, its drivers, enablers, and difference between Industry 4.0 factories with
•	today's factory.
•	An idea of IoT, IIoT, smart manufacturing factories, smart devices, smart cities and smart services.
	The basic understanding of different technologies enabling Industry 4.0 with some case studies.
•	
•	The awareness on different design principles could manufacture and connected factories.
	The ability to understand the impact of Industry 4.0 in different sectors including challenges in implementing
•	Industry 4.0.

Т	Text Books:									
1	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2016.									
2	Bruno S.Sergi, Elena G.popkova, et al. "Understanding Industry 4.0: AI, The internet of things, and the future of work", 2019, Emerald publishing limited.									
	work , 2017, Eliferate publishing inniced.									

Reference Books(s) / Web links: Kaushik kumar, DivyaZindani, J. Paulo Davim, "Digital manufacturing and assembly systems in Industry 4.0", CRC Press, Taylor and Francis group, 2020.

2	Antonio sartal, Diego Carou, J.PauloDavim, "Enabling technologies for the successful deployment of Industry
	4.0, CRC press, 2020.
-	

Alp Ustundag, Emrecavikcan, "Industry 4.0 : Managing the digital transformation", springer internation publishing, 2018.

4 <u>https://onlinecourses.nptel.ac.in/noc20_cs69/preview</u>

5 <u>https://www.udemy.com/course/intro-to-industry-4/</u>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	-	-	-	-	-	-	-	-	-	-	3	-	-	2
CO 2	2	-	-	-	2	-	-	-	-	-	-	3	1	-	2
CO 3	2	-	-	-	2	-	-	-	-	-	-	3	1	-	2
CO 4	2	-	2	-	2	-	-	-	-	-	-	3	1	-	2
CO 5	2	2	-	-	2	-	-	-	-	-	-	3	1	-	2

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Subject Code		Subject Name (Theory course)	Category	L	Т	Р	С					
N	IE19P65	ROBOTICS	PE	3	0	0	3					
Ob	jectives:											
•	To understand the fundamentals of robot anatomy, its classification and applications.											
•	To infer different types of robot drive system and end effectors.											
•	To understand the different types of sensors, image capturing and processing techniques being employed in robots nowadays.											
•	To learn the kinematics involved in the robots and the basics of programming languages.											
•	To understand the economy of implementing robots in the industry and their returns.											

UNIT-I FUNDAMENTALS OF ROBOT

History of robots, Classification of robots, Present status and future trends. Basic components of robotic system; Robot - Definition - Robot Anatomy - Coordinate Systems, Work Envelope Types and Classification- Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Parts and their Functions-Need for Robot-Robot Applications-Material handling, Machine loading and unloading, assembly, Inspection, Welding, Spray painting, Inspection.

UNIT-II ROBOT DRIVE SYSTEMS AND END EFFECTORS

Introduction-Types of actuators and Characteristics- Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT-III SENSORS AND MACHINE VISION

Requirements of a sensor, Principles and Applications of the following types of sensors-Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range Finders, Laser Range Meters, Touch Sensors, binary Sensors, Analog Sensors, Wrist Sensors, Robotic Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Image Data- Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications Inspection, Identification, Visual Serving and Navigation.

UNIT-IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

2D, 3D Transformation, Scaling, Rotation, Translation, Homogeneous coordinates, multiple transformation, Simple problems; Robot Kinematics-Forward Kinematics, Inverse Kinematics and Difference; Manipulator Kinematics-Forward Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Teach Pendant-Coordinate systems of Robot; Lead through Programming, Robot programming Languages-VAL Programming, RAPID Language and AML-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

12

13

UNIT-V	IMPLEMENTATION AND ROBOT ECONOMICS			5								
RGV-Model Logic, AGV-FMS Navigation, Types and applications; AGV/ASRS Integration- Implementation of Robots												
in Industries-Various Steps; Safety Considerations for Robot Operations; Safety aspects in robot work cell - Economic												
Analysis of	Analysis of Robots; Introduction of Mobile Robotics and Co-bots.											
		Total Contact Hours	:	45								
Course Out	Course Outcomes: On Successful completion of the course, students Will be able to											

CU	arse outcomes. On successful completion of the course, students will be able to
•	Explain the fundamentals of robots, robot anatomy, robot workspaces and classification and applications of robots
•	Learn the different drive systems to actuate the robot and its end effector.
•	Explain the different types of sensors used in robot, image processing techniques for gathering information from the image.
•	Explain the forward and reverse kinematics of simple robots with 2, 3 or 4 degrees of freedom, programming and performing simple operations using VAL.
٠	Explain the practical aspects behind implementing robots in industries and to perform economic analysis.

Text Books:											
1	Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering - An Integrated Approach", Prentice Hall,										
	2003.										
2	Groover M.P., "Industrial Robotics - Technology Programming and Applications", McGraw Hill, 2001.										

Ref	ference Books(s) / Web links:
1	Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
2	Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994.
3	Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.
4	Fu.K.S.,Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book
	Co., 1987.
5.	Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
6.	Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.
7.	Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co.
	Pvt. Ltd., 1991.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	1	1	-	1	2	-	-	1	1	1	1	1	-	-
CO 2	3	2	2	-	2	2	-	-	1	2	1	1	2	-	-
CO 3	3	1	2	1	2	2	-	-	1	2	1	1	2	-	-
CO 4	3	2	3	3	3	2	-	-	1	3	1	1	2	-	-
CO 5	3	1	1	1	1	2	-	-	1	1	3	1	1	-	-

1: Slight (Low) 2: Moderate (Medium)	3: Substantial (High)
--------------------------------------	-----------------------

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P66	COMPUTER AIDED DESIGN	PE	3	0	0	3

Ob	jectives: The main learning objective of this course is
•	To provide an overview of computer graphics architecture, object transformations, clipping and viewing.
٠	To impart knowledge on modeling of curves, surfaces, solid models using CSG and B-representation.
•	To provide an understanding of visual realism and rendering techniques.
•	To impart knowledge on how to assemble parts, analyze tolerance and calculate mass properties.

• To impart knowledge on CAD standards and data exchange standards. INTRODUCTION TO COMPUTER GRAPHICS FUNDAMENTALS UNIT-I Q Product cycle and CAD/CAM- Design process- sequential and concurrent engineering Output primitives (points, lines, curves etc.,), 2-D & 3-D transformation (Translation, scaling, rotators) windowing - view ports - clipping transformation. **CURVES AND SURFACES MODELLING** 9 UNIT-II Introduction to curves - Analytical curves: line, circle and conics - synthetic curves: Hermite cubic spline-Bezier curve and B-Spline curve – curve manipulations. Introduction to surfaces - Analytical surfaces: Plane surface, ruled surface, surface of revolution and tabulated cylinder - synthetic surfaces: Hermite, bi-cubic surface- Bezier surface and B-Spline surface- surface manipulations. UNIT-III NURBS AND SOLID MODELING 9 NURBS- Basics- curves, lines, arcs, circle and bi linear surface. Regularized Boolean set operations - primitive instancing - sweep representations - boundary representations - Constructive solid Geometry - comparison of representations - user interface for solid modeling. UNIT-IV VISUAL REALISM 9 Hidden – Line – Surface – solid removal algorithms shading – coloring. Introduction to parametric and variational geometry based software's and their principles creation of prismatic and lofted parts using these packages. ASSEMBLY OF PARTS AND PRODUCT DATA EXCHANGE UNIT-V Assembly modeling - interferences of positions and orientation - tolerances analysis - mass property calculations - mechanism simulation. Graphics and computing standards- Open GL Data Exchange standards - IGES, STEP etc-Communication standards. **Total Contact Hours** 45 • Course Outcomes: On successful completion of the course, the student will be able to Demonstrate the fundamentals of computer graphics architecture, object transformations, clipping and viewing. • Model curves and surfaces, using surface modelling techniques. • Model curves, surfaces, solid models using NURBS and solid modelling techniques. • Apply the knowledge of hidden line algorithms, colouring and shading techniques. • Apply the knowledge of assembly modelling, tolerance analysis and CAD standards.

Text Books:

- 1 Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill Publishing Co.2007.
- 2 Donald Hearn and M. Pauline Baker. "Computer Graphics", Prentice Hall, Inc., 2012.

Ref	ference Books(s) / Web links:
1	William M Neumann and Robert F.Sproull. "Principles of Computer Graphics", Mc Graw Hill Book
	Co. Singapore, 2001.
2	Rao PN, "CAD / CAM Principles and Applications "- Mc Graw Hill Publisher, 2017
3	Ibrahim Zeid and Subramanian R, CAD/CAMTheory and Practice - McGraw Hill, International
	Edition, 2009

CO - PO - PSO matrices of course

PO/PSO CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	1	1	-	3	-	-	-	2	2	-	2	1	-	2
CO 2	3	1	1	-	3	-	-	-	2	2	-	2	1	-	2
CO 3	3	1	1	-	3	-	-	-	2	2	-	2	1	-	2
CO 4	3	1	1	-	3	-	-	-	2	2	-	2	1	-	2
CO 5	3	1	1	-	3	-	-	-	2	2	-	2	1	-	2

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P67	INDUSTRIAL SAFETY	PE	3	0	0	3

Objec	Objectives:						
	To understand the Fundamental concept and Principle of Industrial Safety						
	To apply the principle of Maintenance Engineering						
	To Study about various types of wear and methods to reduce it.						
	To know about various fault-finding methods of machine tools						
	To understand about preventive and periodic maintenance methods.						

UNIT-I	Industrial Safety	10
Accident, causes,	, types, results and control, mechanical and electrical hazards, types, causes an	d preventive
steps/procedure, d	lescribe salient points of factories act 1948 for health and safety, wash rooms, drinking v	water layouts,
light, cleanliness,	, fire, guarding, pressure vessels, etc., Safety colour codes. Fire prevention and	firefighting,
equipment and me	ethods.	
UNIT-II	Physical and Chemical Hazards	11
Noise, compensa	tion aspects, noise exposure regulation, properties of sound, occupational damage, risk	factors, sound
measuring instrum	nents. Prevention and control of noise. Recognition of chemical hazards-dust, fumes, r	nist, vapour, fo
gases, types, conc	entration, Exposure vs. Dose, TLV - Methods of Evaluation, process or operation desc	cription, Field
Survey, Sampling	methodology, Industrial Hygiene calculations, Comparison with OSHAS Standard.	
UNIT-III	ENVIRONMENTAL CONTROL	8
Industrial Health	Hazards - Environmental Control - Industrial Noise - Noise measuring instrument	s, Control of
Noise, Vibration,	- Personal Protection.	
UNIT-IV	HAZARD ANALYSIS	8
System Safety An	nalysis – Techniques – Fault Tree Analysis (FTA), Failure Modes and Effects Analy	vsis (FMEA),
HAZOP analysis	and Risk Assessment.	
UNIT -V	SAFETY REGULATIONS	8
Explosions – Dis	aster management - catastrophe control, hazard control ,Safety education and trainin	ng - Factories
Act, Safety regula	tions Product safety – case studies.	
	Total conta	of Hommen 45

Total contact Hours: 45

Course O	Course Outcomes: At the end of this course, the student can							
•	Explain the fundamental concept and principles of industrial safety							
•	Apply the principle of Maintenance engineering							
•	Able to understand the types of wear and methods to reduce it.							
•	Able to find various faults in machine tools							
•	Able to apply periodic maintenance for various equipment's.							

Text Books:

1. John V.Grimaldi, "Safety Management", AITB S Publishers, 2003

Reference/Websites:

1. Charles D. Reese, Occupational Health and Safety Management: A Practical Approach, CRC Press, 2003.

2. L M Deshmukh, Industrial Safety Management, Tata McGraw-Hill Education, 2005.

3. J Maiti, Pradip Kumar Ray, Industrial Safety Management: 21st Century Perspectives of Asia, Springer, 2017.

4. David L.Goetsch, "Occupational Safety and Health for Technologists", 5th Edition, Engineers and managers,

Pearson Education Ltd., 2005.of Asia, Springer, 20175.

5. https://nptel.ac.in/courses/110/105/110105094/

	РО								PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO 2	1	-	1	-	-	-	-	-	-	-	-	-	-	-	1
CO 3	1	-	1	-	-	-	-	-	-	-	-	-	-	-	1
CO 4	1	-	1	-	-	-	-	-	-	-	-	-	-	-	1
CO 5	1	-	1	-	-	-	-	-	-	-	-	-	-	-	1

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P68	Geometric Dimensioning and Tolerancing	PE	3	0	0	3

Objectives:

Object	LIVES.						
•	Recognize the key GD&T terminology and comprehend the applied meaning of each						
•	Identify the engineering drawing symbols most closely associated with GD&T						
•	Differentiate between datums, datum features, and the parts of datum systems						
•	Understand various forms and orientation						
•	Understand various tolerances and its application						

UNIT-I INTRODUCTION

Dimensioning and Tolerancing - Dimensioning Units - Fundamental Dimensioning Rules Tolerancing Fundamentals - Maximum Material Condition (MMC) - Least Material Condition (LMC), Basics of Fits, Dimensioning, Rules and Concepts of GD&T

UNIT-II Datum Control

Datums - Datum Feature Symbol - Datum Feature - The Datum Reference Frame Concept - Datum Target Symbols - Partial Datum Surface - Coplanar Surface Datums – Datum Axis - Movable Datum Target Symbols and Datum Target Points - Movable Datum Target Symbols and Datum Target Spheres. Datum Center Plane - The Center of a Pattern of Features as the Datum Axis .

UNIT-III Form and Orientation Control

Introduction - Straightness, Flatness, Circularity, Free State Variation, Cylindricity Tolerance , Applying Form Control to a Datum Feature . Orientation Tolerances - Parallelism Tolerance - Perpendicularity Tolerance, Angularity Tolerance.

Positional Tolerance - Locating Multiple Features - Positional Tolerancing of Coaxial Features - Positional Tolerancing of Nonparallel Holes - Locating Slotted Features -Positional Tolerancing of Spherical Features. Fasteners - Projected Tolerance Zone - Virtual Condition - Concentricity Tolerance - Positional Tolerancing for Coaxiality - Symmetry-Composite.

UNIT-V Profile and Runout Tolerance

Non-Uniform Profile Tolerance Zone - Specifying Basic Dimensions in a Note - Combination of Geometric Tolerances. Runout Tolerances - Combination of Geometric Tolerances Specifying Independency.

Total Contact Hours :

0

9

Cou	Course Outcomes: Upon completion of the course students should be able to:					
•	Read and understand basic GDT symbols on a print.					
•	Explain basic GDT concepts.					
•	Identify minimum and maximum material conditions.					
•	Measure and verify position tolerances with applied material conditions					
•	Set up and use basic rectangular datum reference frames.					

Te	Text Books:						
1	Dimensioning and Tolerancing, Engineering Product Definition and Related Documentation Practices, ASME						
	Y14.5-2018,2019.						
2	N D Bhatt and VM Panchal, Machine Drawing, Charotar Publishing, 2014.						

	Ref	erence B	ooks(s)	/Web	links:										
	1						Geome	etric Dir	nension	ing and T	Foleranci	ng, 9 th E	dition, Th	ne Goodh	eart-
		Wilcox Company Inc, USA,2013. Hoda A. ElMaraghy. Geometric Design Tolerancing: Theories, Standards and Applications. 2nd edition.													
	2			•••	Geomet	tric Desi	gn Tol	erancin	ig: The	ories, St	andards	and Ap	plication	s. 2nd e	dition.
		Springe													
	3	Henzol	d. G. G	leometi	rical Dir	nension	ing and	l Tolera	ancing	for Desi	lgn, Mai	nufactur	ing and I	inspectio	on. 2^{nd}
		edition,													
	4	P.S.Gill	Geome	tric Din	nensionii	ng and Te	oleranci	ing, S K	Kataria	and Sor	ns, 2009.				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	-	1	-	-	-	-	-	-	-	2	1	-	2
CO 2	2	1	-	1	-	-	-	-	-	-	-	2	1	-	2
CO 3	2	1	-	1	-	-	-	-	-	-	-	2	-	-	2
CO 4	2	1	-	1	-	-	-	-	-	-	-	2	-	-	2
CO 5	2	1	-	1	-	-	-	-	-	-	-	2	1	-	2

SEMESTER VII ELECTIVE II

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P71	Material Testing and Characterization	PE	3	0	0	3

Ob	jectives:
•	To understand and gain knowledge in Crystal structure, techniques in microstructure evaluation of materials
•	To enhance the knowledge in analysis of microstructure and surface topography of materials through various tools
•	To learn and understand the techniques of chemical and thermal analysis of materials.
•	To learn and impart knowledge in various static mechanical testing methods.
•	To learn and impart knowledge in various dynamic mechanical testing methods.

UNIT-I MICRO AND CRYSTAL STRUCTURE ANALYSIS 9 Principles of Optical Microscopy - Specimen Preparation Techniques - Polishing and Etching - polarization Techniques - Quantitative Metallography - Estimation of grain size - ASTM grain size numbers - Microstructure of Engineering Materials - Elements of Crystallography – X- ray Diffraction – Bragg 's law – Techniques of X-ray Crystallography – Debye - Scherer camera - Geiger Diffractometer - analysis of Diffraction patterns - Inter planer spacing - Identification of Crystal Structure. UNIT-II ELECTRON MICROSCOPY 9 Interaction of Electron Beam with Materials - Transmission Electron Microscopy - Specimen Preparation - Imaging Techniques - BF and DF - SAD - Electron Probe Microanalysis - Scanning Electron Microscopy - Construction and working of SEM - Back scattered and Secondary Electron Imaging Techniques - Applications- Atomic Force Microscopy- Construction and working of AFM - Contact and Non-Contact modes Applications. UNIT-III CHEMICAL AND THERMAL ANALYSIS 9 Basic Principles, Practice and Applications of X-Ray Spectrometry, Energy dispersive and Wave Dispersive X-Ray Spectrometry, Auger Spectroscopy, Secondary Ion Mass Spectroscopy, Differential Scanning Calorimetry (DSC) And Thermo Gravity Metric Analysis (TGA) - Dynamic Mechanical Analysis (DMA) UNIT-IV MECHANICAL TESTING – STATIC TESTS 9 Hardness - Brinell, Vickers, Rockwell and Micro Hardness Test, Rebound hardness and Indentation - Tensile Test -Stress - Strain plot - Proof Stress - Torsion Test - Ductility Measurement - Impact Test - Charpy and Izod - DWTT -Fracture Toughness Test UNIT-V **MECHANICAL TESTING – DYNAMIC TESTS** 9 Fatigue - Low and High Cycle Fatigues - Rotating Beam and Plate Bending HCF tests - S-N curve - LCF tests - Crack Growth studies - Creep Tests - LM parameters - Applications of Dynamic Tests - Fatigue life estimation. **Total Contact Hours** 45

Co	urse Outcomes: On completion of this course, the students will be able to
•	To Study the basics about crystal structure analysis using optical microscope and characterize the engineering materials.
•	To analyze the microstructure of a material using electron microscope and other characterization tools
•	To determine the chemical and thermal property of a given material.
•	To predict the mechanical characteristics of a material using static test
•	To determine the dynamic mechanical characteristics of a material
Tex	xt Book:
1	Angelo P C, Material characterization, Cengage Learning India, 2016.
2	Dieter, George E., "Engineering Design - A Materials and Processing Approach", McGraw Hill, International
	Editions, Singapore, 2000.

Ref	Reference Books(s) / Web links:						
1	Cullity B.D., Stock S.R and Stock S., Elements of X ray Diffraction, 3rdEdition. Prentice Hall, 2018.						
2	Skoog, Holler and Nieman, Principles of Instrumental Analysis, 7thedition, Cengage Learning, 2017.						
3	Suryanarayana A. V. K., Testing of metallic materialism's publications, 2007.						
4.	Suryanarayana C, Experimental Techniques in materials and Mechanics, CRC Press, 2011.						
5.	Yang Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, Hong Kong						
	University of Science and Technology, John Wiley and Sons (Asia) Pte Ltd., 2 nd Edition, 2013.						
6.	https://nptel.ac.in/courses/113106034/						
7.	https://nptel.ac.in/courses/115/103/115103030/						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	-	-	1	-	-	-	-	-	-	-	1	-	-	1
CO 2	1	-	-	1	-	-	-	-	-	-	-	1	-	-	1
CO 3	1	-	-	1	-	-	-	-	-	-	-	1	-	-	1
CO 4	1	-	-	1	-	-	-	-	-	-	-	1	-	-	1
CO 5	1	-	-	1	-	-	-	-	-	-	-	1	-	-	1

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P72	ADDITIVE MANUFACTURING	PE	3	0	0	3

Objectives:

- To familiarize the development of Additive Manufacturing, various business opportunities and applications.
- To understand various software tools, techniques and file formats to create 3D models that helps in product development / prototyping requirements using AM.
- To be familiar with Liquid and Solid based AM processes.
- To be familiar with Powder and Wax based processes.
- To understand the use of Bio Additive manufacturing and 4D printing.

UNIT-I INTRODUCTION

Need, Fundamentals of Additive and digital Manufacturing, Advantages and Applications, Comparison of Additive Manufacturing with traditional Manufacturing, Additive Manufacturing (AM) process chain: 3D model, converting into STL file, transfer to system, checking, machine setup and building, Post process. Classification of AM process. Materials used in Additive Manufacturing Processes, Need for AM in product development and rapid tooling.

UNIT-II REVERSE ENGINEERING AND DESIGN FOR ADDITIVE MANUFACTURING (DFAM) 9

Introduction to Reverse Engineering: Applications, Steps in reverse Engineering. Design for additive manufacturing: CAD model preparation, Part orientation and support generation and removal, Model slicing and software's – Tool path generation. File formats in AM. Data Processing and Controllers.

UNIT-III | LIQUID AND SOLID BASED ADDITIVE MANUFACTRING PROCESSES

Guidelines for process selection, Liquid based AM process - Stereo lithography apparatus, Polyjet printing, Digital Light Processing - Principle, Process, Machine parameters, Process parameters, Materials used, Strength and weakness, Applications, Case studies. Solid Based AM process - Fused Deposition Modeling (FDM), Solid Ground Curing (SGC), Laminated Object Manufacturing (LOM) - Principle, Process, Machine parameters, Process parameters, Materials used, Strength and weakness, Applications, Case studies.

UNIT-IVPOWDER BASED AND OTHER ADDITIVE MANUFACTRING PROCESSES9Selective Laser Sintering (SLS), Selective Laser Melting (SLM) and Electron Beam Melting (EBM), Laser Engineered

Selective Laser Sintering (SLS), Selective Laser Melting (SLM) and Electron Beam Melting (EBM), Laser Engineered Net Shaping (LENS): Principle, Process, Machine parameters, Process parameters, Materials used, Strength and weakness, Applications, Case studies. Wax printing– Principle, Process, materials used and applications.

9

UNIT-V BIO ADDITIVE MANUFACTURING AND 4D PRINTING	9			
Bio-Additive Manufacturing, Computer Aided Tissue Engineering (CATE) -	Processing Steps and Case Studies.			
Customized Implants and Prosthesis, Materials used in bio printing and limitations. Design and Production of Medical				
devices. Sustainability in AM processes - Introduction to 4D printing and Smar	materials used.			
	Total Contact Hours : 45			

Co	urse Outcomes: At the end of this course, students can have the
•	Ability to explain the development of AM technology and how AM technology propagated into various businesses and developing opportunities.
•	Ability to explain Liquid and Solid based AM processes.
•	Ability to explain Powder and Wax based processes.
•	Ability to evaluate the advantages, limitations, applications and use of Bio Additive manufacturing and 4D printing.

Text Books: 1 Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015. 2 Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United States, 2015.

Ref	ference Books(s) / Web links:
1	Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015.
2	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser
	Gardner Publication, Cincinnati., Ohio, 2011
3	Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States, 2006.
4	Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype
	development", CRC Press., United States, 2011.
5.	Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead
	Publishing., United Kingdom, 2016.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	2	-	-	-	-	1	-	-	-	-	2	-	-	2
CO 2	1	2	2	-	-	-	1	-	I	-	-	2	2	-	2
CO 3	1	2	-	-	-	-	1	-	-	-	-	2	2	-	2
CO 4	1	2	-	-	-	-	1	-	-	-	-	2	2	-	2
CO 5	1	2	-	-	_	-	1	-	-	-	-	2	2	_	2

Subject Code	e Subject Name (Theory course)	Category	L	Т	P (
ME 19P73	INTRODUCTION TO POWER PLANT ENGINEERING	PE	3	0	0 3								
		•											
Objectives: T	The main learning objective of this course is to prepare the students												
To understand the working of various components, operations and maintenance of Steam power plants													
To know the various open and closed cycles and working of diesel and gas turbine power plants													
• To understand the working of various types of nuclear power plant and its safety issue													
• To under	stand the construction and working of various types of renewable power plant	S											
 To gain knowledge about energy, economic and environmental issues of power plants 													
UNIT-I	INTRODUCTION & COAL BASED THERMAL POWER PLANTS				10								
	Features - Components and layouts-Rankine cycle- Reheat and Regenerative												
coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thern													
		laic, Subsysici	ins of	i une	/inai								
power plants -	- Fuel and ash handling, Draught system, Feed water treatment.												
power plants - UNIT-II	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS 	-			9								
power plants - UNIT-II	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and 	-			9								
power plants - UNIT-II I Otto, Diesel, I Combined Cy	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. 	-			9 lants.								
power plants - UNIT-II 1 Otto, Diesel, I Combined Cy- UNIT-III 1	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS 	Gas Turbine	powe	er pl	9 lants. 9								
power plants - UNIT-II 1 Otto, Diesel, I Combined Cy. UNIT-III 1 Basics of Nucl	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of 	Gas Turbine	powe	er pl	9 lants. 9 oiling								
power plants - UNIT-II 1 Otto, Diesel, I Combined Cy UNIT-III 1 Basics of Nucl Water Reactor	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium responses 	Gas Turbine	powe	er pl	9 lants. 9 oiling								
power plants - UNIT-II 1 Otto, Diesel, I Combined Cy UNIT-III 1 Basics of Nucl Water Reactor Gas Cooled ar	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rend Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. 	Gas Turbine	powe	er pl	9 lants. 9 oiling eeder								
power plants - UNIT-II 1 Otto, Diesel, I Combined Cy- UNIT-III 1 Basics of Nucl Water Reactor Gas Cooled ar UNIT-IV 1	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rend Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. POWER FROM RENEWABLE ENERGY 	Gas Turbine Nuclear Reac eactor (CANE	powe etors DU),	er pl : Bo Bre	9 lants 9 oiling eeder 9								
power plants - UNIT-II 1 Otto, Diesel, I Combined Cy- UNIT-III 1 Basics of Nucl Water Reactor Gas Cooled ar UNIT-IV 1	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rend Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. 	Gas Turbine Nuclear Reac eactor (CANE	powe etors DU),	er pl : Bo Bre	9 lants. 9 oiling eeder								
power plants - UNIT-II Otto, Diesel, I Combined Cy UNIT-III Basics of Nucl Water Reactor Gas Cooled ar UNIT-IV J Hydro Electric	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rend Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. POWER FROM RENEWABLE ENERGY 	Gas Turbine Nuclear Reac eactor (CANE	powe ctors DU), nes. F	er pl : Bo Bre Princ	9 lants 9 oiling eeder 9 ciple								
power plants - UNIT-II Otto, Diesel, I Combined Cy UNIT-III Basics of Nucl Water Reactor Gas Cooled ar UNIT-IV J Hydro Electric	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rend Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. POWER FROM RENEWABLE ENERGY c Power Plants – Classification, Typical Layout and associated components incand working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo 	Gas Turbine Nuclear Reac eactor (CANE	powe ctors DU), nes. F	er pl : Bo Bre Princ	9 lants 9 oiling eeder 9 ciple								
power plants - UNIT-II Otto, Diesel, I Combined Cy. UNIT-III Basics of Nucl Water Reactor Gas Cooled ar UNIT-IV Hydro Electric Construction a Cell power system	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rend Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. POWER FROM RENEWABLE ENERGY c Power Plants – Classification, Typical Layout and associated components incand working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo 	Gas Turbine Nuclear Reac eactor (CANE cluding Turbin Thermal, Bio	powe ctors DU), nes. F	er pl : Bo Bre Princ	9 lants. 9 oiling eeder, 9 ciple,								
power plantsUNIT-IIIOtto, Diesel, ICombined CyUNIT-IIIIBasics of NuclWater ReactorGas Cooled arUNIT-IVIHydro ElectricConstruction aCell power sysUNIT-VIPower tariff t	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rand Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. POWER FROM RENEWABLE ENERGY c Power Plants – Classification, Typical Layout and associated components incomo working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo stems. ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER 	Gas Turbine Nuclear Reac eactor (CANE cluding Turbin Thermal, Bic R PLANTS criteria, relat	powe ctors DU), nes. F ogas	er pl : Bo Bre Princ and meri	9 lants. 9 oiling eeder, 9 ciple, Fuel 8 its &								
power plants - UNIT-II Otto, Diesel, I Combined Cy UNIT-III Basics of Nucl Water Reactor Gas Cooled ar UNIT-IV Hydro Electric Construction a Cell power sys UNIT-V Power tariff t demerits, Cap	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rand Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. POWER FROM RENEWABLE ENERGY c Power Plants – Classification, Typical Layout and associated components incland working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo stems. ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER ypes, Load distribution parameters, load curve, Comparison of site selection ital & Operating Cost of different power plants. Pollution control technologies 	Gas Turbine Nuclear Reac eactor (CANE cluding Turbin Thermal, Bic R PLANTS criteria, relat	powe ctors DU), nes. F ogas	er pl : Bo Bre Princ and meri	9 lants. 9 oiling eeder, 9 ciple, Fuel 8 its &								
power plants - UNIT-II Otto, Diesel, I Combined Cy UNIT-III Basics of Nucl Water Reactor Gas Cooled ar UNIT-IV Hydro Electric Construction a Cell power sys UNIT-V Power tariff t demerits, Cap	 Fuel and ash handling, Draught system, Feed water treatment. DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS Dual & Brayton Cycle – Analysis & Optimisation. Components of Diesel and cle Power Plants. Integrated Gasifier based Combined Cycle systems. NUCLEAR POWER PLANTS lear Engineering, Layout and subsystems of Nuclear Power Plants, Working of r (BWR), Pressurized Water Reactor (PWR), Canada Deuterium-Uranium rend Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants. POWER FROM RENEWABLE ENERGY c Power Plants – Classification, Typical Layout and associated components incand working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo stems. ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER ypes, Load distribution parameters, load curve, Comparison of site selection ital & Operating Cost of different power plants. Pollution control technologies oal and Nuclear Power Plants. 	Gas Turbine Nuclear Reac eactor (CANE cluding Turbin Thermal, Bic R PLANTS criteria, relat	powe ctors DU), ees. F ogas tive 1 aste	er pl : Bo Bre Princ and meri	9 lants. 9 oiling eeder, 9 ciple, Fuel 8 its &								

Со	urse Outcomes: On successful completion of this course, students will be able to
٠	Describe the working of various components, operations and maintenance of Steam power plants.
	Analyse various open and closed cycles relating to diesel and gas turbine power plants & working of this power
•	plants.
•	Explain the working of various types of nuclear power plants and its safety issue.
٠	Describe the construction and working of various types of renewable power plants.
•	Explain about energy, economic and environmental issues of power plants.

Text Book (s):

 1
 P. K. Nag, (2001), Power Plant Engineering: Steam and Nuclear, Tata McGraw-Hill Publishing Company Ltd., Second Edition.

Ref	ference Books(s) / Web links:
1	El-Wakil. M.M., "Power Plant Technology", Tata McGraw – Hill Publishing Company Ltd., 2010.
2	Black & Veatch, Springer, "Power Plant Engineering", 1996.
3	Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard
3	Handbook of McGraw – Hill, 1998
4	Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open
4	University, 2004

<u> </u>					PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3
1	3	2	2	-	1	1	1	-	-	1	-	2		2	3	3
2	3	2	3	-	2	2	2	-	-	1	-	3		2	3	3
3	3	2	2	-	1	2	1	-	-	1	-	3		2	3	3
4	3	2	2	-	1	1	2	-	-	1	-	3		2	3	3
5	3	2	2	-	1	2	3	-	-	1	-	3		3	3	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	P	С
GE19P71	Principles of Management	PE	3	0	0	3

Objectives:

- To understand the evolution and basic concepts of management and its theories.
- To understand how the managerial tasks of planning can be executed.
- To understand how the managerial tasks of organizing can be executed.
- To understand how the managerial tasks of directing can be executed.
- To understand how the managerial tasks of controlling can be executed.

UNIT-I	INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS	9									
Definition of	Definition of management -science or art - Manager Vs Entrepreneur- types of managers - managerial roles and skills -										
Evolution of management -Scientific, human relations, system and contingency approaches- Types of business											
organization- Sole proprietorship, partnership, company-public and private sector enterprises- Organization culture and											
environment – Current trends and issues in management.											
UNIT-II	PLANNING	9									
Nature and	purpose of planning - Planning process - Types of planning - Objectives - Setting objectives - Pol	icies -									
Planning pro	emises - Strategic Management - Planning Tools and Techniques - Decision making steps and proces	s.									
UNIT-III	ORGANISING	9									
	burpose - Formal and informal organization - Organization chart – Organization structure - Types - Lin ty - Departmentalization - delegation of authority -Centralization and decentralization - Job design - H										
	magement – HR planning, recruitment, selection, training and development, performance Manage										
	ing and management.	,									
UNIT-IV	DIRECTING	9									
Foundations	of individual and group behavior - Motivation - Motivation theories - Motivational techniques	- Job									
satisfaction	- Job enrichment - Leadership - types and theories of leadership- Communication - Proce	ess of									
communicat	tion - Barriers in communication – Effective communication - Communication and IT.										
UNIT-V	CONTROLLING & INTERNATIONAL MANAGEMENT	9									
System and	process of controlling - Budgetary and non - Budgetary control techniques - Use of computers and	IT in									
managemen	t control - Productivity problems and management - Control and performance - Direct and prev	entive									
control - R	eporting. International management - stages of internationalism - the multinational company - rea	sons -									
modes of fo	modes of foreign investment - problems faced by international managers - management functions in international										

operations.

Total Contact Hours:45

Course Outcomes: At the end of this course, students can have the									
•	Ability to understand the basic concepts of management and its theories.								
•	Ability to understand the management concept of planning.								
•	Ability to understand the management concept of organizing.								
•	Ability to understand the management concept of directing.								
•	Ability to understand the management concept of controlling and international management.								

Tex	xt Books:
1	Harold Koontz and Heinz Weihrich "Essentials of Management", Tata McGraw Hill, 1998.
2	Stephen P. Robbins and Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009.

Re	Reference Books(s):										
1	Robert Kreitner and Mamata Mohapatra, "Management", Biztantra, 2008.										
2	Stephen A. Robbins, David A. Decenzo and Mary Coulter, "Fundamentals of Management", Pearson Education,										
	7th Edition, 2011.										
3	Tripathy PC and Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	-	-	-	-	1	-	2	3	2	1	1	-	-	2
CO 2	1	-	-	-	-	1	-	2	3	2	1	1	-	-	2
CO 3	1	-	-	-	-	1	-	2	3	2	1	1	-	-	2
CO 4	1	-	-	-	-	1	-	2	3	2	1	1	-	-	2
CO 5	1	-	-	-	-	1	-	2	3	2	1	1	-	-	2

SEMESTER-VII ELECTIVE III

Su	bject Code	Subject Name (Theory course)	Category	L	Т	P C		
N	ME19P74	HYDRAULICS AND PNEUMATICS	PE	3	0	03		
Ob	ojectives:							
1		and the basics of fluid power system and its applications.						
2	To know al	bout the knowledge of the Hydraulic systems and its components.						
3	To know a	bout the Hydraulic circuits and Hydro static transmission.						
4		and the basic concepts of pneumatic system and its logic circuits.						
5	To understa	and the design of Hydraulic and pneumatic circuits with causes of trouble sho	ooting/remedi	es				
UN	NIT-I FI	LUID POWER PRINCIPLES AND HYDRAULIC SYSTEMS (ACTUA	TOR-PUMP	5)		7		
		Fluid power- Advantages and Applications- Fluid power systems – Types of		<i>.</i>	of	-		
		ulics – Pascal's Law- Principles of flow – Work, Power and Torque. Propertie						
		raulic power: Pumping Theory – Pump Classification- Construction, Worl						
		Performance, Selection criterion of Linear, Rotary-Fixed and Variable displa				0		
TIN								
Hy Co	draulic Actu mponents: D	ators: Cylinders – Types and construction, Hydraulic motors -Types a pirection control, Flow control and Pressure control valves-Types, Const	truction and	0	pera	ation-		
Hy Co Ap Cla	draulic Actu omponents: D oplications – assification ar	ators: Cylinders - Types and construction, Hydraulic motors -Types a	truction and	0	pera	ontrol ation-		
Hy Co Ap Cla UN Ind Sec	vdraulic Actu omponents: D oplications – assification ar NTT-III H dustrial hydra quence, Rec	ators: Cylinders – Types and construction, Hydraulic motors -Types a birection control, Flow control and Pressure control valves-Types, Const - Types of actuations. Accessories: Reservoirs, Accumulators, Inten ad functions- Applications- Fluid Power ANSI Symbol. YDRAULIC CIRCUITS AND HYDRO STATIC TRANSMISSION aulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure In piprocation, Synchronization, Fail-safe, Speed control, Hydrostatic tr	truction and sifiers, Pressu tensifier, Air	O ire S - ov	opera Swit	ontrol ation- tches- 9 oil,		
Hy Co Ap Cla UN Ind Sec app	vdraulic Actu omponents: D oplications – assification ar NIT-III H lustrial hydra quence, Rec plication circu	ators: Cylinders – Types and construction, Hydraulic motors -Types a birection control, Flow control and Pressure control valves-Types, Const - Types of actuations. Accessories: Reservoirs, Accumulators, Inten ad functions- Applications- Fluid Power ANSI Symbol. YDRAULIC CIRCUITS AND HYDRO STATIC TRANSMISSION aulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure In tiprocation, Synchronization, Fail-safe, Speed control, Hydrostatic tr uits, Electro hydraulic circuits, Mechanical Hydraulic servo systems	truction and sifiers, Pressu tensifier, Air	O ire S - ov	pera Swit	ontrol ation- tches- 9 oil,		
Hy Co Ap Cla UN Ind Sec app UN Co	rdraulic Actu omponents: D oplications – assification ar NIT-III H dustrial hydra quence, Rec plication circu NIT-IV P ompressors- F	ators: Cylinders – Types and construction, Hydraulic motors -Types a birection control, Flow control and Pressure control valves-Types, Const - Types of actuations. Accessories: Reservoirs, Accumulators, Inten ad functions- Applications- Fluid Power ANSI Symbol. YDRAULIC CIRCUITS AND HYDRO STATIC TRANSMISSION aulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure In tiprocation, Synchronization, Fail-safe, Speed control, Hydrostatic tr aits, Electro hydraulic circuits, Mechanical Hydraulic servo systems NEUMATIC SYSTEM ilter, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust va	truction and sifiers, Pressu ttensifier, Air ansmission, A	O ure S - ov Accu	ypera Swit Ver Imul	ontrol ation- tches- 9 oil, lators 8		
Hy Co Cla UN Ind Sec app UN Co Ser	vdraulic Actu opponents: D oplications - assification ar NIT-III H dustrial hydra quence, Rec plication circu NIT-IV P ompressors- F rvo systems.	ators: Cylinders – Types and construction, Hydraulic motors -Types a birection control, Flow control and Pressure control valves-Types, Const - Types of actuations. Accessories: Reservoirs, Accumulators, Inten ad functions- Applications- Fluid Power ANSI Symbol. YDRAULIC CIRCUITS AND HYDRO STATIC TRANSMISSION aulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure In triprocation, Synchronization, Fail-safe, Speed control, Hydrostatic tr atts, Electro hydraulic circuits, Mechanical Hydraulic servo systems NEUMATIC SYSTEM Filter, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust va Introduction to Fluidics, Pneumatic logic circuits.	truction and sifiers, Pressu ttensifier, Air ansmission, A	O ure S - ov Accu	ypera Swit Ver Imul	ontrol ation- tches- 9 oil, lators 8 ators,		
Hy Co Ap Cla UN Ind Sec app UN Co Ser UN	vdraulic Actu opponents: D oplications - assification ar NIT-III H dustrial hydra quence, Rec plication circu NIT-IV P ompressors- F rvo systems. NIT-V D	ators: Cylinders – Types and construction, Hydraulic motors -Types a birection control, Flow control and Pressure control valves-Types, Const - Types of actuations. Accessories: Reservoirs, Accumulators, Inten ad functions- Applications- Fluid Power ANSI Symbol. YDRAULIC CIRCUITS AND HYDRO STATIC TRANSMISSION aulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure In triprocation, Synchronization, Fail-safe, Speed control, Hydrostatic tr nits, Electro hydraulic circuits, Mechanical Hydraulic servo systems NEUMATIC SYSTEM ilter, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust va Introduction to Fluidics, Pneumatic logic circuits. ESIGN OF HYDRALIC AND PNEUMATIC CIRCUITS	truction and sifiers, Pressu tensifier, Air ransmission, A	O ure S - ov Accu	yer Ver Imul	ontrol ation- tches- 9 oil, lators 8 ators, 12		
Hyy Co. App Cla Sec app UN Co Ser UN De Sel cass ma	vdraulicActuopplications-assificationanNT-IIIHdustrialhydraquence,RecplicationcircuNT-IVPompressors-Frvosystems.NT-VDssignofcirculection, fault fscademethoduintenanceof	ators: Cylinders – Types and construction, Hydraulic motors -Types a birection control, Flow control and Pressure control valves-Types, Const - Types of actuations. Accessories: Reservoirs, Accumulators, Inten ad functions- Applications- Fluid Power ANSI Symbol. YDRAULIC CIRCUITS AND HYDRO STATIC TRANSMISSION aulic circuits- Regenerative, Pump Unloading, Double-pump, Pressure In triprocation, Synchronization, Fail-safe, Speed control, Hydrostatic tr atts, Electro hydraulic circuits, Mechanical Hydraulic servo systems NEUMATIC SYSTEM filter, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust va Introduction to Fluidics, Pneumatic logic circuits. ESIGN OF HYDRALIC AND PNEUMATIC CIRCUITS fits using the components of hydraulic system for Drilling, Planning, Sh- finding and maintenance of hydraulic components- Sequential circuit design for , Electro pneumatic circuits. Selection criteria of pneumatic components – In pneumatic components. Microprocessor and PLC- Applications in Hydraulic (ydraulic and Pneumatic power packs	truction and sifiers, Pressu itensifier, Air ansmission, A lives, Pneuma aping, Punch or simple app istallation fau	Ourre S - ov Accu ttic a licat ft fir ics-]	Prevalue of the second	9 oil, lators 8 ators, 12 using g and		

	-
1	Apply the basics of fluid power system and its applications in industry
2	Analyze the Hydraulic systems and its components
3	Design the Hydraulic circuits and Hydro static transmission
4	Execute the basic concepts of pneumatic system and its logic circuits.
5	Design of Hydraulic and pneumatic circuits with causes of trouble shooting/remedies.

Te	xt Books:
1	Anthony Esposito," Fluid Power with Applications", PHI / Pearson Education, 2014
2	Majumdar, S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGraw Hill, 2017

Refer	eference Books(s) / Web links:								
1	Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2011.								
2	Srinivasan. R, "Hydraulic and Pneumatic Control", IInd Edition, Tata McGraw - Hill Education, 2012.								
3	Majumdar, S.R., "Pneumatic Systems - Principles and Maintenance", Tata McGraw Hill, 2007								
4.	https://nptel.ac.in/courses/112/105/112105046/								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS03
CO 1	2	2	1	-	-	-	-	-	-	-	-	2	1	-	2
CO 2	2	2	1	-	-	-	-	-	-	-	-	2	1	-	2
CO 3	2	2	2	1	-	-	-	-	-	-	-	2	1	-	2
CO 4	2	2	2	1	2	-	-	-	-	-	-	2	2	-	2
CO 5	2	2	3	2	2	-	-	-		-	-	2	2	-	2

11: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	C
ME19P75	REFRIGERATION AND AIR CONDITIONING	PE	3	0	0	3

Objectives: The main learning objective of this course is to prepare the students

To understand the different types of refrigerants, their properties, and selecting appropriate refrigerant for a •

HVAC system.

To understand different types and components of RAC systems. •

To design the heat load and system size. •

To understand types of air-conditioning system and air distribution configurations. •

To Apply the safety and types of control in HVAC systems. •

UNIT-I	INTRODUCTION, REFRIGERANTS AND THEIR ENVIRONMENTALISSUES	9
Application	s of air-conditioning and refrigeration, energy usage in air-conditioning/buildings. Introduct	ion of
Refrigeratio	on and Heat Pump: Carnot cycle, modification in reversed Carnot cycle, vapour compression cycle,	actual
vapour com	pression cycle.	
Designation	n of refrigerants, Selection of refrigerants, Ozone Depletion Potential (ODP) and Global Warming	(GW),
Montreal an	nd Kyoto protocols Total Equivalent Warming Index (TEWI), Azeotropic and zeotropic mixtures, alter	mative
to existing	CFC and HCFC refrigerants.	
UNIT-II	BASIC REFRIGERATION, ADVANCED CYCLES AND THEIR COMPONENTS	9
Single and	multi-compressor and multi-evaporator systems, System with flash chamber and intercooler, P-h a	nd T-s
diagrams, th	hermodynamic analysis, effect of inter cooling, sub-cooling and super heating, Cascade refrigeration.	
Types of co	ompressors, condensers, evaporators, expansion devices - Comparison between air-cooled and water-	cooled
condenser-l	pased air-conditioning plants.	
UNIT-III	AIR-CONDITIONING AND HEATING / COOLING LOAD ESTIMATION	9
		metric
Introduction	n to thermal comfort and parameters of indoor environment quality; Psychrometric properties, Psychro	metric
	n to thermal comfort and parameters of indoor environment quality; Psychrometric properties, Psychroc process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap	
chart; Basic		
chart; Basic cooling and	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap l cooling towers-Thermodynamic analysis.	orative
chart; Basic cooling and Heating and	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap	orative Grand
chart; Basic cooling and Heating and	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap l cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF),	orative Grand
chart; Basic cooling and Heating and sensible He	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap l cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF),	orative Grand
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap l cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Con-	Grand cept of 9
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap l cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Com- AIR CONDITIONING SYSTEM TYPES AND AIR DISTRIBUTION	orative Grand cept of 9 chilled
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water syste	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap l cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Con- AIR CONDITIONING SYSTEM TYPES AND AIR DISTRIBUTION em types in air-conditioning: unitary, package, central chilled water based systems; components of	Grand Cept of 9 Chilled ents of
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water syste	 c process in air-conditioning: Humidification and Dehumidification processes; Introduction to evaple cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Components of a typical office / domestic building, Components of a types in air-conditioning: unitary, package, central chilled water based systems; components of m, concept of primary-secondary chilled water pumping; concept of variable flow systems, components of water based system, types and role for energy efficiency, comparison of variable refrigerant flow 	Grand Cept of 9 Chilled ents of
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water syste non-chilled constant flo	 c process in air-conditioning: Humidification and Dehumidification processes; Introduction to evaple cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Components of a typical office / domestic building, Components of a types in air-conditioning: unitary, package, central chilled water based systems; components of m, concept of primary-secondary chilled water pumping; concept of variable flow systems, components of water based system, types and role for energy efficiency, comparison of variable refrigerant flow 	Grative Grand cept of 9 chilled ents of w and
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water syste non-chilled constant flo	 c process in air-conditioning: Humidification and Dehumidification processes; Introduction to evapul cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Conditional Conditiona	Grand Cept of 9 Chilled ents of w and
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water syste non-chilled constant flo	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Con- AIR CONDITIONING SYSTEM TYPES AND AIR DISTRIBUTION em types in air-conditioning: unitary, package, central chilled water based systems; components of m, concept of primary-secondary chilled water pumping; concept of variable flow systems, compon water based system, types and role for energy efficiency, comparison of variable refrigerant flow w systems. als of duct design, pressure loss and AHU calculations, types of terminal units, advanced air distribution enterprime terminal units, advanced air distribution w terminal units, advanced air distribution m types of terminal units, advanced air distribution m types of terminal units, advanced air distribution w terminal units, advanced air distribution m types of terminal units, advanced air distribution m types of terminal units, advanced air distribution m types of terminal units, advanced air distribution m types and types and types of terminal units, advanced air distribution m types and types and types and types of terminal units, advanced air distribution m types and types and types and types and types of terminal units, advanced air distribution m types and types and types and types and types and types of terminal units, advanced air distribution m types and types a	Grative Grand cept of 9 chilled ents of w and
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water syste non-chilled constant flo Fundament VAV, UFA UNIT-V	 c process in air-conditioning: Humidification and Dehumidification processes; Introduction to evaple cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Conditional Conditional Cooling: unitary, package, central chilled water based systems; components of m, concept of primary-secondary chilled water pumping; concept of variable flow systems, components of variable refrigerant flow systems. als of duct design, pressure loss and AHU calculations, types of terminal units, advanced air distribution of systems; concept of heat recovery systems. 	Grand Cept of 9 Chilled ents of w and pution: 9
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water syste non-chilled constant flo Fundament VAV, UFA UNIT-V Introduction	e process in air-conditioning: Humidification and Dehumidification processes; Introduction to evap a cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Com- AIR CONDITIONING SYSTEM TYPES AND AIR DISTRIBUTION em types in air-conditioning: unitary, package, central chilled water based systems; components of m, concept of primary-secondary chilled water pumping; concept of variable flow systems, compon water based system, types and role for energy efficiency, comparison of variable refrigerant flow w systems. als of duct design, pressure loss and AHU calculations, types of terminal units, advanced air distril D systems; concept of heat recovery systems. OTHER REFRIGERATION SYSTEMS, CONTROLS AND SAFETY IN RAC	Grative Grand cept of 9 chilled ents of w and pution: 9 orption
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water syste non-chilled constant flo Fundament VAV, UFA UNIT-V Introduction systems, re	 c process in air-conditioning: Humidification and Dehumidification processes; Introduction to evaple cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Conditional Conditioning: unitary, package, central chilled water based systems; components of m, concept of primary-secondary chilled water pumping; concept of variable flow systems, components of energy efficiency, comparison of variable refrigerant flow systems. als of duct design, pressure loss and AHU calculations, types of terminal units, advanced air distributed by systems; concept of heat recovery systems. OTHER REFRIGERATION SYSTEMS, CONTROLS AND SAFETY IN RAC 	Grative Grand cept of 9 chilled ents of w and pution: 9 orption major
chart; Basic cooling and Heating and sensible He diversity. UNIT-IV Major syste water system non-chilled constant flo Fundament VAV, UFA UNIT-V Introduction systems, re components	 c process in air-conditioning: Humidification and Dehumidification processes; Introduction to evaple cooling towers-Thermodynamic analysis. d Cooling Load Estimation: Components of cooling/heat load, Room sensible heat factor (RSHF), eat factor (GSHF), Heating and cooling load estimation of a typical office / domestic building, Conditional Conditionant Conditional Conditional Conditional Conditional Condition	Grand cept of 9 chilled ents of w and pution: 9 orption major

Course Outcomes: On successful completion of this course, the students will be able to

- Explain the different types of refrigerants, their properties, and select appropriate refrigerant for a HVAC system.
- Explain different types and components of RAC systems
- Design the heat load and system size
- Explain types of air-conditioning system and air distribution configurations.
- Apply the safety and types of control in HVAC systems

Text Book (s):

1	Arora C P, Refrigeration and Air Conditioning, 3rd Edition, Tata McGraw-Hill, 2017.

2 Stoecker W.F and Jones J.W, Refrigeration and Air Conditioning, 2nd Edition, Tata McGraw-Hill, 1982.

Reference Books(s) / Web links:

1	Anantanarayanan P.N, Basic Refrigeration and Air Conditioning, 4th Edition, Tata McGraw-Hill, 2013.
---	---

2 Arora R.C, Refrigeration and Air Conditioning, Prentice Hall India, 2010.

3 ASHRAE Handbook Series: Fundamentals, Refrigeration, Systems and Equipments and HVAC Applications, 2014-18, ASHRAE Inc, Atlanta, USA

4 Dossat Roy J., Principles of Refrigeration, 4th Edition, Pearson Education Asia, 2002

5 Kuehn T.H, Ramsey J W and Therelkeld J L, Thermal Environmental Engineering, Prentice Hall, 1998.

CO	РО											PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	1	2	2	1	1	3	3	1	1	2	2	1	1	2	1	
2	1	2	2	2	2	1	1	1	1	1	1	1	2	2	2	
3	1	2	2	2	2	1	1	1	1	1	1	1	2	2	3	
4	1	2	3	1	2	1	1	1	1	1	1	1	2	2	3	
5	1	2	2	2	2	3	3	1	1	1	1	1	1	2	2	

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	P	С
ME19P76	Process Planning and Cost Estimation	PE	3	0	0	3

Objectives:

- To create a process plan for a given Product.
- To understand the purpose, functions and procedure for Estimating.
- To determine cost elements, overheads and depreciation for a given Product.
- To estimate cost for the casting, forging and welding processes.
- To calculate the machining times and costs for various machining processes.

UNIT-I INTRODUCTION TO PROCESS PLANNING

Outlining to process planning - Drawing interpretation – Material selection process and methods, Selection of Production Processes – standardization, simplification –Break even analysis –Factors to be considered in selecting: Process Sequencing; Operation Sequencing; Process parameters Equipment & Tool Selection; Tool Material evaluation -Selection of jigs and fixtures –Computer Aided Process Planning – Manual, Retrieval CAPP and Generative CAPP -Case Study in Process Planning.

UNIT-II FUNDAMENTAL OF ESTIMATING

Concept and Purpose of Estimating, Functions of Estimating department, Costing versus Estimating, Types of Estimates, Importance of Estimates, Estimating Procedure, Case Study in Estimating.

10

UNIT-III	FUNDAMENTAL OF COSTING 10									
Aims, Function	Aims, Functions and Importance of costing-methods of costing-elements of cost estimation - Cost Estimators and the									
Qualifications,	Qualifications, Principal Constituents in a Cost Estimate - Allocation of Cost Elements - Material Cost, Labour Cost,									
Expenses and	Cost of Product (Ladder Cost), Distribution of Overhead Co	ost and Methods to Calculate the Deprec	iation.							
UNIT-IV	COST ESTIMATION OF CASTING, FORGING &	WELDING COSTS	9							
Estimation of	cost for various production processes - Estimation of For	rging Shop- Losses in forging -Forging	g cost,							
Estimation of	Welding Shop- Electric welding cost - Gas Welding cost	t, Estimation of Foundry Shop-Pattern	cost -							
Casting cost.										
UNIT-V	ESTIMATION OF MACHINING TIME AND COST	`S	9							
Estimation of	Machining Time - Importance of Machine Time Calcu	lation- Machining Time Calculation f	or the							
Conventional	Conventional Machining Processes-Calculation of Machining Time and Cost for Lathe operations, Drilling, Boring,									
Milling and Grinding.										
		Total Contact Hours :	45							

Course Outcomes: At the end of this course, students can have the

- Dexterity to make a standard and detailed process plan for a given product.
- Capability to differentiate estimation and costing.
- Capacity to allocate cost elements, distribute over heads and calculate depreciation for a given Product.
- Agility to estimate cost for various production processes like casting, forging and welding processes for a given product.
- Ability to calculate the machining times and costs for various conventional machining processes.

Text Books: 1 Adithan, M, "Process Planning and Cost Estimation", New Age International Publishers, 2007. 2 Peter Scallan, "Process Planning, The Design/Manufacture Interface", Butterworth Heinemann, 2003.

Re	Reference Books(s) / Web links:							
1	Chitale A. K., and Gupta R. C., "Product Design and manufacturing", Prentice Hall of India, New Delhi, 1997.							
2	Gideon Halevi, "Process and operation planning", Kluwer academic publishers (Printed ebook), 2003.							
3	Narang G.B.S. & Kumar. V, "Production and Costing", Khanna Publishers, 2000.							
4	Phillip F. Ostwald & Jairo Munoz, "Manufacturing Processes and Systems", 9th Edition, Wiley student edition,							
	2002.							
5.	Robert Creese, Adithan M. & Pabla B. S., "Estimating and Costing for the Metal Manufacturing Industries",							
	Marcel Dekker, 1992.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	1	1	1	2	-	-	-	-	-	1	2	2		1
CO 2	3	3	2	2	1	-	-	I	-	-	1	2	2		1
CO 3	3	3	2	2	1	-	-	-	-	-	1	2	2		1
CO 4	3	3	2	2	1	-	-	-	-	-	1	2	2		1
CO 5	3	3	2	2	1	-	-	-	-	-	1	2	2		1

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
GE19P72	Entrepreneurship Development	PE	3	0	0	3

Objectives:

• To understand the types and characteristics of entrepreneurship and its role in economic development.

• To understand the theories of motivation and the principles of entrepreneurship development programs.

- To select the appropriate form of business ownership in setting up an enterprise.
- To mobilize and manage initial and working capital for the enterprise.
- To identify sickness in industry, select the appropriate corrective measures and identify the growth strategies for the enterprise.

UNIT-I	ENTREPRENEUR AND ENTREPRENEURSHIP	9
Entrepreneurship	- definition and characteristics - characteristics of entrepreneur - classification of entrepren	eurs –
Danhofi's classif	ication - other classifications - Functions of entrepreneurs - role of entrepreneurship in eco	nomic
development and	job creation - Emergence of entrepreneurial class in India - Entrepreneurship in ancient pe	eriod -
Entrepreneurship	in pre-Independence era - Entrepreneurship in post-Independence period.	
UNIT-II EN'	TREPRENEURIAL MOTIVATION	9
Theories of entrep	preneurship - sociological theories, economic theories, cultural theories and psychological the	ories -
Entrepreneurial n	notivation: Theories of motivation - Entrepreneurial competencies - Entrepreneurship develo	pment
Programs - need,	objectives - Time management - Stress management.	
UNIT-III BUS	SINESS	9
	- Definition, characteristics, project identification and selection - Feasibility and profitability and	
- Formulation of	f project report- significance and content - Types of business ownership structures- suitab	ility -
Expansion, divers	sification, forward and backward integration.	
UNIT-IV FIN	ANCING AND PROFITABILITY	9
Financing: Need,	capital structure- Sources of finance - internal and external sources of finance - break even an	nalysis
- Capital budgeti	ng - simple problems - Introduction to balance sheet and profit and loss statement - Importa	nce of
profitability - sus	tainability - Working capital management: significance, assessment, factors, sources, managem	ent.
UNIT-V SUI	PPORT TO ENTREPRENEURS AND CASE STUDIES	9
Sickness in small	business: concept, signals, symptoms, magnitude, causes and consequences, corrective meas	ures –
Government polic	cy for small scale enterprises - Growth strategies in small scale enterprise - Institutional supp	port to
entrepreneurs: nee	ed and support – Taxation benefits to small scale industry. Case studies in entrepreneurship.	-
	Total Contact Hours :	45

ourse, the student will be able to	omes: At the end of this cou
------------------------------------	------------------------------

- Analyse the types, characteristics of entrepreneurship and its role in economic development.
- Apply the theories of motivation and the entrepreneurial competencies.
- Select the appropriate form of business ownership in setting up an enterprise.
- Mobilise and manage initial and working capital for the enterprise.
- Identify sickness in industry, select the appropriate corrective measures and identify the growth strategies in enterprise.

Text Books:

1	Kurahko & Hodgetts, "Entrepreneurship – Theory, Process and Practices", 6th edition, Thomson learning, 2009.
2	S.S. Khanka, "Entrepreneurial Development", S.Chand & Co. Ltd., New Delhi, 1999.

Reference Books(s) / Web links:

1	Sangram Kesari Mohanti, "Fundamentals of Entrepreneurship", PHI Learning Private Ltd., Delhi, 2006.
2	Charantimath, P. M., "Entrepreneurship Development and Small Business Enterprises", Pearson, 2006.
3	Hisrich R D and Peters M P, "Entrepreneurship", 5th Edition, Tata McGraw-Hill, 2002.
4	Mathew J Manimala, "Entrepreneurship theory at cross roads: paradigms and praxis", 2nd edition, Dream Tech.,
	2006.

- 5. Rabindra N. Kanungo, "Entrepreneurship and Innovation", Sage Publications, New Delhi, 1998.
- 6. Singh, A. K., "Entrepreneurship Development and Management", University Science Press, 2009.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	-	-	-	-	1	1	1	2	-	2	2	-	-	2
CO 2	1	-	-	-	-	1	1	1	2	-	2	2	-	-	2
CO 3	1	2	2	2	2	1	1	1	2	-	3	2	-	-	2
CO 4	1	-	-	-	-	1	1	1	2	-	3	2	-	-	2
CO 5	1	-	-	-	-	1	1	1	2	-	3	2	-	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

ELECTIVE IV

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	C
ME19P77	Production Planning and Control	PE	3	0	0	3

Objectives:

- To familiarize with various types of production and aspects of new product development.
- To understand the concepts and steps involved in work study.
- To identify various steps involved in product and process planning.
- To understand various components and functions of production scheduling.
- To understand inventory control and recent trends like JIT, MRP II and ERP.

UNIT-I INTRODUCTION TO PRODUCTION PLANNING AND CONTROL

	-						
Objectives and benefits of production planning -Functions of production control-Types of productions-job sho	p, batch						
and continuous, Product Analysis-Marketing aspects, Product characteristics -Functional aspects- Operational aspects -							
Durability, dependability and aesthetic aspects, Production aspects- General approach to DFM - Guideline	s for the						
selection of production processes - Guidelines for specific processes like casting, forming, machining and asse	mbly.						
UNIT-II WORK STUDY	9						
Method study, basic procedure -Selection-Recording of process - Critical analysis, Development - Impleme	ntation -						
Micro motion and memo motion study - work measurement - Techniques of work measurement - Time	study -						
Production study - Work sampling - Synthesis from standard data – pre-determined motion time standards.							
UNIT-III PRODUCT PLANNING AND PROCESS PLANNING	9						
Product planning and information-Value Analysis-Problems in lack of product planning-Process planning and	routing-						
Information needed for process planning- Steps in process planning-Quantity determination in batch pro	duction-						
Machine capacity, balancing- Analysis of process capabilities in a multi-product system.							
UNIT-IV PRODUCTION SCHEDULING	9						
Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-H	'erpetual						
Loading-Basic scheduling problems - Line of balance - Flow production scheduling- Batch production sch	eduling-						
Product sequencing - Production Control systems-Periodic batch control-MRP I-Kanban - Dispatching-	Progress						
reporting and expediting- Manufacturing lead time-Techniques for aligning completion times and due dates.							
UNIT-V INVENTORY CONTROL AND RECENT TRENDS IN PPC	9						
Inventory control-Purpose of holding stock-Effect of demand on inventories- Ordering procedures, Two bin							
Ordering cycle system-Determination of Economic order quantity and economic lot size- ABC analysis-Recorder							
	•						
	Recorder						

Total Contact Hours:45

Co	Course Outcomes: At the end of this course, students can have the					
•	Ability to distinguish the types of production and aspects of new product development.					
	Ability to construct the various charts / diagrams and eliminate unnecessary movements and delays, also to calculate					
•	standard time to complete the assigned job.					
	Ability to carry out value analysis of a product, prepare routing chart, also analyse process capabilities in a multi-					
•	product system.					
	Ability to make a better scheduling and line balancing, also to apply techniques for aligning completion times and					
•	due dates.					
	Ability to adopt different methods of planning to control Inventory in manufacturing organization and to implement					
•	recent trends like JIT, MRP II and ERP systems.					

Те	ext Books:
1	Martand Telsang, "Industrial Engineering and Production Management", First edition, S.Chand and Company,
	2000.
2	James.B.Dilworth, "Operations management - Design, Planning and Control for manufacturing and services",
	Mcgraw Hill International Edition, 1992.

Reference Books(s) / Web links:

1 Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management", 8th Edition, John Wiley and Sons, 2000.

2 Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford University Press, 2007.

3 Norman Gaither, G. Frazier, "Operations Management", 9th edition, Thomson learning IE,2007.

4 Upendra Kachru, "Production and Operations Management – Text and cases", 1st Edition, Excel books, 2007.

5. Chary. S.N., "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	2	2	1	-	-	-	-	-	-	1	1	2	-	1
CO 2	2	2	2	1	-	-	-	-	-	-	1	1	2	-	1
CO 3	2	2	2	1	-	-	-	-	-	-	1	1	2	-	1
CO 4	2	2	2	1	-	-	-	-	-	-	1	1	2	-	1
CO 5	2	2	2	1	-	-	-	-	-	-	1	1	2	-	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P78	Welding Technology	PE	3	0	0	3

Objectives:

- To understand the principles, types, merits, demerits and applications of gas and arc welding processes.
- To understand the principles, types, merits, demerits and applications of resistance welding processes.

• To understand the principles, types, merits, demerits and applications of solid state welding processes.

- To understand different other welding processes for the automation in aerospace, nuclear and surface transport vehicles.
- To be familiar with the weldability of various materials and testing of weldments.

9 UNIT-I GAS AND ARC WELDING PROCESSES Fundamental principles – Oxy-acetylene welding, Types of Flames, Carbon arc welding, Shielded metal arc welding, Submerged arc welding, TIG & MIG welding, Plasma arc welding, CO₂ welding and Electro slag welding processes – Welding Defects - advantages, limitations and applications. **RESISTANCE WELDING PROCESSES** UNIT-II Spot welding, Seam welding, Projection welding, Resistance Butt welding, Flash Butt welding, Percussion welding and High frequency resistance welding processes - advantages, limitations and applications. UNIT-III | SOLID STATE WELDING PROCESSES 9 Cold welding, Diffusion bonding, Explosive welding, Ultrasonic welding, Friction welding, Forge welding, Roll welding and Hot pressure welding processes - advantages, limitations and applications. UNIT-IV OTHER WELDING PROCESSES 9 Thermit welding, Atomic hydrogen welding, Electron beam welding, Laser Beam welding, Friction stir welding, Under Water welding, Welding automation in aerospace, nuclear and surface transport vehicles. UNIT-V DESIGN OF WELD JOINTS, WELDABILITY AND TESTING OF WELDMENTS 11 Various weld joint designs - Weldability of Aluminium, Copper, and Stainless steels. Destructive - (Tensile, Bend, Impact, Nick break, Hardness, Etch tests) and Non Destructive testing of weldments - (Leak, Stethoscope, X-ray and γ ray radiography, Magnetic particle testing, Liquid (Dve) penetrate test, Fluorescent penetrate, Ultrasonic inspection and Eddy current testing). Welding safety, Virtual reality in welding.

Total Contact Hours : 45

Course	Outcomes:	On successful	completion	of this course	, the students will be able to

I			
	•	• Select appropriate type of gas and arc welding	type for an application.

- Select appropriate type of resistance welding type for an application.
- Select appropriate type of solid-state welding type for an application
- Explain about other advanced welding methods and its automation in industries.
- Identify and select various non-destructive testing of weldments.

Text Books:

- •	
1	Parmer R.S., "Welding Engineering and Technology", 1st edition, Khanna Publishers, New Delhi, 2008.
3	Little R.L., "Welding and Welding Technology", Tata McGraw Hill Publishing Co. Ltd., New Delhi, 34th reprint, 2008.

Ref	ference Books(s) / Web links:
1	Schwartz M.M. "Metals Joining Manual". McGraw Hill Books, 1979.
2	Tylecote R.F. "The Solid Phase Welding of Metals". Edward Arnold Publishers Ltd. London, 1968.
3	AWS- Welding Hand Book. 8th Edition. Vol- 2. "Welding Process".
4	Nadkarni S.V. "Modern Arc Welding Technology", 1st edition, Oxford IBH Publishers, 2005.
5.	Christopher Davis. "Laser Welding- Practical Guide". Jaico Publishing House, 1994.
6.	Davis A.C., "The Science and Practice of Welding", Cambridge University Press, Cambridge, 1993.
7.	P.N.Rao – "Manufacturing Technology" – Tata McGraw Hill Publishing Company, 2003.
8.	S.K.Garg – Welding Technology - University Science press.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	2	-	-	1	-	-	-	-	-	2	-	-	2
CO 2	2	1	2	-	-	1	-	-	-	-	-	2	-	-	2
CO 3	2	1	2	-	-	1	-	-	-	-	-	2	-	-	2
CO 4	2	1	2	-	-	1	-	-	-	-	-	2	-	-	2
CO 5	2	1	2	-	-	1	-	-	-	-	-	2	-	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P79	HYBRID AND ELECTRICAL VEHICLES	PE	3	0	0	3

Objectives: The main learning objective of this course is to prepare the students

- To know the History of Electric vehicle and comparison with internal combustion engines
- To understand different types of Architectural design of Electrical vehicle
- To learn the Power calculation and energy storage systems
- To learn the torque calculation for the motor, Electrical connections in the motor and function of control unit
- To understand Energy management system and learn about the charging station.

UNIT-I	INTRODUCTION: ELECTRIC VEHICLE	9								
History-Components of Electric Vehicle-Comparison with Internal combustion Engine: Technology - Comparison with										
Internal combustion Engine: Benefits and Challenges-EV classification and their electrification levels-EV Terminology.										
UNIT-II	ELECTRIC VEHICLE ARCHITECTURE DESIGN	9								
design-Batte	UNIT-IIELECTRIC VEHICLE ARCHITECTURE DESIGN9Types of Electric Vehicle and components-Electrical protection and system requirement-Photovoltaic solar based EV design-Battery Electric vehicle (BEV)-Hybrid electric vehicle (HEV)-Plug-in hybrid vehicle (PHEV-Fuel cell electric vehicle (FCEV)-Electrification Level of EV-Comparison of fuel vs Electric and solar power-Solar Power operated									

UNIT-III	POWER CALCULATIONS FOR ELECTRIC VEHICLE & ENERGY STORAGE	9
	SOLUTIONS	
Motor Tore	ue Calculations for Electric Vehicle: Calculating the Rolling Resistance-calculating the grade resi	stance-
Calculating	the Acceleration Force-Finding the Total Tractive Effort-Torque Required on The Drive Wheel	
Energy Sto	rage Solutions (ESS): Cell Types (Lead Acid/Li/NiMH)-Battery charging and discharging calculation	on-Cell
	d sizing-Battery lay outing design-Battery Pack Configuration-Battery Pack Construction-Battery se	
criteria.		
UNIT-IV	ELECTRIC DRIVE AND CONTROLLER	9
Types of Me	otors-Selection and sizing of Motor-RPM and Torque calculation of motor-Motor Controllers-Comp	onent
Sizing-Phys	ical Locations-Mechanical connection of motor-Electrical connection of motor.	
Control Un	it: Function of CU-Development Process-Software-Hardware-Data Management-GUI (Graphical U	ser
Interface)/H	MI (Human-Machine Interface)	
UNIT-V	MANAGEMENT SYSTEM & CHARGING STATION	9
Battery Ma	nagement System (BMS)/Energy Management System (EMS): Need of BMS-Rule based contro	l and
optimization	n-based control-Software-based high level supervisory control-Mode of power-Behavior of motor-	
Advance Fe	atures	
Electric Ve	hicles charging station: Type of Charging Station-Selection and Sizing of charging station-Composition	nents
of charging	station-Single line diagram of charging station	
	Total Contact Hours	45
Course Out	comes: On the successful completion of this course students will be able to	
• Explain	the importance of Electrical vehicle and challenges with internal combustion engines	
• Compa	re and contrast the various electric vehicle architecture designs	

- Design the motor Torque and Energy storage systems
- Explain about different motors, Electrical connections and Control units
- Describe battery management system and Electrical vehicle changing station

Text Book(s):

- Tom Denton, "Electric and Hybrid Vehicles" Published by Routledge- June 10, 2020 1
- Husain, I. "Electric and Hybrid Vehicles" Boca Raton, CRC Press, 2010. 2

Reference Books(s) / Web links:

- Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay and Ali Emadi "Modern Electric, Hybrid Electric, and Fuel Cell 1 Vehicles (Fundamentals, Theory, and Design)" CRC Press, 2004
- https://www.routledge.com/rsc/downloads/CRC_Hybrid_Vehicles_Freebook.pdf 2
- https://nptel.ac.in/courses/108/103/108103009/ 3
- https://www.energysage.com/electric-vehicles/charging-your-ev/ 4
- 5 https://www.mpoweruk.com/infrastructure.htm
- 6 https://www.orionbms.com/general/how-it-works/

		РО													PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3			
1	-	-	1	1	1	2	-	-	-	-		1		-	1	1			
2	1	1	1	1	1	-	-	-	-	-		1		1	1	1			
3	2	-	2	1	2	-	-	-	-	-		1		2	1	1			
4	1	-	1	1	1	-	-	-	-	-		1		1	1	1			
5	-	-	1	1	2	-	-	-	-	-		1		1	1	1			

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	C
GE19P73	MARKETING MANAGEMENT	PE	3	0	0	3

Objectives:

- To understand the basics of marketing process. •
- To analyze, design and implement market segmentation.
- To understand the needs and application of marketing research. •
- To understand marketing planning and strategy formulation. •

To know about sales promotion, advertising and distribution. •

MARKETING PROCESS UNIT-I

Definition, Marketing process, dynamics, needs, wants and demands, marketing concepts, environment, mix, types. Philosophies, selling versus marketing, organizations, industrial versus consumer marketing, consumer goods, industrial goods, product hierarchy, Services Marketing.

BUYING BEHAVIOR AND MARKET SEGMENTATION UNIT-II

Customer Relationship Marketing - Customer database, Data warehousing and mining. Attracting and retaining customers, Consumerism in India, Market segmentation and targeting, Positioning and differentiation strategies, Product life cycle strategies, New product development, Product Mix and Product line decisions, Branding and packaging, segmentation factors - demographic - psycho graphic and geographic segmentation, process, patterns. Product and brand management. 9

UNIT-III PRODUCT PRICING AND MARKETING RESEARCH

Price setting - objectives, factors and methods, Price adapting policies, Initiating and responding to price changes. Introduction, uses and process of marketing research. 7

UNIT-IV MARKETING PLANNING AND STRATEGY FORMULATION

The 4 Ps of marketing, Components of marketing plan-strategy formulations and the marketing process, implementations, portfolio analysis, BCG, GEC grids.

SALES PROMOTION AND DISTRIBUTION UNIT-V

Characteristics, impact, goals, types of sales promotions - point of purchase - unique selling proposition. Identifying and analysing competitors, Designing competitive strategies for leaders, challengers, followers and nichers. Advertising, types, and case studies. Distribution - Characteristics, impact, goals, types and sales promotions - point of purchase unique selling proposition. Characteristics, wholesaling, retailing, channel design, logistics, and modern trends in retailing.

> **Total Contact Hours** 45

0

11

- Ability to understand the basics of marketing process. •
- Ability to analyze, design and implement market segmentation •
- Ability to understand the needs and application of marketing research. •
- Ability to understand marketing, planning and strategy formulation. •
- Ability to implement sales promotion, advertising and distribution. •

Text Books:

- Philip Kolter & Keller, "Marketing Management", 14th edition, Prentice Hall of India, 2012.
- Rajan Saxena, "Marketing Management" Tata McGraw Hill, 2002.

Reference Books(s) / Web links:

- Adrain Palmer, "Introduction to marketing theory and practice", Oxford University Press IE, 2004. 1
- 2 Chandrasekar. K.S., "Marketing Management Text and Cases", 1st Edition, Tata McGraw Hill - Vijaynicole, 2010.
- 3 Ramasamy & Namakumari, "Marketing Management", Macmilan India, 2002.
- 4 Ramphal and Gupta, "Case and Simulations in Marketing", Golgatia, Delhi.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	1	I	1	-	-	-	-	1	-	1	2	-	-	2
CO 2	1	1	I	1	1	-	-	-	1	-	1	2	-	-	2
CO 3	1	1	I	1	-	-	-	-	1	-	1	2	-	-	2
CO 4	1	1	I	1	-	-	-	-	1	-	1	2	-	-	2
CO 5	1	1	I	1	-	-	-	-	1	-	1	2	-	-	2

Semester VIII

ELECTIVE V

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P81	OPERATIONS RESEARCH	PE	3	0	0	3

Objectives		
	eate awareness about optimization techniques in utilization of resources and to formulate the mming model for industrial applications based on the constraints and availability of the resources.	linear
To pr	ovide knowledge and training in Transportation and other production models and to obtain the op on to maximize the profit.	ptimal
• To pro	wide knowledge about the Network models and to furnish the solution for the failure of item.	
	derstand the deterministic and stochastic inventory models and to plan, manage the stocks to me ner demands.	et the
• To une	derstand the Queuing models, queue discipline and to explore the ways to give better customer service	<i>.</i>
· ·		
UNIT-I	LINEAR PROGRAMMING MODELS	9
Introductio	n to Operations Research - Scope, objectives, phases, models and limitations. Linear programm	-
	n to Operations Research - Scope, objectives, phases, models and limitations. Linear programm n of LPP - Graphical method – Simplex algorithm – Artificial variables – Big M method – Two phase m	ning –
formulation		ning –
formulation	n of LPP - Graphical method – Simplex algorithm – Artificial variables – Big M method – Two phase m	ning –
formulation – Duality f UNIT-II	n of LPP - Graphical method – Simplex algorithm – Artificial variables – Big M method – Two phase mormulation.	ning – nethod
formulation – Duality f UNIT-II Transporta	n of LPP - Graphical method – Simplex algorithm – Artificial variables – Big M method – Two phase mormulation. TRANSPORTATION MODELS	ning – nethod 9
formulation – Duality f UNIT-II Transporta MODI met	n of LPP - Graphical method – Simplex algorithm – Artificial variables – Big M method – Two phase mormulation. TRANSPORTATION MODELS tion Models - Finding basic feasible solution – LCM, NWC and VAM methods – Optimal solution	ning – nethod 9 using

s through 2 Machines, n Jobs through 3 Machines, n Jobs thr using Johnson algorithm. 9

UNIT-III NETWORK AND REPLACEMENT MODELS

Networks models: Network logic - Ford - Fulkerson's rule - Shortest route - Project network - CPM and PERT networks - Critical path scheduling - Types of Floats and calculations.

Replacement models: Types of failures - Present value factor - Replacement of items that deteriorate with time, Items that fail suddenly - Individual and Group replacement policies.

UNIT-IV INVENTORY MODELS

Need for Inventory – Types of Inventories – Inventory costs - Economic order quantity – Deterministic Inventory models - with and without shortages - Quantity discount models - Stochastic inventory models - Multi product models – Inventory control – P and Q systems - Determination of Buffer stock and Reorder level.

QUEUEING MODELS UNIT-V

Queueing models - Queueing systems and structures - Notation parameter - Poisson input - Exponential service -Single server and multi-server models - Constant rate service - Infinite population - Simulation - Monte Carlo technique - Inventory and Queuing problems.

> **Total Contact Hours** :

9

9

Co	urse Outcomes: At the end of this course, the students will be able to
	Formulate a real-world mathematical linear programming model, select the constraints based on the availability of
•	the resources and determine the optimal solution.
٠	Build and solve specialized Transportation, Assignment and Sequencing problems with optimum results.
٠	Investigate the nature of the project / failure and give suggestions towards decision making.
	Know about the maintenance of inventory level, Plan the manufacturing policies and manage the stocks according
•	to the customer demands.
	Model a dynamic system as a queuing model and compute important performance measures for better customer
•	service.

Te	xt Books:
1	Hamdy A Taha, "Operations Research: An Introduction", 10th edition, PHI/Pearson education, 2017.
2	Wayne L. Winston, Jeffrey B. Goldberg, "Operations Research Applications and Algorithms", Thomson Brooks/Cole, 2004.

Re	eference Books(s) / Web links:								
1	Premkumar Gupta and D.S.Hira, "Problems in Operations Research", S.Chand, 2009.								
2	Sharma J K, "Operations Research: Theory and Applications", 5th edition, Macmillan India, 2013.								
3	Pannerselvam R, "Operations Research", 2nd edition, PHI, 2009.								
4	Srinivasan G, "Operations Research: Principles and Applications", 3rd edition EEE PHI, 2017.								
5.	Tulsian and Pasdey V., "Quantitative Techniques", Pearson Asia, 2002.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	2	2	2	2	-	-	-	-	-	-	2	-	-	2
CO 2	3	2	2	2	2	-	-	-	-	-	-	2	-	-	2
CO 3	3	2	2	2	2	-	-	-	-	-	-	2	-	-	2
CO 4	3	2	2	2	2	-	-	-	-	-	-	2	-	-	2
CO 5	3	2	2	2	2	-	-	-	-	-	-	2	-	-	2

Sub	Subject Code Subject Name (Theory course) Category L T										
	IE19P82DESIGN OF JIGS, FIXTURES AND PRESS TOOLSPE 30										
Ob	Objectives:										
1	1 To understand the principles of locating and clamping in Jigs and fixtures and various components related to Press tools										
2	2 To know about DesigningvarioustypesofJigsforgivencomponentsanddrawmultipleviewsofthesamewith dimensions and parts List.										
3	3 To know the design of various type of Fixtures for given components and draw multiple views of the same with dimensions and parts List.										
4											
5	To underst	and the Designing of various parts of forming dies and draw the standard dir	nensioned view	WS							
UN	ITI PRI	NCIPLES OFJIGS, FIXTURESAND PRESSWORKING		9							
cutt Util pres Rec tool UN Des jigs UN	Objectives and importance of tool design—work holding devices- Basic elements of jigs and fixtures-location–clamping-indexing-operationalchart-FitsandTolerancesToolsforpressworking- Press WorkingTerminologies– cuttingand¬oncuttingoperations¬Typesofpresses¬press accessories Computation of press capacity¬Strip layout¬Materia l Utilization¬Shearing action¬Clearances ¬ Press Work Materials ¬ Center of pressure¬ knockouts - direct and indirect ¬ pressure pads¬Ejectors-Die Block¬Punchholder,Dieset,103 guide plates¬Stops¬Strippers¬Pilots¬SelectionofStandardparts¬ Recenttrendsintoolingrecenttrendsin tool design-computer Aids for sheet metal forming Analysis – basic introduction - tooling for numerically controlled machines- set up reduction for work holding¬Single minute exchange of dies-PokaYoke. UNITII DESIGN OF JIGS 9 Design and development of jigs for given component- Types of Jigs¬Post, Turnover, Channel, latch,box, pot, angularpost jigs¬Indexing jigs. 9 UNITII DESIGN OF FIXTURES 9										
I		alarment of finitum for a since community Convert minimized of million	Tatha havin	- hasseline -							
		elopment of fixtures for a given component-General principles of milling s-Assembly, Inspection and Welding fixtures-Modular fixturing systems- Q			anu						
		ESIGNOF CUTTINGDIES	ulek enange i	9							
			und and prog		ine						
	Complete design and preparation of standard views of simple blanking, piercing, compound and progressive dies -fine Blanking dies.										
UN	UNITV DESIGNOF BENDING, FORMING, DRAWING ANDMISCELLANEOUSDIES 9										
cap and	Differencebetweenbendingforminganddrawing–Blankdevelopmentforaboveoperations–Types of Bending dies–Press capacity–Spring back–Variables affecting Metal flow indrawing operations–draw die inserts–draw beads-ironing–Design and development of bending, forming, drawing, reverse redrawing and combination dies – Blank development for axisymmetric, rectangular and elliptic parts–Single and double action dies										
			Total No. o	f Periods 45	•						

Со	urse Outcomes: On completion of this course, the students will be able to
1	Able to apply the principles of locating and clamping in Jigs and fixtures and various components related to Press tools.
2	Able to design various types of Jigs for given components and draw multiple views of the same with dimensions and
2	parts list.
2	Able to Design various types of Fixtures forgiven components and draw multiple views of the same with dimensions
3	and parts List.
4	Able to design the various part of cutting dies and draw the standard dimensioned views.
5	Able to design the various parts of forming dies and draw the standard dimensioned views.

Text Books:

Joshi, P.H. "Jigs and Fixtures", Second Edition, Tata McGraw Hill Publishing Co., Ltd., New Delhi,2010.
 Joshi P.H" Press tools-Design and Construction", S.Chand&CoLtd.2001.

Reference Books(s) / Web links:

- 1 ASTM-Fundamentals of tool design", Prentice Hall of India, 1984.
- 2 Donaldson, Lecain and Goold, "Tool Design", Tata McGrawHill,2000.
- 3 Hoffman "Jigs and Fixture Design"-Thomson Delmar Learning, Singapore, 2004.
- 4 K.Venkataraman, "Design of Jigs Fixtures&PressTools", AnnePublications, 2015
- 5. https://nptel.ac.in/courses/112/105/112105127/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	1	1	1	1	1	-	-	-	-	-	-	1
CO 2	2	2	2	2	2	-	-	-	-	-	-	1
CO 3	2	2	2	2	2	-	-	-	-	-	-	1
CO 4	1	1	1	1	1	-	-	-	-	-	-	1
CO 5	1	1	1	1	1	-	-	-	-	-	-	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P83	NON-DESTRUCTIVE TESTING AND EVALUATION	PE	3	0	0	3

Objectives:

• To make the students understand the importance of NDT in quality assurance.

- To imbibe the students the basic principles of various NDT techniques, its applications, limitations, codes and standards.
- To equip the students with proper competencies to locate a flaw in various materials and products.

• To make the students to be ready to use NDT techniques for in-situ applications too.

• To inculcate the knowledge of selection of the right NDT technique for a given application.

UNIT-I INTRODUCTION & VISUAL INSPECTION METHODS

NDT versusMechanical testing, Need for NDT, Relative merits and limitations, various physical characteristics of
materials and their applications in NDT. Visual Inspection -Unaided, Aided- Borescopes -Video scopes, Special features
in Borescopes, Selection of borescopes, Optical sensors, Microscopes & replication Microscopy Technique and
applications, Holography - Case study.9UNIT-IILIQUID PENETRANT TESTING& MAGNETIC PARTICLE TESTING9

LPT - Principle, types, Procedures, Penetrants and their characteristics, Emulsifiers, Solvent Cleaners / Removers, Developers- properties and their forms, Equipment's, Advantages and limitations, Inspection and Interpretation, Applications and case study. MPT-Principle, Theory of Magnetism, Magnetising current, Magnetisation methods, Magnetic particles, Procedure, Interpretation, Relevant and Non-relevant indications, Residual magnetism,

Demagnetisation - need, methods, Advantages and Limitations, Applications, Magnetic Rubber Inspection, Magnetic Printing, Magnetic Painting - Case study. 9

UNIT-III THERMOGRAPHY & EDDY CURRENT TESTING

Thermography - Introduction, Principle, Contact & Non-Contact inspection methods, Active & Passive methods, Liquid Crystal - Concept, example, advantages & limitations. Electromagnetic spectrum, infrared thermography- approaches, IR detectors, Instrumentation and methods and applications - Case study. Eddy current Testing - Principle, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Advantages & Limitations, Interpretation of Results& applications - Case study.

UNIT-IV ULTRASONIC TESTING & ACOUSTIC EMISSION TESTING

Ultrasonic Testing-Principle, Basic Equipment, Transducers, Couplants, Ultrasonic wave, Variables in UT, Transmission and Pulse-echo method, Straight beam and angle beam, A-Scan, B-Scan & C-Scan, Phased Array Ultrasound& Time of Flight Diffraction, Advantages & Limitations, Interpretation of Results& Applications - Case study. Acoustic Emission Technique - Introduction, Types of AE signal, AE wave propagation, Source location, Kaiser effect, AE transducers, Principle, AE parameters, AE instrumentation, Advantages & Limitations, Interpretation of Results, Applications - Case study.

UNIT-V RADIOGRAPHY

Introduction, Principle, X-ray Production, Gamma ray sources, Tubing materials, X-ray tubing characteristics, Interaction of X-ray with matter, Imaging, Film techniques, Filmless techniques, Types and uses of filters and screens, Real time radiography, Geometric factors, Inverse square law, Characteristics of film, graininess, density, speed, contrast, characteristic curves, Penetrometers, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Digital Radiography - Film Digitisation, Direct Radiography & Computed Radiography, Computed Tomography, Gamma ray Radiography, Safety in X- ray and Gamma Ray radiography - Case study.

Total Contact Hours 45

9

9

Course Outcomes: At the end of this course, The students will be able to compare the differences between various visual inspection techniques and apply the • same to the components to be inspected. The students will be able to recognize the importance of Penetrant testing in NDT with the understanding of the • procedures involved in the Penetration methods. The students will be able to interpret the images and the results obtained from the Thermographic technique and the Eddy current testing. The students will be able to evaluate and interpret the results obtained in the Ultrasonic inspection and Acoustic • Emission technique. The students will be able to explain the techniques involved in the Radiographic testing and the various advancements in Radiography.

Те	xt Books:
1	ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals
	Park, Ohio, USA, 200, Volume-17.
2	Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd edition New Jersey, 2005.

Ref	ference Books(s) / Web links:
1	Baldev Raj, T.Jayakumar, M.Thavasimuthu, "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
2	ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing,
	Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5,
	Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing.
3	Charles, J. Hellier," Handbook of Non-destructive evaluation", McGraw Hill, New York, 2001.
4	Ravi Prakash, "Non-Destructive Testing Techniques", New Age International Publishers, 1st Revised edition,
	2010.
5.	https://nptel.ac.in/courses/113106070/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	-	1	-	-	-	-	-	-	-	2	1	-	2
CO 2	2	1	-	1	-	-	-	-	-	-	-	2	1	-	2
CO 3	2	1	-	1	-	-	-	-	-	-	-	2	-	-	2
CO 4	2	1	-	1	-	-	-	-	-	-	-	2	-	-	2
CO 5	2	1	-	1	-	-	-	-	-	-	-	2	1	-	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P84	COMPUTATIONAL FLUID DYNAMICS	PE	3	0	0	3

Objectives: The main learning objective of this course is to prepare the students

• To analyse mathematical and computational methods for fluid flow and heat transfer simulations

- To use the Finite difference and volume method for solving diffusion problems
- To use finite volume method for convection diffusion
- To assess the flow parameters in internal and external flows

• To expose the students to various models in flow analysis

UNIT-I	GOVERNING EQUATIONS AND BOUNDARY	CONDITIONS	9							
Basics of con	nputational fluid dynamics - Governing equations of fluid dynamics	- Continuity, Momentum and	Energy							
equations –	Chemical species transport - Physical boundary conditions - Time-a	veraged equations for Turbule	nt Flow							
- Turbulent-	Kinetic Energy Equations - Mathematical behavior of PDEs on CFI	D - Elliptic, Parabolic and Hyp	perbolic							
equations.										
UNIT-II	FINITE DIFFERENCE AND FINITE VOLUME METHO	ODS FOR DIFFUSION	9							
Derivation of	f finite difference equations - Simple Methods - General Methods	for first and second order acc	uracy –							
Finite volum	e formulation for steady state One, Two and Three -dimensional diff	fusion problems – Parabolic eq	uations							
- Explicit an	d Implicit schemes - Example problems on elliptic and parabolic equ	uations – Use of Finite Different	nce and							
Finite Volume methods.										
UNIT-III	FINITE VOLUME METHOD FOR CONVECTION	ON DIFFUSION	9							
Steady one-o	limensional convection and diffusion - Central, upwind differencing	g schemes properties of discre	tization							
schemes – C	onservativeness, Boundedness, Transportive, Hybrid, Power-law, QU	UICK Schemes.								
UNIT-IV	FLOW FIELD ANALYSIS		9							
Finite volun	ne methods -Representation of the pressure gradient term and con	ntinuity equation – Staggered	grid –							
Momentum	equations - Pressure and Velocity corrections - Pressure Correction	equation, SIMPLE algorithm	and its							
variants – PI	SO Algorithms.									
UNIT-V	TURBULENCE MODELS AND MESH GEN	ERATION	9							
Turbulence	models, mixing length model, Two equation (k- ε) models – High	and low Reynolds number m	odels –							
Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.										
Structured G	$\frac{1}{2}$	Auapuve mesn – Software 100	10.							

Co	Course Outcomes: On successful completion of this course, students will be able to									
•	Derive and apply the governing equations and boundary conditions for Fluid dynamics									
٠	Analyze Finite difference and Finite volume method for Diffusion problems									
٠	Analyze Finite volume method for Convective diffusion problems									
•	Analyze Flow field problems									

• Explain the Turbulence models and Mesh generation techniques

Tex	xt Book(s):
1	Versteeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The finite volume Method", Pearson Education Ltd., 2007
-	
2	Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company
	Ltd., 1998.
2	Jiyuan TL, Guan Heng Yeoh, "Computational Fluid Dynamics a Practical Approach"
3	Butterworth-Heinemann, 1st Edition 2008.
4	Anderson, Jr., John D, "Computational fluid Mechanics the Basics with Applications" McGraw Hill Education,
4	2012.

Reference Books(s) / Web links:

1 Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, 2004

2 Chung, T.J. "Computational Fluid Dynamics", Cambridge University, Press, 2002

3 Fletcher, C. A. J., "Computational Techniques for Fluid Dynamics", Springer Verlag, 2011

4 Hyoung Woo Oh, "Applied Computational Fluid Dynamics", InTech Publishers, 2012

5 John F Wendt "Computational Fluid Dynamics" Springer, 2012

60							PO						PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	3	2	1	1	1	-	-	-	-	1	3	2	3		
2	3	2	3	2	2	1	1	-	-	-	-	1	3	2	3		
3	3	2	3	2	2	1	1	-	-	-	-	1	3	2	3		
4	3	2	3	2	2	1	1	-	-	-	-	1	3	2	3		
5	3	2	3	2	2	1	1	-	-	-	-	1	3	2	3		

1. 1: Slight (Low) 2: Moderate (Medium) - 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	C
ME19P85	DESIGN OF EXPERIMENTS	PE	3	0	0	3

- **Objectives:**
- To understand the concepts of Classical Design of Experiments (DOE).
- To illustrate Single Factor Experiment and Post hoc tests.
- To understand Factorial experiments and its extensions.
- To know about Taguchi method for parameter Optimization.
- To create exposure on Response Surface Method and Shainin DOE.

UNIT-I FUNDAMENTALS OF EXPERIMENTAL DESIGNS

Hypothesis testing – single mean, two means, dependent/ correlated samples – confidence intervals, Experimentation – need, Conventional test strategies, F-test, terminology, basic principles of design, steps in experimentation – choice of sample size – Normal and half normal probability plot – simple linear and multiple linear regression, Analysis of variance.

UNIT-II SINGLE FACTOR EXPERIMENTS

Completely Randomized Design- effect of coding the observations- model adequacy checking - estimation of model parameters, residuals analysis- treatment comparison methods- Duncan's multiple range test, Newman-Keuel's test, Fisher's LSD test, Tukey's test- Testing using contrasts, Randomized Block Design – Latin Square Design- Graeco Latin Square Design – Applications.

UNIT-III FACTORIAL DESIGNS

Main and Interaction effects - Two and three factor full factorial designs- Fixed effects and random effects model - Rule for sum of squares and Expected Mean Squares- 2 K Design with two and three factors- Yate's Algorithm - Fitting regression model- Randomized Block Factorial Design. Blocking and Confounding in 2K Designs- blocking in replicated design -2^k Factorial Design in two blocks- Complete and partial confounding- Confounding 2^k Design in

9

0

 four blocks - Two level Fractional Factorial Designs- Construction of one-half and one-quarter fraction of 2^k Design. Available software packages.
 9

 UNIT-IV
 TAGUCHI METHODS
 9

 Design of experiments using Orthogonal Arrays, Data analysis from Orthogonal experiments, Response Graph Method, ANOVA- Attribute data analysis- Robust design- noise factors, Signal to Noise ratios, Inner/outer OA design- case studies - Illustrations using software packages.
 9

 UNIT-V
 RESPONSE SURFACE METHODS AND SHAININ DOE
 9

 Introduction to Response Surface Methods, Central Composite Design. Basics of Shainin DOE - Problem Solving Algorithm - Problem Identification Tools- Shainin DOE Tools - Case studies- Illustrations using software packages.
 9

Course Outcomes: At the end of this course, students can have the

•	Ability to understand the fundamental principles of Classical Design of Experiments.
•	Ability to apply single factor experiment for process parameter understanding and optimization.

Ability to apply Factorial Design principles for understanding of process parameters and its optimization.

• Ability to gain knowledge on Taguchi's approach to experimental design for attaining robustness.

• Ability to apply Response Surface Method and Shainin DOE to evaluate quality.

Text Books:

1 Montgomery, D.C., "Design and Analysis of Experiments", 10th Edition, John Wiley and Sons, 2019.

2 Krishnaiah K and Shahabuddin P, "Applied Design of Experiments and Taguchi Methods", PHI, 1st Edition, 2011.

Reference Books(s) / Web links:

1 Box, G. E., Hunter, W.G., Hunter, J.S., Hunter, W.G, "Statistics for Experimenters: Design, Innovation, and Discovery", 2nd Edition, Wiley, 2005.

2 Krishnaiah K, "Applied Statistical Quality Control and Improvement", 1st Edition, 2014.

3 Phillip J. Ross, "Taguchi Techniques for Quality Engineering", Tata McGraw-Hill, India, 2005.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	-	-	1	-	-	-	2	-	2	3
CO 2	3	3	3	3	3	-	-	1	-	-	-	2	-	2	3
CO 3	3	3	3	3	3	-	-	1	-	-	-	2	-	2	3
CO 4	3	3	3	2	3	-	-	1	-	-	-	2	-	2	3
CO 5	3	3	3	2	3	-	-	1	-	-	-	2	-	2	3

	ELECTIVE VI					
Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P86	RESEARCH METHODOLOGY AND INTELLECTUAL PROPERTY RIGHTS	PE	3	0	0	3

Objecti	/es:										
• To	To inculcate the importance of research methodology.										
• To	To understand how to undergo the literature review and write a technical paper.										
	To inculcate the importance of Intellectual Property Rights and aware of the rights for the protection of the invention.										
• To	understand the patent rights and recent developments in IPR.										
UNIT-I	FUNDAMENTALS OF RESEARCH	9									
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for											
	problem, data collection, analysis, interpretation, Necessary instrumentations, analysis of qualitative nethods research. REVIEW OF LITERATURE AND TECHNICAL WRITING	e and									
01111	Literature studies approach analysis Diagiarism Desearch othics. Effective technical writing how to	-									

Effective literature studies approach, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing a Research Proposal. 9

UNIT-III INTELLECTUAL PROPERTY RIGHTS

Nature of Intellectual Property: Patents, Designs, Trade and Copyright, copyright registration in India Process of Patenting and Development: technological research, innovation, patenting and development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under Patent Cooperation Treaty. 9

PATENT RIGHTS AND RECENT DEVELOPMENTS IN IPR UNIT-IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies. 0

INDUSTRIAL DESIGNS AND GEOGRAPHICAL INDICATIONS UNIT-V

Industrial designs and IC Layout design, Registrations of designs, conditions and procedures of industrial designs Cancellation of Registration, International convention of design- types and functions. Semiconductor Integrated circuits and layout design Act- Geographical indications-potential benefits of Geographical Indications.

Total Contact Hours 45

Со	urse Outcomes: At the end of this course, students can have the
٠	Ability to Apply knowledge on research problem formulation and analyze research related information.
•	Ability to write the literature review and technical paper.
•	Ability to apply IPR concept to important place in growth of individuals & nation.
٠	Ability to Apply patent right to new products developed.
٠	Ability to describe the procedure and the tools to get patent copy right for their innovative work.

Text Books:

1	Neeraj Pandey and Khushdeep Dharni, "Intellectual Property Rights", First edition, PHI learning Pvt. Ltd., Delhi, 2014.
2	Uma Sekaran and Roger Bougie, "Research methods for Business", 5th Edition, Wiley India, New Delhi, 2012.

Reference Books(s) / Web links:

1	Stuart Melville and Wayne Goddard, "Research Methodology: An Introduction For Science & Engineering
	Students",2nd edition, Juta Academic, 2001.
2	Ramakrishna B & Anilkumar H S, "Fundamentals of Intellectual Property Rights", 1st edition, Notion Press, 2017.
3	William G Zikmund, Barry J Babin, Jon C.Carr, Atanu Adhikari, Mitch Griffin, "Business Research methods: A
	South Asian Perspective, 8th Edition, Cengage Learning, New Delhi, 2012.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	-	-	2	-	-	-	-	-	1	3	1	-	2
CO 2	3	1	-	-	-	-	-	2	-	-	1	3	-	-	2
CO 3	3	1	-	-	-	-	-	-	-	-	1	3	-	-	2
CO 4	3	1	-	-	2	1	-	-	-	-	1	3	-	-	3
CO 5	3	1	-	-	-	-	-	-	-	-	1	3	-	-	2

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P87	ENERGY ENGINEERING AND MANAGEMENT	PE	3	0	0	3

Ob	Objectives:									
•	To create awareness on the energy scenario of India with respect to world									
•	To learn the methodology adopted for an energy audit									
٠	To appreciate the concepts adopted in project management									
٠	To study the different techniques adopted for financial appraisal of a project									
٠	To know the energy policies in the country.									

UNIT-I	ENERGY SCENARIO		9								
Comparison	of energy scenario - India and World (energy sources, generation mi	x, consumption pattern, T&D lo	osses,								
energy demand, per capita energy consumption) – energy pricing – energy security - energy conservation and its											
importance - Energy Conservation Act.											
UNIT-II ENERGY MANAGEMENT											
Energy audi	t - need – types – methodology – barriers - analysis on energy costing	and sharing - bench marking -	fuel								
and energy s	substitution – billing parameters in TANGEDCO – demand side mana	agement - instruments for energy	у								
audit – ener	gy monitoring and targeting – CUSUM - energy labelling										
UNIT-III PROJECT MANAGEMENT											
Four Basic I	Four Basic Elements of Project Management - Project Management Life Cycle - Steps in Project Management -										
Project Defi	nition and Scope, Technical Design, Financing, Contracting, Implem	entation Techniques (Gantt Cha	rt,								
CPM and PI	ERT) and Performance Monitoring										
UNIT-IV	FINANCIAL MANAGEMENT		9								
Investment	appraisal for energy conservation projects - Financial analysis technic	ques -Simple payback period, R	eturn								
on investme	nt, Net present value, Internal rate of return - Cash flows - Risk and s	ensitivity analysis: micro and m	acro								
factors - Fin	ancing options - energy performance contracts - ESCOs.										
UNIT-V ENERGY POLICY											
National &	National & State Level Energy Issues - National & State Energy Policy - Energy Security - National solar mission -										
state solar en	state solar energy policy - Framework of Central Electricity Authority (CEA), Central & States Electricity Regulatory										
Commission	as (CERC & ERCs)-Costing		-								
	Total Contact Hours : 45										

Co	Course Outcomes: On successful completion of this course, students will be able to										
	Explain the importance of energy conservation and suggest measures for improving per capita energy										
•	consumption										
•	Analyse the energy sharing and cost sharing pattern of fuels used in industries										
•	Apply Gantt Chart, CPM and PERT in energy conservation projects										
•	Evaluate the techno-economics of a project adopting discounting and non-discounting cash flow techniques										
•	Perform energy audit in an Industry										

Ref	ference Books(s) / Web links:
	Energy Manager Training Manual (4Volumes) available at http://www.em-ea.org/gbook1.asp, a website
1	administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of
	India.2004.
2	L.C. Witte, P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ,
4	Washington, 1988.
3	W.R. Murphy and G. McKay "Energy Management" Butterworths, London 1987
4	W.C. turner, "Energy Management Hand book" Wiley, New York, 1982
5	Dhandapani Alagiri, Energy Security in India Current Scenario, The ICFAI University Press, 2006.

CO	РО													PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12		1	2	3		
1	3	-	1	-	-	3	1	-	-	3	-	2		1	1	-		
2	3	2	2	3	3	2	1	-	3	-	3	2		3	3	3		
3	1	3	3	3	3	2	1	-	3	-	3	2		1	2	2		
4	1	3	3	3	1	2	1	-	2	-	3	2		2	2	2		
5	3	-	3	-	1	1	1	-	3	-	-	2		2	1	-		

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Subject Code	Subject Name (Theory course)	Category	L	Т	Р	С
ME19P88	SUPPLY CHAIN AND LOGISTICS MANAGEMENT	PE	3	0	0	3

Objectives: The students can

• Describe the role and drivers of supply chain management in achieving competitiveness.

• Understand about Supply Chain Network Design.

• Illustrate the issues related to Logistics in Supply Chain.

• Appraise about Sourcing and Coordination in Supply Chain.

• Understand the application of Information Technology and Emerging Concepts in Supply Chain.

UNIT-I INTRODUCTION TO SUPPLY CHAIN AND LOGISTICS MANAGEMENT	9
Supply Chain and Logistics Management: Scope and Importance - Evolution of Supply Chain - Examples o	f supply
Chains - Decision Phases in Supply Chain - Competitive and Supply chain Strategies - Drivers of Suppl	y Chain
Performance and Obstacles – Relationship of Logistics to Supply Chain Management.	
UNIT-II SUPPLY CHAIN NETWORK DESIGN	9
Role of Distribution in Supply Chain - Factors influencing Distribution network design - Design options for Dis	ribution
Network- Distribution Network in Practice - Role of network Design in Supply Chain - Framework for	network
Decisions - Impact of uncertainty on Network Design - Network design decisions - Network design decision	ns using
Decision Trees.	
UNIT-III LOGISTICS IN SUPPLY CHAIN	9
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transp	
	ortation
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transp	ortation
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transport network – Tailored transportation – Routing and scheduling in transportation -3PL- 4PL- Global Logistics -	ortation
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transported transportation – Routing and scheduling in transportation -3PL- 4PL- Global Logistics - Logistics: Reasons, Activities and issues. UNIT-IV SOURCING AND COORDINATION IN SUPPLY CHAIN Role of Sourcing in supply chain - Supplier selection, assessment and contracts - Design Collaboration – S	ortation Reverse 9 ourcing,
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transporter network – Tailored transportation – Routing and scheduling in transportation -3PL- 4PL- Global Logistics - Logistics: Reasons, Activities and issues. UNIT-IV SOURCING AND COORDINATION IN SUPPLY CHAIN Role of Sourcing in supply chain - Supplier selection, assessment and contracts - Design Collaboration – S Planning and Analysis - Supply chain co-ordination - Bull whip effect – Effect of lack of coordination in supply	ortation Reverse 9 ourcing,
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transportation retwork – Tailored transportation – Routing and scheduling in transportation -3PL- 4PL- Global Logistics - Logistics: Reasons, Activities and issues. UNIT-IV SOURCING AND COORDINATION IN SUPPLY CHAIN Role of Sourcing in supply chain - Supplier selection, assessment and contracts - Design Collaboration – S	ortation Reverse 9 ourcing,
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transporter network – Tailored transportation – Routing and scheduling in transportation -3PL- 4PL- Global Logistics - Logistics: Reasons, Activities and issues. UNIT-IV SOURCING AND COORDINATION IN SUPPLY CHAIN Role of Sourcing in supply chain - Supplier selection, assessment and contracts - Design Collaboration – S Planning and Analysis - Supply chain co-ordination - Bull whip effect – Effect of lack of coordination in supply	ortation Reverse 9 ourcing,
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transporter network – Tailored transportation – Routing and scheduling in transportation -3PL- 4PL- Global Logistics - Logistics: Reasons, Activities and issues. UNIT-IV SOURCING AND COORDINATION IN SUPPLY CHAIN Role of Sourcing in supply chain - Supplier selection, assessment and contracts - Design Collaboration – S Planning and Analysis - Supply chain co-ordination - Bull whip effect – Effect of lack of coordination in supply and obstacles – Building strategic partnerships and trust within a supply chain. UNIT-V IT AND EMERGING CONCEPTS IN SUPPLY CHAIN The role IT in supply chain-The supply chain IT framework - Customer Relationship Management - Internal	ortation Reverse 9 Durcing, ly chain 9 Supply
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transportation – Tailored transportation – Routing and scheduling in transportation -3PL- 4PL- Global Logistics - Logistics: Reasons, Activities and issues. UNIT-IV SOURCING AND COORDINATION IN SUPPLY CHAIN Role of Sourcing in supply chain - Supplier selection, assessment and contracts - Design Collaboration – S Planning and Analysis - Supply chain co-ordination - Bull whip effect – Effect of lack of coordination in supply and obstacles – Building strategic partnerships and trust within a supply chain. UNIT-V IT AND EMERGING CONCEPTS IN SUPPLY CHAIN	ortation Reverse 9 Durcing, ly chain 9 Supply
Role of transportation in supply chain – Factors affecting transportations decision – Design option for transported transportation – Routing and scheduling in transportation -3PL- 4PL- Global Logistics - Logistics: Reasons, Activities and issues. UNIT-IV SOURCING AND COORDINATION IN SUPPLY CHAIN Role of Sourcing in supply chain - Supplier selection, assessment and contracts - Design Collaboration – S Planning and Analysis - Supply chain co-ordination - Bull whip effect – Effect of lack of coordination in suppl and obstacles – Building strategic partnerships and trust within a supply chain. UNIT-V IT AND EMERGING CONCEPTS IN SUPPLY CHAIN The role IT in supply chain-The supply chain IT framework - Customer Relationship Management - Internal	ortation Reverse 9 Durcing, ly chain 9 Supply

Course Outcomes: Upon completion of this course, students will acquire the

•	Ability to understand the scope of Supply Chain & Logistics Management and the drivers of Supply Chain performance.
•	Ability to design suitable Supply Chain network for a given situation.

- Ability to analyze and solve the issues related to Logistics in SCM.
- Ability to understand Sourcing, Coordination and current issues in SCM.
- Ability to appraise about the applications of IT in SCM and apply SCM concepts in selected enterprises.

Text Books:

1 Sunil Chopra, Peter Meindl and D.V. Kalra, "Supply Chain Management: Strategy, Planning and Operation", Pearson Education, 2016.

Ref	Reference Books(s) / Web links:								
1	Ravi Ravindran A, Donald P. Warsing, Jr, "Supply Chain Engineering: Models and Applications", CRC Press,								
	2012.								
2	Srinivasan G.S, "Quantitative models in Operations and Supply Chain Management", PHI, 2010.								
3	Janat Shah, "Supply Chain Management: Text and Cases", Pearson Education India, 2016.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	2	1	1	1	1	1	-	-	1	-	-	2	-	-	2
CO 2	2	1	1	1	1	1	-	-	1	-	-	2	-	-	2
CO 3	2	1	1	1	1	1	-	-	1	-	-	2	-	-	2
CO 4	2	1	1	1	1	1	-	-	1	-	-	2	-	-	2
CO 5	2	1	1	1	1	1	-	-	1	-	-	2	-	-	2

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Sub	oject Cod	e Subject Name (Theory course)	Category	L	Т	P C
ME	219P89	CORROSION AND SURFACE ENGINEERING	PE	3	0	0 3
Obj	jectives:					
•	To impa	art knowledge on surface engineering and surface modification methods that w	ill come in ha	ındy	to	solve
•	the indu	strial problems. This will also serve as a precursor for future research in the sar	ne field.			
	IT-I	CORROSION				10
Intro	oduction	- Principle of corrosion - Classification of corrosion - Types of corrosion - Fa	ctors influenc	ing c	corre	osion
- T	esting of	corrosion - In-service monitoring, Simulated service, Laboratory testing -	Evaluation of	f coi	rosi	ion –
Prev	vention o	f Corrosion - Material selection, Alteration of environment, Design, Cathod	lic and Anodi	c Pr	otec	ction,
Cor	rosion in	hibitors				
UN	IT-II	FRICTION				7
Ton	ogranhy	of Surfaces $-$ Surface features $-$ Properties and measurement $-$ Surface interactions	tion – Adhesi	ve T	heo	orv of
		of Surfaces – Surface features – Properties and measurement – Surface interaction – Rolling Friction – Friction properties of metallic and nonmetallic mate				
Slid	ling Frict	ion - Rolling Friction - Friction properties of metallic and nonmetallic mate				
Slid cone	ling Frict					
Slid cone	ling Frict ditions – IT-III	ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR	rials – Frictio	n in	ext	treme 6
Slid cone UN Intre	ling Frict ditions – IT-III oduction	ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact	rials – Frictio g Wear- Law	n in vs of	ext	treme 6 ear –
Slid cone UN Intro The	ling Frict ditions – IT-III oduction	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin 	rials – Frictio g Wear- Law	n in vs of	ext	treme 6 ear –
Slid cone UNI Intro The UNI	ling Frict ditions – IT-III oduction coretical v IT-IV	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin vear models – Wear of metals and non-metals – International standards in friction SURFACE TREATMENTS 	rials – Frictio g Wear- Law on and wear n	n in vs of neasu	ext f we uren	6 ear – nents 12
Slid cone UNI Intro The UNI Intro	ling Frict ditions – IT-III oduction coretical v IT-IV oduction	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR – Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin vear models – Wear of metals and non-metals – International standards in friction 	rials – Frictio g Wear- Law on and wear n sistant coating	n in vs of neasu s and	ext	6 ear – nents 12 urface
Slid cond UNI Intro The UNI Intro treat	ling Frict ditions – IT-III oduction coretical v IT-IV oduction tments –	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin vear models – Wear of metals and non-metals – International standards in friction SURFACE TREATMENTS Surface properties, Superficial layer – Changing surface metallurgy – Wear rest Surface metallurgy – Wear rest 	rials – Frictio g Wear- Law on and wear n sistant coating ding – Therm	n in vs of neasu s and al sp	ext	6 ear – nents 12 urface ing –
Slid cond UN Intro The UN Intro treat	ling Frict ditions – IT-III oduction coretical v IT-IV oduction trents – er surface	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR – Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin vear models – Wear of metals and non-metals – International standards in friction SURFACE TREATMENTS – Surface properties, Superficial layer – Changing surface metallurgy – Wear rest Techniques – PVD – CVD – Physical CVD – Ion implantation – Surface well 	rials – Frictio g Wear- Law on and wear n sistant coating ding – Therm wear and frict	n in vs of neasu s and al sp ion d	ext f we uren d Su oray	6 ear – nents 12 urface ing – trol –
Slid cone UNI Intro The UNI Intro treat Lase Cha	ling Frict ditions – IT-III oduction coretical v IT-IV oduction the surfact aracteristi	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR – Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin vear models – Wear of metals and non-metals – International standards in friction SURFACE TREATMENTS – Surface properties, Superficial layer – Changing surface metallurgy – Wear rest Techniques – PVD – CVD – Physical CVD – Ion implantation – Surface well e hardening and alloying, Applications of coatings and surface treatments in version 	rials – Frictio g Wear- Law on and wear n sistant coating ding – Therm wear and frict	n in vs of neasu s and al sp ion d	ext f we uren d Su oray	6 ear – nents 12 urface ing – trol –
Slid cone UNI Intro The UNI Intro treat Lase Cha engi	ling Frict ditions – IT-III oduction coretical v IT-IV oduction the surfact aracteristi	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR – Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin vear models – Wear of metals and non-metals – International standards in friction SURFACE TREATMENTS – Surface properties, Superficial layer – Changing surface metallurgy – Wear rest Techniques – PVD – CVD – Physical CVD – Ion implantation – Surface well e hardening and alloying, Applications of coatings and surface treatments in version of Wear resistant coatings – New trends in coating technology – DLC – CNO 	rials – Frictio g Wear- Law on and wear n sistant coating ding – Therm wear and frict	n in vs of neasu s and al sp ion d	ext f we uren d Su oray	6 ear – nents 12 urface ing – trol –
Slid cone UNI Intro The UNI Intro treat Lase Cha engi	ling Frict ditions – IT-III oduction coretical v IT-IV oduction the surfact aracteristi ineered c IT-V	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin vear models – Wear of metals and non-metals – International standards in friction SURFACE TREATMENTS – Surface properties, Superficial layer – Changing surface metallurgy – Wear resistent council and alloying, Applications of coatings and surface treatments in version of Wear resistant coatings – New trends in coating technology – DLC – CNC patings – Other coatings, Corrosion resistant coatings 	rials – Frictio g Wear- Law on and wear n sistant coating ding – Therm wear and frict C – Thick coat	n in vs of neasu s and al sp ion o ings	ext	6 ear – nents 12 urface ing – trol – Vano- 9
Slid cone UNI Intro The UNI Intro Cha engi UNI Intro	ling Frict ditions – IT-III oduction coretical v IT-IV oduction atments – er surface aracteristi ineered c IT-V oduction	 ion – Rolling Friction – Friction properties of metallic and nonmetallic mate Thermal considerations in sliding contact WEAR Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Frettin vear models – Wear of metals and non-metals – International standards in friction SURFACE TREATMENTS – Surface properties, Superficial layer – Changing surface metallurgy – Wear rest Techniques – PVD – CVD – Physical CVD – Ion implantation – Surface welle hardening and alloying, Applications of coatings and surface treatments in version of Wear resistant coatings – New trends in coating technology – DLC – CNC patings – Other coatings, Corrosion resistant coatings ENGINEERING MATERIALS 	rials – Frictio g Wear- Law on and wear n sistant coating ding – Therm wear and frict C – Thick coat um alloys, and	n in vs of neasu s and al sp ion o ings	ext	6 ear – nents 12 urface ing – trol – Vano- 9

Co	Course Outcomes: On successful completion of this course, the students will be able to									
	•	Describe the fundamentals of corrosion process.								
	•	Comprehend the various theories on friction								
	•	Describe the various methods of wear in materials.								
	•	Apply surface modification methods which are necessary to solve the industrial practical problems.								
	•	Determine the properties of advanced materials.								

TE	XTBOOKS
1	Fontana G., "Corrosion Engineering", McGraw Hill, 1985
2	W. Stachowiak and A. W. Batchelor, "Engineering Tribology", Butterworth-Heinemann, UK,2005.

Ref	Reference Books(s) / Web links:									
2	Rabinowicz.E, "Friction and Wear of materials", John Willey &Sons, UK, 1995.									
3	3 Halling, J. (Editor) – "Principles of Tribology", Macmillian – 1984									
4	Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994									
5	S.K.Basu, S.N.Sengupta & B.B.Ahuja ,"Fundamentals of Tribology", Prentice –Hall of India Pvt Ltd , New									
3	Delhi, 2005.									
7.	https://nptel.ac.in/courses/112107248/									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	1	1		1	1	1	2	1	2	1
CO2	3	2	2	2	2	1	1		1	1	1	2	1	2	1
CO3	3	2	2	2	2	1	1		1	1	1	2	1	2	1
CO4	3	2	2	2	2	1	1		1	1	1	2	1	2	1
CO5	3	2	2	2	2	1	1		1	1	1	2	1	3	1