RAJALAKSHMI ENGINEERING COLLEGE (An Autonomous Institution Affiliated to Anna University, Chennai) DEPARTMENT OF ELECTRONCS AND COMMUNICATION ENGINEERING CURRICULUM AND SYLLABUS – REGULATIONS - 2019 M.E (COMMUNICATION SYSTEMS)

VISION

To produce globally competent Electronics and Communication Engineers with a commitment to serve the society.

MISSION

M1 To impart training with the best of teaching expertise supported by excellent laboratory infrastructure and exposure to recent trends in the industry.

M2 To ensure that the students are molded into competent Electronics and Communication engineers with the knowledge of computer applications and worthy citizens of the country.

PROGRAM OUTCOMES (POs)

Engineering Graduates will have:

PO1: Ability to apply the knowledge of science, mathematics, and engineering principles for developing problem solving attitude in the field of communication.

PO2: Ability to identify, formulate, solve engineering problems and to explore recent developments in the areas like RF& Microwave, Signal Processing, Modern communication systems and Networks.

PO3: Ability to understand and use of different recent hardware and software tools for Analysis and verification in the domain of communication and networking.

PO4: Ability to design and conduct experiments, analyze and interpret data, imbibe programming skills for development of simulation experiments.

PO5: Ability to impart knowledge to enthusiastic young minds for developing products for scientific and business applications with state of art technologies.

PO6: Ability to function as a member of a multidisciplinary team with sense of ethics, integrity and social responsibility.

CURRICULUM

	SEMESTI				1	1	1	1
S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY			1	1			
1	MH19105	Applied Mathematics for Communication Engineers	FC	4	3	1	0	4
2	CU19101	Advanced Radiation Systems	PC	4	3	1	0	4
3	CU19102	Optical Networks	PC	3	3	0	0	3
4	CU19103	Advanced Digital Communication Techniques	PC	3	3	0	0	3
5	CU19141	Advanced Digital Signal Processing	PC	5	3	0	2	4
6	PG19101	Research Methodology and IPR	MC	3	3	0	0	3
7	AC19101	English for Research paper writing (Audit Course)	HS	3	3	0	0	0
DDAG	TICALS							
PRAC		Communication Systems Laboratory	DC	1	0	Ο	4	2
PRAC 8	CU19111	Communication Systems Laboratory	FC	4	0	0		
8	CU19111	Communication Systems Laboratory	TOTAL	29	21	2	6	23
PRAC 8 SEME	CU19111		TOTAL	29	21	2	6	23
SEME S.NO	CU19111 STER II COURSE CODE	Communication Systems Laboratory	TOTAL CATEGORY	29 CONTACT PERIODS	0 21 L	2 7	6 P	23 C
8 SEME S.NO THEO	CU19111 STER II COURSE CODE DRY	Communication Systems Laboratory	CATEGORY	29 CONTACT PERIODS	21 L	2 T	6 P	23 C
8 SEME S.NO THEO 1	CU19111 STER II COURSE CODE PRY CU19201	Communication Systems Laboratory COURSE TITLE Wireless Communication Networks	CATEGORY PC	29 CONTACT PERIODS	21 L 3	2 7 7 0	6 P 0	23 C
PRAC 8 SEME S.NO THEO 1 2	CU19111 STER II COURSE CODE RY CU19201 CU19202	COURSE TITLE Wireless Communication Networks MIC and RF System Design	CATEGORY PC PC PC	29 CONTACT PERIODS 3 4	0 21 L 3 3	2 7 7 0	6 P 0 0	23 C 3 4
PRAC 8 SEME S.NO THEO 1 2 3	CU19111 STER II COURSE CODE RY CU19201 CU19202 CU19203	COURSE TITLE Wireless Communication Networks MIC and RF System Design Communication System Modeling and Simulation	PC TOTAL CATEGORY PC PC PC PC PC	29 CONTACT PERIODS 3 4 3	0 0 21 1 L 3 3 3 3 3	2 7 7 0 1 0	6 P 0 0 0	23 C 3 4 3
PRAC 8 SEME S.NO THEO 1 2 3 4	CU19111 STER II COURSE CODE PRY CU19201 CU19202 CU19203	COURSE TITLE Wireless Communication Networks MIC and RF System Design Communication System Modeling and Simulation Professional Elective- I	PC TOTAL CATEGORY PC PC PC PE	29 29 CONTACT PERIODS 3 4 3 3	0 0 21 21 L 3 3 3 3 3 3 3	0 2 T 0 1 0 0	6 P 0 0 0 0	23 C 3 4 3 3
PRAC 8 SEME S.NO THEO 1 2 3 4 5	CU19111 STER II COURSE CODE PRY CU19201 CU19202 CU19203	COURSE TITLE Wireless Communication Networks MIC and RF System Design Communication System Modeling and Simulation Professional Elective- I Professional Elective- II	PC TOTAL CATEGORY PC PC PC PE PE PE	29 29 CONTACT PERIODS 3 4 3 3 3 3	0 0 21 21 L 3 3 3 3 3 3 3 3 3	0 2 T 0 1 0 0 0	6 P 0 0 0 0 0	23 C 3 4 3 3 3
PRAC 8 SEME S.NO THEO 1 2 3 4 5 6	CU19111 STER II COURSE CODE RY CU19201 CU19202 CU19203	MIC and RF System Design Communication System Modeling and Simulation Professional Elective- I Professional Elective- II Professional Elective- III	PC TOTAL CATEGORY PC PC PC PE PE PE PE PE PE	29 29 CONTACT PERIODS 3 4 3 3 3 3	0 0 21 21 L 3 3 3 3 3 3 3 3 3 3 3	0 2 T 0 1 0 0 0 0 0	6 P 0 0 0 0 0 0 0 0	23 C 3 4 3 3 3 3 3
PRAC 8 SEME S.NO THEO 1 2 3 4 5 6 7	CU19111 COURSE CODE PRY CU19201 CU19202 CU19203 CU19203 CU19203	Wireless Communication Networks MIC and RF System Design Communication System Modeling and Simulation Professional Elective- I Professional Elective- III Professional Elective- III Constitution of India (Audit Course)	TOTAL TOTAL CATEGORY PC PC PC PC PE PE PE PE MC	29 29 CONTACT PERIODS 3 4 3 3 3 3 3 3 3 3	0 0 21 21 L 3 3 3 3 3 3 3 3 3 3 3 3 3	2 7 7 0 1 0 0 0 0 0 0 0	6 P 0 0 0 0 0 0 0 0 0	23 C 3 4 3 3 3 3 0
PRAC 8 SEME S.NO THEO 1 2 3 4 5 6 7 PRAC	CU19111 STER II COURSE CODE RY CU19201 CU19202 CU19203 CU19203 AC19201 TICALS	Wireless Communication Networks MIC and RF System Design Communication System Modeling and Simulation Professional Elective- I Professional Elective- II Professional Elective- III Constitution of India (Audit Course)	PC TOTAL CATEGORY PC PC PC PE PE PE MC	29 29 CONTACT PERIODS 3 4 3 3 3 3 3 3	0 0 21 21 L 3 3 3 3 3 3 3 3 3 3 3	0 2 T 0 1 0 0 0 0 0 0	6 P 0 0 0 0 0 0 0 0 0	23 C 3 4 3 3 3 0
PRAC 8 SEME S.NO THEO 1 2 3 4 5 6 7 PRAC 8	CU19111 STER II COURSE CODE PRY CU19201 CU19202 CU19203 CU19203 CU19203 TICALS CU19211	COURSE TITLE Wireless Communication Networks MIC and RF System Design Communication System Modeling and Simulation Professional Elective- I Professional Elective- II Professional Elective- III Constitution of India (Audit Course) RF System Design Laboratory	TOTAL TOTAL CATEGORY PC PC PC PE PE PE PE MC	29 29 CONTACT PERIODS 3 4 3 3 3 3 3 4 3 4 3 3 4 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 21 21 L 3 3 3 3 3 3 3 3 3 0 0	0 2 2 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 P 0 0 0 0 0 0 0 0 0 0	23 C 3 4 3 3 3 0 2

SEME	STER III							
S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY							
1	CU19301	Wireless Ad Hoc and Sensor Networks	PC	3	3	0	0	3
2		Professional Elective -IV	PE	3	3	0	0	3
3		Open Elective	OE	3	3	0	0	3
PRAC	PRACTICALS							
4	CU19311	Project Work (Phase I)	EEC	12	0	0	12	6
		TOTAL		21	9	0	12	15
SEME	STER IV							
S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEO	RY		1		1	_1		
1	CU19411	Project Work (Phase II)	EEC	24	0	0	24	12
		TOTAL		24	0	0	24	12

TOTAL NO. OF CREDITS: 71

LIST OF PROFESSIONAL ELECTIVES PROFESSIONAL ELECTIVE- I

S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CU19P11	Advanced Satellite Communication	PE	3	3	0	0	3
2	CU19P12	Real Time Embedded Systems	PE	3	3	0	0	3
3	CU19P13	MEMS and NEMS	PE	3	3	0	0	3
4	CU19P14	Multimedia Compression Techniques	PE	3	3	0	0	3
5	CU19P15	High Performance Networks	PE	3	3	0	0	3

PROFESSIONAL ELECTIVE-II

S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CU19P21	RF MEMS	PE	3	3	0	0	3
2	CU19P22	Digital Communication Receivers	PE	3	3	0	0	3
3	CU19P23	Cognitive Radio	PE	3	3	0	0	3
4	CU19P24	VLSI for Wireless Communication	PE	3	3	0	0	3
5	CU19P25	Digital Communication over Fading Channels	PE	3	3	0	0	3

PROFESSIONAL ELECTIVE-III

S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CU19P31	Speech and Audio Signal Processing	PE	3	3	0	0	3
2	CU19P32	Digital Image and Video processing	PE	3	3	0	0	3
3	CU19P33	Radar Signal Processing	PE	3	3	0	0	3
4	CU19P34	Electromagnetic Interference and Compatibility	PE	3	3	0	0	3
5	CU19P35	Soft Computing	PE	3	3	0	0	3

PROFESSIONAL ELECTIVE-IV

S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1	CU19P41	Detection and Estimation Theory	PE	3	3	0	0	3
2	CU19P42	Internetworking Multimedia	PE	3	3	0	0	3
3	CU19P43	Millimeter Wave Communication	PE	3	3	0	0	3
4	CU19P44	Communication Network Security	PE	3	3	0	0	3
5	CU19P45	Internet of Things	PE	3	3	0	0	3

AUDIT COURSES -I & II

		SEMESTER I								
S.No	COURSE	COURSE TITLE	CONTACT	L	Т	Р	С			
	CODE		PERIODS							
THEOI	THEORY									
1	AC19101	English for Research Paper Writing	3	3	0	0	0			
		SEMESTER II		J						
S.No	COURSE	COURSE TITLE	CONTACT	L	Т	Р	С			
	CODE		PERIODS							
1	AC19201	Constitution of India	3	3	0	0	0			

OPEN ELECTIVES

S.No	COURSE	COURSE TITLE	CONTACT	L	Т	Р	С			
	CODE		PERIODS							
THEOR	THEORY									
1	CP19O31	Business Analytics	3	2	1	0	3			
2	ED19O31	Industrial Safety	3	3	0	0	3			
3	ED19O32	Operations Research	3	2	1	0	3			
4	PG19O31	Cost Management of Engineering Projects	3	2	1	0	3			
5	ED19O33	Composite Materials	3	3	0	0	3			
6	PG19O33	Waste to Energy	3	2	1	0	3			

SEMESTER WISE CREDIT DISTRIBUTION

CATEGORY	Ι	II	III	IV	Total
FC	4				4
PC	16	12	3		31
PE		9	3		12
EEC			6	12	18
MC	3				3
OE			3		3
Total	23	21	15	12	71

SYLLABUS

SEMESTER I

Subject Code	Subject Name	Category	L	Т	Р	С
MH19105	APPLIED MATHEMATICS FOR COMMUNICATION ENGINEERS	FC	3	1	0	4

Ob	jectives:
•	To develop the ability to use the concepts of Linear algebra for solving problems related to Networks.
•	To formulate and construct a mathematical model for a linear programming problem in real life situation;
•	To expose the students to solve ordinary differential equations by various techniques.

UNIT-I	LINEAR ALGEBRA		12	
Vector space	es - norms - Inner Products - Eigen values using QR transformati	ons - QR factorization - gener	alized	
eigenvectors	s - Canonical forms - singular value decomposition and applicati	ons - pseudo inverse - least s	square	
approximati	ons Toeplitz matrices and some applications.			
UNIT-II	LINEAR PROGRAMMING		12	
Formulation – Graphical solution – Simplex method – Two phase method - Transportation and Assignment Models				
UNIT-III	ORDINARY DIFFERENTIAL EQUATIONS		12	
RungeKutta Methods for system of IVPs, numerical stability, Adams-Bashforth multistep method, solution of sti				
ODEs, shooting method, BVP: Finite difference method, orthogonal collocation method, orthogonal collocation with				
finite eleme	nt method, Galerkin finite element method.			
UNIT-IV	TWO DIMENSIONAL RANDOM VARIABLES		12	
Joint distrib	outions - Marginal and Conditional distributions - Functions of t	wo dimensional random varia	bles –	
Regression	Curve – Correlation.			
UNIT-V	QUEUEING MODELS		12	
Poisson Pro	cess - Markovian queues - Single and Multi-server Models - Lit	tle's formula - Machine Interfe	erence	
Model – Steady State analysis – Self Service queue.				
		Total Contact Hours :	60	
L		LL	1	

Course Outcomes:

On completion of the course, students will be able to

- Analyze and solve system of equations using the techniques of matrix decomposition and least square sense
- Make decisions using the principles of optimality on the problems of dimensionality.
- Solve differential equation using various numerical techniques.
- Apply the concept of correlation and regression in real life situation.
- Analyze and solve those problems that arise in the field of network theory through Queueing models.

Ref	ference Books(s) / Web links:
1	Veerarajan T, Probability, statistics and random process with queueing theory and queueing networks, 4th edition,
	McGraw - Hill Publishing Company Limited.
2	Richard Bronson, "Matrix Operation", Schaum's outline series, 2nd Edition, McGraw Hill, 2011.
3	Taha H.A., "Operations Research: An introduction", Pearson Education Asia, New Delhi, Ninth Edition, 2012.
4	Richard Bronson, Gabriel B.Costa, "Linear Algebra", Academic Press, Second Edition, 2007.
5	Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India,
	Private Ltd., New Delhi (2007).

6	Donald Gross and Carl M. Harris, "Fundamentals of Queueing Theory", 2 nd Edition, John Wiley and Sons, New
0	York.

7 Moon, T.K., Sterling, W.C., Mathematical methods and algorithms for signal processing, Pearson Education, 2000

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	-	-	1	1
CO2	2	1	-	-	1	1
CO3	1	1	-	-	1	2
CO4	1	1	-	-	1	1
CO5	1	1	-	-	1	1
Average	1.4	1	-	-	1	1.2

Subject Code	Subject Name	Category	L	Т	Р	С
CU19101	ADVANCED RADIATION SYSTEMS	PC	3	1	0	4

Objectives:

•	To understand the fundamental parameters of various antennas
•	To be able to learn the various apertures and design considerations of modern antennas
•	To explore MEMS technology in the field of antenna arrays
•	To impart knowledge on the antenna measurements and instrumentations

Review of antenna fundamental parameters, Field equivalence principle, Radiation from Rectangular and Circular apertures, Uniform aperture distribution on an infinite ground plane; Slot antenna; Horn antenna; Reflector antenna, aperture blockage, and design consideration. UNIT-II ARRAYS AND SMART ANTENNAS 12 Introduction-General structure of phased array, linear array theory, variation of gain as a function of pointing direction, effects of phase quantization, frequency scanned arrays, MEMS technology in phased arrays-Retro directive and self-phased arrays. Analog beam forming matrices- Active modules, digital beam forming, smart antenna methods, algorithms. 12 UNIT-III MICRO STRIP ANTENNA 12 Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurem	UNIT-I	RADIATION FROM APERTURES		12		
apertures, Uniform aperture distribution on an infinite ground plane; Slot antenna; Horn antenna; Reflector antenna, aperture blockage, and design consideration. 12 UNIT-II ARRAYS AND SMART ANTENNAS 12 Introduction-General structure of phased array, linear array theory, variation of gain as a function of pointing direction, effects of phase quantization, frequency scanned arrays, MEMS technology in phased arrays-Retro directive and self-phased arrays. Analog beam forming matrices- Active modules, digital beam forming, smart antenna methods, algorithms. 12 UNIT-III MICRO STRIP ANTENNA 12 Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antennas; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 12	Review of antenna fundamental parameters, Field equivalence principle, Radiation from Rectangular and Cir					
aperture blockage, and design consideration. 12 UNIT-II ARRAYS AND SMART ANTENNAS 12 Introduction-General structure of phased array, linear array theory, variation of gain as a function of pointing direction, effects of phase quantization, frequency scanned arrays, MEMS technology in phased arrays-Retro directive and self-phased arrays. Analog beam forming matrices- Active modules, digital beam forming, smart antenna methods, algorithms. 12 UNIT-III MICRO STRIP ANTENNA 12 Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 12	apertures, U	Iniform aperture distribution on an infinite ground plane; Slot anten	na; Horn antenna; Reflector	antenna,		
UNIT-IIARRAYS AND SMART ANTENNAS12Introduction-General structure of phased array, linear array theory, variation of gain as a function of pointing direction, effects of phase quantization, frequency scanned arrays, MEMS technology in phased arrays-Retro directive and self-phased arrays. Analog beam forming matrices- Active modules, digital beam forming, smart antenna methods, algorithms.12UNIT-IIIMICRO STRIP ANTENNA12Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna.12Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design requirements, modeling and characterization of wearable antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design.12	aperture blo	ckage, and design consideration.				
Introduction-General structure of phased array, linear array theory, variation of gain as a function of pointing direction, effects of phase quantization, frequency scanned arrays, MEMS technology in phased arrays-Retro directive and self-phased arrays. Analog beam forming matrices- Active modules, digital beam forming, smart antenna methods, algorithms. 12 UNIT-III MICRO STRIP ANTENNA 12 Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 12	UNIT-II	ARRAYS AND SMART ANTENNAS		12		
direction, effects of phase quantization, frequency scanned arrays, MEMS technology in phased arrays-Retro directive and self-phased arrays. Analog beam forming matrices- Active modules, digital beam forming, smart antenna methods, algorithms. 12 UNIT-III MICRO STRIP ANTENNA 12 Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 12	Introduction	n-General structure of phased array, linear array theory, variation	n of gain as a function of	pointing		
and self-phased arrays. Analog beam forming matrices- Active modules, digital beam forming, smart antenna methods, algorithms. 12 UNIT-III MICRO STRIP ANTENNA 12 Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 Oncept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 12 International test range Design. Internation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 160	direction, et	ffects of phase quantization, frequency scanned arrays, MEMS technology	ology in phased arrays-Retro	directive		
methods, algorithms. 12 UNIT-III MICRO STRIP ANTENNA 12 Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 Oncept of EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 10 Total Contact Hours : 60	and self-ph	ased arrays. Analog beam forming matrices- Active modules, d	igital beam forming, smart	antenna		
UNIT-III MICRO STRIP ANTENNA 12 Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 16	methods, al	gorithms.				
Radiation Mechanism from patch; Excitation techniques; Microstrip dipole; Rectangular patch, Circular patch, and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antenna; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 Oncept of EMC MATENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. 16	UNIT-III	MICRO STRIP ANTENNA		12		
and Ring antenna – radiation analysis from transmission line model, cavity model; input impedance of rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. 12 UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antennas; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	Radiation M	echanism from patch; Excitation techniques; Microstrip dipole; Rect	angular patch, Circular patch			
rectangular and circular patch antenna; Microstrip array and feed network; Application of microstrip array antenna. UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antennas; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	and Ring an	tenna – radiation analysis from transmission line model, cavity mode	; input impedance of	, 		
antenna. UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antennas; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	rectangular	and circular patch antenna; Microstrip array and feed network; Applic	cation of microstrip array			
UNIT-IV WEARABLE AND RECONFIGURABLE ANTENNAS 12 Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antennas; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	antenna.					
Overview of wearable systems and its characteristics, antennas for wearable devices, design requirements, modeling and characterization of wearable antennas; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	UNIT-IV	WEARABLE AND RECONFIGURABLE ANTENNAS		12		
and characterization of wearable antennas; reconfigurable methodologies, design considerations for reconfigurable systems, reconfigurable planar and printed antenna configurations. 12 UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	Overview o	f wearable systems and its characteristics, antennas for wearable de	vices, design requirements, 1	nodeling		
systems, reconfigurable planar and printed antenna configurations. UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	and charact	erization of wearable antennas; reconfigurable methodologies, desi	gn considerations for recon	figurable		
UNIT-V EMC ANTENNA AND ANTENNA MEASUREMENTS 12 Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	systems, rec	configurable planar and printed antenna configurations.				
Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	UNIT-V	EMC ANTENNA AND ANTENNA MEASUREMENTS		12		
guide, Multi turn loop; Antenna measurement and instrumentation – Gain, Impedance, antenna factor measurement; Antenna test range Design. Total Contact Hours : 60	Concept of EMC measuring antenna; Receiver and Transmitter antenna factors; Log periodic dipole, Biconical, Ridge					
Antenna test range Design. Total Contact Hours : 60	guide, Multi turn loop; Antenna measurement and instrumentation - Gain, Impedance, antenna factor measureme					
Total Contact Hours : 60	Antenna test range Design.					
			Total Contact Hours	: 60		

Course Outcomes:

On completion of the course, students will be able to

• To apply the knowledge of fundamental parameters of various antennas

To analyse the radiation from rectangular, circular and uniform apertures
To design the micro strip patch antenna
To analyse and design various reconfigurable antennas
To explain the radiation mechanism and the antenna factor measurements
ference Books(s) / Web links:
Zhijun Zhang" Antenna Design for Mobile Devices" 1 st Edition, John Wiley & Sons (Asia) Ltd, Newyork, 2011.
Balanis.A, "Antenna Theory Analysis and Design", John Wiley and Sons, New York, 1982.
Krauss.J.D, "Antennas", II edition, John Wiley and sons, New York, 1997.
W.L.Stutzman and G.A.Thiele,"Antenna Theory and Design", 2nd Edition, John Wiley& Sons Inc., 1998.
S.DrabowitchEt.al,"Modern Antennas", 2 nd Edition Springer science business Media, Inc.2005.
ZhiNing Chen, "Antennas for portable devices", John Wiley& Sons Inc., 2007.
Eng Hock Lim, "Compact multifunctional antennas for wireless systems", John Wiley& Sons Inc., 2012.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	1	1	1
CO2	3	3	1	2	2	1
CO3	3	3	2	2	3	1
CO4	2	3	1	2	3	2
CO5	2	2	3	3	2	1
Average	2.6	2.6	1.6	1.4	2.2	1.2

Subject Code	Subject Name	Category	L	Т	Р	С
CU19102	OPTICAL NETWORKS	РС	3	0	0	3

Objectives:						
• To have deep learning about the different optical system components and network architecture						
• To enrich the knowledge about the different topologies, protocols related to optical network	• To enrich the knowledge about the different topologies, protocols related to optical network					
• To explore the different system models, control and management of optical networks						
• To deal with the issues related to fault and safety managements						
UNIT I ODTICAL NETWORK ADCHITECTURES	0					

UNIT-I	OPTICAL NETWORK ARCHITECTURES	9				
Introduction to Optical Networks; SONET / SDH standards, Layered Architecture; Broadcast and Select Networks-						
Topologies t	for Broadcast Networks, Media Access Control Protocols, Wavelength Routing Architecture.					
UNIT-II	WAVELENGTH ROUTING NETWORKS	9				
The optical	layer, Node Designs, Optical layer cost tradeoff, Routing and wavelength Assignment, Virtual topological topological sector and the sector of the the sector	ology				
design, Arch	nitectural variations.					
UNIT-III	PACKET SWITCHING AND ACCESS NETWORKS	9				
Photonic Packet Switching - OTDM, Multiplexing and Demultiplexing, Synchronisation, Broadcast OTDM						
networks, S	witch-based networks; Access Networks - Network Architecture overview, OTDM networks; Op	ptical				
Access Netv	vork Architectures.					
UNIT-IV	NETWORK DESIGN AND MANAGEMENT	9				
Transmission System Engineering - System model, Power penalty - transmitter, receiver, Optical amplifiers,						
crosstalk, dispersion; Wavelength stabilization; Overall design considerations.						
Control and Management – Network management functions, Configuration management, Fault management.						
UNIT-V NETWORK PERFORMANCE AND FUTURE TRENDS						
Performance Impairments in an Optical Network Environment, Performance Evaluation: Methodology and Ca						

Studies, Passive Optical Networks, Metropolitan Area Networks, Long-Haul and Ultra Long-Haul Networks.			
	Total Contact Hours	:	45

Course Outcomes:				
On completion of the course, students will be able to				
• Identify the transmission of data in different optical network architectures	Identify the transmission of data in different optical network architectures			
Design the virtual topology and various routing assignments				
Discuss the various routing topologies in packet switching and access networks				
Analyse and address the issues related to faults and safety management in the optical networks				
• Evaluate the methods for network performance.				

Reference Books(s) / Web links:

1	Rajiv Ramaswami and Kumar N. Sivarajan, "Optical Networks: A Practical Perspective", Harcourt Asia Pte Ltd.,					
T	Second Edition 2004.					
2	C. Siva Ram Moorthy and Mohan Gurusamy, "WDM Optical Networks: Concept, Design and Algorithms",					
4	Prentice Hall of India, Ist Edition, 2002.					
3	Biswanath Mukherjee, "Optical Communication Networks", Mc-GrawHill ©1997, First Edition					
4	P.E. Green, Jr., "Fiber Optic Networks", Prentice Hall, NJ, 1993.					
5	Rajiv Ramaswami and Kumar N. Sivarajan, "Optical Networks: A Practical Perspective", Harcourt Asia Pte					
Э	Ltd., First Edition 2006.					
(Thomas E. Stern, Georgios Ellinas, Krishna Bala, Multiwavelength Optical Networks – Architecture, Design					
0	and control , Cambridge University Press, 2nd Edition, 2009.					

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	1	1	1
CO2	3	3	3	2	1	1
CO3	3	3	3	1	1	1
CO4	3	3	3	1	1	2
CO5	3	3	2	1	1	1
Average	3	3	2.8	1.2	1	1.2

Subject Code	Subject Name	Category	L	Т	Р	С
CU19103	ADVANCED DIGITAL COMMUNICATION TECHNIQUES	PC	3	0	0	3
Objectives:				<u>, , , , , , , , , , , , , , , , , , , </u>		
To under	tand the basics of signal-space analysis and coherent & non-coherent r	eceivers and	its i	mpa	ct c	m
different c	hannel characteristics.					
• To unders	and the different Equalizers.					
• To unders	and the different block coded digital communication systems.					
• To unders	and the convolutional coded digital communication systems.					
• To unders	and Orthogonal Frequency Division Multiplexing.					
UNIT-I (COHERENT AND NON-COHERENT COMMUNICATION				9	
Coherent recei	vers – Optimum receivers in WGN- Coherent receivers – OPSK: OAM– R	avleigh and R	iciar	ı cha	nne	ls

–Partially coherent receivers – Optimum receivers in WGN- Coherent receivers – QPSK; QAM– Rayleigh and Rician channels –Partially coherent receivers –DPSK; M-PSK-BER Performance Analysis. Carrier Synchronization- Bit synchronization. Non-coherent FSK Receiver

UNIT-II EQUALIZATION TECHNIQUES

ISI – Nyquist Criterion- Controlled ISI-Partial Response signals-Equalization algorithms– Linear equalizer – Decision feedback equalization – Adaptive Equalization algorithms.

9

UNIT-III BLOCK CODED DIGITAL COMMUNICATION	9				
Shannon's channel coding theorem; Channel capacity; Matched filter; Concepts of Spread spectrum communication					
-Linear block codes; Hamming; Golay; Cyclic; BCH; Reed - Solomon codes - Space time block codes.					
UNIT-IV CONVOLUTIONAL CODED DIGITAL COMMUNICATION	9				
Representation of codes using Polynomial, State diagram, Tree diagram, and Trellis diagram - Decoding techn	iques				
using Maximum likelihood, Viterbi algorithm, Sequential and Threshold methods - Error probability performance	ce for				
BPSK and Viterbi algorithm, Turbo Coding.					
UNIT-V OFDM					
Generation of sub -carriers using the IFFT; Guard Time and Cyclic Extension; Windowing; OFDM signal process	ssing;				
Peak Power Problem: PAP reduction schemes- Clipping, Filtering, Coding and Scrambling. ICI reduction schemes,					
Case study-IEEE 802.11 physical layer design using OFDM.					
Total Contact Hours :	45				

Coι	Course Outcomes:				
On	On completion of the course, students will be able to				
•	Describe the concepts of signal space analysis in coherent and non-coherent receivers.				
•	Describe different Equalization techniques.				
•	Apply different block codes.				
•	Apply convolutional code.				

• Design OFDM based wireless systems.

Reference Books(s) / Web links:

1	M.K.Simon, S.M.Hinedi and W.C.Lindsey, Digital communication techniques; Signalling and detection, Prentice Hall India, New Delhi. 1995.

- 2 Simon Haykin, Digital communications, John Wiley and sons, 1998
- Bernard Sklar., 'Digital Communications', second edition, Pearson Education, 2001. 3
- 4 John G. Proakis., 'Digital Communication', 4 th edition, McGraw Hill Publication, 2001
- 5
- Theodore S.Rappaport., 'Wireless Communications', 2nd edition, Pearson Education, 2002 Stephen G. Wilson., 'Digital Modulation and Coding', First Indian Reprint, Pearson Education, 2003. 6
- Richard Van Nee & Ramjee Prasad., 'OFDM for Multimedia Communications' Artech House Publication, 2001. 7

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	2
CO2	3	3	3	2	2	2
CO3	3	3	3	2	2	2
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	3
Average	3	3	3	2.4	2.4	2.4

Subject Code	Subject Name	Category	L	Т	Р	С
CU19141	ADVANCED DIGITAL SIGNAL PROCESSING	PC	3	0	2	4

Ob	jectives:
	To provide in-depth treatment on methods and techniques in discrete-time signal transforms, digital filter design,
•	optimal filtering
\bullet	To understand the methods and techniques in power spectrum estimation and signal modeling
•	To know the concepts of adaptive filters and algorithms.

UNIT-I	DISCRETE RANDOM SIGNAL PROCESSING		9		
Introduction to Estimation of probability theory-Mathematical preliminaries- Weiner Khitchine relation - Power					
spectral den	sity - filtering random process, Spectral Factorization Theorem, special type	es of random process –			
UNIT-II	SIGNAL MODELING		9		
Model based	l approach – AR, MA, ARMA Signal modelling – Parameter estimation usir	ng Yule-Walker metho	d.Signal		
modelling-L	east Squares method, Pade approximation, Prony's method, iterative Pre	filtering, Finite Data	records,		
Stochastic N	Iodels.				
UNIT-III	SPECTRUM ESTIMATION		9		
Non-Parame	tric methods - Correlation method - Co-variance estimator - Performa	ance analysis of estin	nators –		
Unbiased co	nsistent estimators - Periodogram estimator - Barlett spectrum estimation -	Welch estimation.			
UNIT-IV	LINEAR ESTIMATION AND PREDICTION		9		
Efficiency of	of estimator - Least mean squared error criterion - Wiener filter - Disc	rete Wiener Hoff equ	ations –		
Recursive es	stimators - Kalman filter - Linear prediction, Prediction error - Whitening	filter, Inverse filter – L	evinson		
recursion, L	evinson recursion algorithm for solving Toeplitz system of equations.				
UNIT-V	ADAPTIVE FILTERS		9		
FIR Adaptiv	ve filters - Newton's steepest descent method - Adaptive filters based of	on steepest descent m	ethod -		
Widrow Hopf LMS Adaptive algorithm – Adaptive channel equalization – Adaptive echo canceller – Adaptive noise					
cancellation - RLS Adaptive filters - Exponentially weighted RLS - Sliding window RLS - Simplified IIR LMS					
Adaptive filter.					
		Contact Hours	: 45		

	List of Experiments	
1	Basic Signal Representation	
2	Auto and Cross Correlation	
3	Sampling FFT Of Input Sequence	
4	Butterworth Low pass And High pass Filter Design	
5	Normal Equation Using Levinson Durbin	
6	Cascade Digital IIR Filter Realization	
7	Estimation Of PSD	
	Contact Hours :	30
	Total Contact Hours :	75

Cou	Course Outcomes:				
On	completion of the course, students will be able to				
•	Understand the various techniques to estimate the probability of a random signal				
•	Identify the appropriate method for spectrum estimation				
•	Estimate and predict the error present in different types of filters				
•	Apply adaptive filters for various applications				
•	Analyze random signals and simulate random signal processing techniques.				

Ref	Reference Books(s) / Web links:					
1	Monson H. Hayes, "Statistical Digital Signal Processing and Modeling", John Wiley and Sons Inc., New York, 2006					
2	Sophoncles J. Orfanidis, "Optimum Signal Processing ", McGraw-Hill, 2000.					
3	John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Prentice Hall of India, New Delhi, 2005.					
4	Simon Haykin, "Adaptive Filter Theory", Prentice Hall, Englehood Cliffs, NJ1986.					
5	S. Kay," Modern spectrum Estimation theory and application", Prentice Hall, Englehood Cliffs, NJ1988.					

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	-	1	-	1
CO2	3	3	3	1	1	2
CO3	1	1	2	2	3	2
CO4	-	-	1	1	1	3
CO5	-	-	-	1	3	3
Average	2.3	2.3	2	1.2	2	2.2

Subject Code	Subject Name	Category	L	Т	Р	С
PG19101	RESEARCH METHODOLOGY AND IPR	MC	3	0	0	3

Ob	jectives:
•	To inculcate the importance of research methodology and Intellectual Property Rights. The main objective of the IPR is to make the students aware of their rights for the protection of their invention done in their project work.
•	To get registration of patents in our country and foreign countries of invention, designs and thesis or theory written. To get knowledge of patents, copy right, trademarks and designs.

UNIT-I	RESEARCH METHODOLOGY		9	
Meaning of	research problem, Sources of research problem, Criteria Characteristi	cs of a good research problem,	Errors	
in selecting	a research problem, Scope and objectives of research problem. Appro	aches of investigation of soluti	ons	
for research	problem, data collection, analysis, interpretation, Necessary instrume	ntations.		
UNIT-II	REVIEW OF LITERATURE AND TECHNICAL WRITING		9	
Effective lite	erature studies approaches, analysis Plagiarism, Research ethics, Effe	ective technical writing, how to	write	
report, Pape	r Developing a Research Proposal, Format of research proposal, a pre	sentation and assessment by a	review	
committee.			-1	
UNIT-III	INTELLECTUAL PROPERTY RIGHTS		9	
Nature of In	ntellectual Property: Patents, Designs, Trade and Copyright, copyr	ight registration in India Proc	cess of	
Patenting an	nd Development: technological research, innovation, patenting, d	levelopment. International Sci	enario:	
Internationa	l cooperation on Intellectual Property. Procedure for grants of patents	s, Patenting under Patent Coop	eration	
Treaty.			-)	
UNIT-IV	PATENT RIGHTS AND RECENT DEVELOPMENTS IN IPR		9	
Patent Righ	ts: Scope of Patent Rights. Licensing and transfer of technology	. Patent information and data	abases.	
Geographica	al Indications. New Developments in IPR: Administration of Patent	System. New developments i	n IPR;	
IPR of Biolo	ogical Systems, Computer Software etc. Traditional knowledge Case S	Studies, IPR and IITs.	-)	
UNIT-V	INDUSTRIAL DESIGNS AND GEOGRAPHICAL INDICATION	ONS	9	
Industrial designs and IC Layout design, Registrations of designs, conditions and procedures of industrial designs-				
Cancellation	of Registration, International convention of design- types and	functions. Semiconductor Inte	egrated	
circuits and	circuits and layout design Act- Geographical indications-potential benefits of Geographical Indications.			
		Total Contact Hours :	45	
Course Out	comes:			
On completi	on of the course, students will be able to			
• Student	can understand the research problem formulation and analyze research	ch related information.		
• Unders	tanding that when IPR would take such important place in growth of i	individuals & nation.		
• Understand the importance of copyright and industrial designs.				
Unders	tand that IPR protection provides an incentive to inventors for further	research work and investment	in R	
• & D, w	hich leads to creation of new and better products, and in turn brings a	bout, economic growth and soc	cial	
benefits	З.			
The stu	dents once they complete their academic projects, they get awareness	of acquiring the patent and		
 copyrig 	ht for their innovative works.			

Text Book(s):

1	Neeraj Pandey and Khushdeep Dharni, Intellectual Property Rights, First edition, PHI learning Pvt. Ltd., Delhi, 2014.
2	Uma Sekaran and Roger Bougie, Research methods for Business, 5 th Edition, Wiley India, New Delhi, 2012.
3	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'" 2 nd edition. Juta Academic, 2001
4	Ramakrishna B & Anilkumar H S, Fundamentals of Intellectual Property Rights, Ist edition, Notion Press, 2017.

Reference Books(s) / Web links:

William G Zikmund, Barry J Babin, Jon C.Carr, Atanu Adhikari, Mitch Griffin, Business Research methods, A 1 South Asian Perspective, 8th Edition, Cengage Learning, New Delhi, 2012.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	-	3	2	3
CO2	-	-	-	2	3	3
CO3	-	-	-	3	2	2
CO4	-	-	-	3	3	2
CO5	-	-	-	3	2	3
Average	-	-	-	2.8	2.4	2.6

Subject Code	Subject Name	Category	L	Т	Р	С
AC19101	ENGLISH FOR RESEARCH PAPER WRITING	HS	3	0	0	0
	(Common to all branches of M.E. /M.Tech / MBA – I Semester)					

Objectives:

Express technical ideas in writing •

- Plan and organize the research paper •
- Understand the structure and familiarise the mechanics of organised writing
- Improvise academic English and acquire research writing skills •

UNIT-I INTRODUCTION TO RESEARCH WRITING

Research – Types of Research – Selecting the Primary resources – Categorizing secondary sources – Discovering a researchable area and topic - Need Analysis - Research Question- Focussing on the Research Problem- Developing Research Design - Framing the Hypothesis - Identifying the Scope of the Research - Writing - General and Academic Writing

9

9

9

9

UNIT-II LANGUAGE OF WRITING

Active reading - text mining - use of academic words - jargons - ambiguities - use of expression - use of tense proper voices - third person narration - phraseology - use of foreign words - use of quotes - interpreting quotes. Q

UNIT-III THE FORMAT OF WRITING

Types of Journals – different formats and styles – IEEE format – Structure – Margins – Text Formatting – Heading and Title - Running Head with Page Numbers - Tables and illustrations - Paper and Printing - Paragraphs -Highlighting – Quotation – Footnotes

UNIT-IV **ORGANISING A RESEARCH PAPER**

Title- Abstract - Introduction - Literature review - Methodology - Results - Discussion - Conclusion - Appendices -Summarising – Citation and Bibliography

UNIT-V PUBLISHING PAPER

Finding the Prospective publication or Journal – analysing the credits – Reviewing – Revising – Plagiarism Check –

Proof reading - Preparing the Manuscript- Submitting - Resubmitting - Follow u	p – Publishing	
	Total Contact Hours	 45

Co	Course Outcomes:			
On	On completion of the course, students will be able to			
•	Understand the basic structure of research work			
•	Apply proper use of language in writing paper			
•	Comprehend different formats of journal paper			
•	Learn the process of writing a research paper			
	Know the process of publishing journal paper			

Reference Books(s) / Web links:

1	Adrian Wallwork: "English for Writing Research Papers", Springer Science Business Media, Second Edition, LLC 2011
2	Stephen Howe and Kristina Henrikssion: "Phrasebook for Writing Papers and Research in English", The Whole
	World Company Press, Cambridge, Fourth edition 2007
3	The Modern Language Association of America: "MLA Handbook for Writers of Research Papers" 8 th Edition,
3	The Modern Language Association of America, 2016
4	Rowena Murray: The Handbook of Academic Writing: A Fresh Approach, Sarah Moore Open University Press,
4	2006
5	Stephen Bailey: Academic Writing: A Practical Guide for Students Routledge Falmer: 2003
6	Joseph M. Moxley: Publish, Don't Perish: The Scholar's Guide to Academic Writing and Publishing, Praeger
U	Publishers, 1992

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	-	2	2	3
CO2	-	-	-	2	2	3
CO3	-	-	-	2	2	2
CO4	-	-	-	2	2	2
CO5	-	-	-	2	2	3
Average	-	-	-	2	2	2.6

Subject Code	Subject Name	Category	L	Т	Р	С
CU19111	COMMUNICATION SYSTEMS LABORATORY	PC	0	0	4	2

Ob	Objectives:					
•	To facilitate the knowledge about different modulation techniques and error control codes					
•	To explore the trends in microwave devices and transmission lines					
•	To enrich the ideas in simulation tools for antenna radiation pattern measurement					
•	To learn the design procedures of OFDM					
٠	To familiar in vector network analyser for S-parameter estimation.					

	List of Experiments						
1	Channel equalizer design (LMS, RLS)						
2	Performance Evaluation of digital modulation schemes						
3	OFDM transceiver design						

4	Performance evaluation of simulated CDMA System.			
5	Error control codes			
6	Simulation of Microstrip Antennas			
7	Antenna Radiation Pattern measurement.			
8	Measurement of transmission line parameters.			
9	S-parameter estimation of Microwave device using Network Analyser.			
10	BER performance of MC-CDMA system			
		Total Contact Hours	:	60

Course Outcomes:

On completion of the course, students will be able to

- To evaluate the performance of digital modulation techniques and error control codes.
- To measure the parameters of microwave devices and transmission lines.
- To measure the antenna radiation pattern.
- To evaluate the performance of CDMA, OFDM and MC-CDMA systems.
- To measure the S-parameters of microwave devices using vector network analyser.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	1	2
CO2	3	3	3	3	2	2
CO3	3	3	3	3	3	2
CO4	3	3	3	2	2	2
CO5	3	3	3	3	3	2
Average	3	3	3	2.6	2.2	2

SEMESTER II

Subject Code	Subject Name	Category	L	Т	Р	C
CU19201	WIRELESS COMMUNICATION NETWORKS	РС	3	0	0	3

Ob	jectives:
•	To make the students to know about the various propagation methods and channel models.
•	To understand the concepts of transmit and receive diversity.
•	To introduce the various multiple access schemes.
•	To know the concepts of MIMO techniques.
•	To enhance the understanding of 3G systems and 4G networks.

UNIT-I WIRELESS CHANNEL PROPAGATION AND MODEL	9
Propagation of EM signals in wireless channel - Reflection, diffraction and Scattering-Small scale fading-	channel
classification- channel models - COST -231 Hata model, Longley-Rice Model, NLOS Multipath Fading	Models:
Rayleigh, Rician, Nakagami, Link power budget Analysis.	
UNIT-II DIVERSITY	9
Realization of independent fading paths, Receiver Diversity: selection combining, Threshold Combining, M	aximum-
ratio Combining, Equal gain combining. Transmitter Diversity: Channel known at transmitter, channel unkno	vn at the
transmitter.	
UNIT-III MULTI USER SYSTEMS	9

Multiple Access: FDMA, TDMA, CDMA, SDMA, Hybrid techniques, Random Access: ALOHA, SALOHA, CSMA, Scheduling, power control, multiuser diversity.

UNIT-IV	MIMO COMMUNICATIONS	9				
Narrowband MIMO model, Parallel decomposition of MIMO channel, MIMO channel capacity, MIMO Diversity						
Gain: Beamforming, Diversity-Multiplexing trade-offs, Space time Modulation and coding: STBC, STTC, Spatial						
Multiplexing	Multiplexing and BLAST Architectures- MIMO-MU systems.					
UNIT-V	WIRELESS NETWORKS	9				
3G Overview	3G Overview, Migration path to UMTS, UMTS Basics, Air Interface, 3GPP Network Architecture, 4G features and					
challenges, Introduction to wireless LANs - IEEE 802.11 WLANs -Physical Layer- MAC sub layer, Introduction to						
ITE						

Total Contact Hours : 45

Course Outcomes:

On completion of the course, students will be able to

- Analyse the characteristics of wireless propagation channel.
- Infer the various diversity techniques
- Outline the various multi-user systems like FDMA, CDMA, TDMA and SDMA.
- Analyse the techniques in MIMO communications
- Summarise the concepts of 3G and 4G Wireless networks.

Reference Books(s) / Web links:

1 Andreas Goldsmith, Wireless Communications, Cambridge University Press, 2007.

- 3 Harry R. Anderson, "Fixed Broadband Wireless System Design" John Wiley India, 2003.
- 4 Andreas.F. Molisch, "Wireless Communications", John Wiley India, 2006.
- 5 Simon Haykin& Michael Moher, "Modern Wireless Communications", Pearson Education, 2007.
- **5** Rappaport. T.S., "Wireless communications", Pearson Education, 2003.
- 6 Clint Smith. P.E., and Daniel Collins, "3G Wireless Networks", 2nd Edition, Tata McGraw Hill, 2007.
- 7 Vijay. K. Garg, "Wireless Communication and Networking", Morgan Kaufmann Publishers,
- 8 KavethPahlavan, K. PrashanthKrishnamuorthy, "Principles of Wireless Networks", Prentice Hall of India, 2006.
- 9 William Stallings, "Wireless Communications and networks" Pearson / Prentice Hall of India, 2nd Ed., 2007.
- **10** SumitKasera and NishitNarang, "3G Networks–Architecture, Protocols and Procedures", Tata McGraw Hill, 2007.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	2
CO2	3	3	3	2	2	2
CO3	3	3	2	2	2	2
CO4	3	3	3	2	2	2
CO5	3	3	3	2	2	2
Average	3	3	2.8	2	2	2

Subject Code	Subject Name	Category	L	Т	Р	С
CU19202	MIC AND RF SYSTEM DESIGN	PC	3	1	0	4

Ob	jectives:
•	To understand the fundamentals of RF radio system design.
•	To understand the various components that constitutes an RF radio system for wireless Communications.
•	To know the basic analysis techniques needed for evaluating the performance of an RF radio system for Wireless applications.

UNIT-I CMOS PHYSICS, TRANSCEIVER SPECIFICATIONS AND	12								
AKCHITECTUKES									
CMOS: Introduction to MOSFET Physics – Noise: Thermal, shot, flicker, popcorn noise transceiver Specifications:									
Two port Noise theory, Noise Figure, THD, IP2, IP3, Sensitivity, SFDR, Phase noise - Specification distribution	Two port Noise theory, Noise Figure, THD, IP2, IP3, Sensitivity, SFDR, Phase noise - Specification distribution over								
a communication link Transceiver Architectures: Receiver: Homodyne, Heterodyne, Image reject, Lov	w IF								
Architectures – Transmitter: Direct up conversion, two step up conversion									
UNIT-II IMPEDANCE MATCHING AND AMPLIFIERS	12								
S-parameters with Smith chart - Passive IC components - Impedance matching networks Amplifiers: Common	Gate,								
Common Source Amplifiers - OC Time constants in bandwidth estimation and enhancement - High frequ	uency								
amplifier design Low Noise Amplifiers: Power match and Noise match - Single ended and Differential LN	As –								
Terminated with Resistors and Source Degeneration LNAs.									
UNIT-III FEEDBACK SYSTEMS AND POWER AMPLIFIERS	12								
Feedback Systems: Stability of feedback systems: Gain and phase margin, Root-locus techniques									
- Time and Frequency domain considerations - Compensation Power Amplifiers: General model - Class A, AB,	B, C,								
D, E and F amplifiers -Linearization Techniques - Efficiency boosting techniques - ACPR metric - D	esign								
considerations.									
UNIT-IV RF FILTER DESIGN, OSILLATOR, MIXER	12								
Overview-basic resonator and filter configuration-special filter realizations-filter implementation. Basic osci	llator								
model-high frequency oscillator configuration- basic characteristics of mixers-phase locked loops-RF direct	tional								
couplers hybrid couplers-detector and demodulator circuits.									
UNIT-V MIC COMPONENTS, ANTENNAS AND MEASUREMENT TECHNIQUES	12								
Introduction to MICs-Fabrication Technology, Advantages and applications, MIC components-Micro	strip								
components, Coplanar circuits, Integrated antennas, photonic band gap antennas, Measurement techniques-test fit	ixture								
measurements, probe station measurements, thermal and cryogenic measurements, experimental field probing									
techniques.									
Total Contact Hours :	60								

Course Outcomes:

On completion of the course, students will be able to

- To understand the specification and architectures of transceivers
- To analyze time and frequency domain of various power amplifiers
- To able to design RF circuits
- To able to analyze the performance of RF circuits
- To explain the radiation mechanism and the antenna factor measurements

Reference Books(s) / Web links:

1	T. Lee,"Design of CMOS RF Integrated Circuits", Cambridge, 2004.
2	B.Razavi, "RF Microelectronics", Pearson Education, 1997.
3	Jan Crols, MichielSteyaert,"CMOS Wireless Transceiver Design", Kluwer Academic Publications, 1997.
4	B. Razavi, Design of analog CMOS Integrated Circuits", McGraw Hill, 2001
5	I.D. Robertson &S. Lucyszyn, "RFIC and MMIC Design and Technology", IEE Circuits, Devices and Systems
	series 13, London, UK, 2001.

	PO CO	PO1	PO2	PO3	PO4	PO5	PO6				
	CO1	3	3	2	2	1	1				
	CO2	3	3	3	2	1	1				
	CO3	3	3	3	2	2	1				
	CO4	3	3	3	2	2	1				
	CO5	3	3	2	1	2	1				
	Average	3	3	2.6	1.8	1.6	1):	
Subject Code		Su	ıbject Namo	e			Category	L	Т	Р	С
CU19203	COMMUN	ICATION SI	SYSTEM MULATIO	MODEI N	LING AN	D	PC	3	0	0	3

Ob	jectives:
•	To understand the aspect of simulation and modeling.
•	To understand random signals and process
٠	To get exposed to simulation methods for wireless systems
•	To know modeling procedures for various channels.

UNIT-I INTRODUCTION

Role of Simulation-Fundamental Concepts and Techniques: Sampling - quantizing - reconstruction and interpolation - simulation sampling frequency - low pass simulation models for band pass – low pass complex envelope for bandpass signals - linear bandpass systems - multicarrier signals - nonlinear and time - varying systems.

9

Total Contact Hours

: 45

UNIT-II GENERATING AND PROCESSING RANDOM SIGNALS

Stationary and Ergodic Processes: Uniform random number generators - mapping uniform RVs to an arbitrary PDF - generating uncorrelated Gaussian random numbers - generating correlated Gaussian random numbers - PN sequence generators

UNIT-III METHODOLOGY FOR SIMULATING A WIRELESS SYSTEM

Monte Carlo Simulation Fundamental Concepts: Applications and integration - two Monte Carlo examples; Semi Analytic Techniques System: Level simplifications and sampling rate considerations - overall methodology; Modeling and Simulation of Nonlinearities: Introduction - modeling and simulation of memory less nonlinearities - modeling and simulation of nonlinearities with memory

UNIT-IV MODELING AND SIMULATION OF TIME-VARYING SYSTEMS

Introduction: Models for LTV systems - random process models - simulation models for LTV systems; Wired and guided wave - radio channels - multipath fading channels - modeling multipath fading channels; Random process models - simulation methodology; Discrete Channel Models: Discrete memory less channel models - Markov models for discrete channels with memory- example HMMs - Gilbert and Fritchman models - estimation of Markov model parameters.

UNIT-V EFFICIENT SIMULATION TECHNIQUES

Tail Extrapolation: PDF estimators- importance sampling; Case study of a cellular radio system; Cellular radio system - simulation methodology - two example simulations; A code-division multiple access system - FDM system with a nonlinear satellite transponder

Course Outcomes:

On completion of the course, students will be able to

- Design various models for wireless communication
- Generate and process various random signals
- Paraphrase various methodology to simulate a wireless system
- Model and simulate various channels

• Apply various efficient techniques in simulating wireless communication technologies

Ref	ference Books(s) / Web links:
1	William H. Tranter, K. Sam Shanmugan, Theodore S. Rappaport and Kurt L. Kosbar "Principles of
I	Communication Systems Simulation with Wireless Applications", Prentice Hall, Upper Saddle River, 2003.
2	M. C. Jeruchim, Philip Balaban and K.Samshanmugam. "Simulation of Communication Systems", Plenum Press,
4	2007.
3	M. Law and W. David Kelton, "Simulation Modelling and Analysis", McGraw Hill, 2008.
4	K. Hayes, "Modelling and Analysis of Computer Communication Networks", Plenum Press, 1984.
5	Banks, J. S. Carson, Nelson and D. M. Nicol, "Discrete Event System Simulation", 4th Edition, Prentice Hall of
Э	India, 2005.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	2	-	2	-	-
CO2	3	2	2	2	1	1
CO3	3	3	2	2	1	1
CO4	3	3	2	2	1	1
CO5	2	3	2	2	1	1
Average	2.8	2.6	2	2	1	1

Subject Code	Subject Name	Category	L	Т	Р	С
AC19201	CONSTITUTION OF INDIA	MC	3	0	0	0

Ob	Objectives:					
•	To inculcate the values enshrined in the Indian constitution.					
•	To create a sense of responsible and active citizenship.					
•	To know about Constitutional and Non- Constitutional bodies					
•	To understand sacrifices made by the freedom fighters.					

UNIT-I INTRODUCTION	9						
Historical Background - Constituent Assembly of India - Philosophical foundations of the Indian Constitution -							
Features - Basic Structure – Preamble.							
UNIT-II UNION GOVERNMENT	9						
Union and its territory - Citizenship - Fundamental Rights - Directive Principles of State Policy (DPS	SP) - Fundamental						
Duties.							
Union Government: Executive, Legislature and Judiciary: President - Vice President - Prime Min	nister - Central						
Council of Ministers - Cabinet Committees - Parliament: Committees, Forums and Groups - Supreme	e Court.						
UNIT-III STATE GOVERNMENT & UNION TERRITORIES	9						
State Government : Executive, Legislature and Judiciary- Governor - Chief Minister - State Cou	ncil of Ministers -						
State Legislature - High Court - Subordinate Courts -Panchayati Raj - Municipalities-Union Territ	tories - Scheduled						
and Tribal Areas.							
UNIT-IV RELATIONS BETWEEN UNION AND STATES	9						
Relations between Union and States - Services under Union and States. Cooperative Societies - Sch	Relations between Union and States - Services under Union and States. Cooperative Societies - Scheduled and Tribal						
Areas - Finance, Property, Contracts and Suits - Trade and Commerce within Indian Territory - Tribu	unals.						
UNIT-V CONSTITUTIONAL BODIES AND AMENDMENTS	9						

Introduction to Constitutional & Non-Constitutional Bodies-Elections - Special Provisions relating to certain classes -Languages - Emergency Provisions - Miscellaneous - Amendment of the Constitution - Temporary, Transitional and Special Provisions - Short title, date of commencement, Authoritative text in Hindi and Repeals. Schedules of the Constitution of India - Appendices in the Constitution of India.

> **Total Contact Hours** : 45

Course Outcomes:

On completion of the course, students will be able to

- Appreciate the philosophical foundations of the Indian Constitution.
- Understand the functions of the Indian government. •
- Understand and abide the rules of the Indian constitution.
- Gain knowledge on functions of state Government and Local bodies. •
- Gain Knowledge on constitution functions and role of constitutional bodies and amendments of constitution. •

Text Book(s): M Lakshmikanth "Indian Polity", McGraw Hill Education, 5th edition 2017. 1 Durga Das Basu, "Introduction to the Constitution of India", Lexis Nexis, New Delhi., 21st edition, 2013. 2 **Reference Books(s) / Web links:** Sharma, Brij Kishore, "Introduction to the Constitution of India", Prentice Hall of India, New Delhi, 7th edition, 1 2015. Subhash Kashyap, "Our Constitution: An Introduction to India's Constitution and Constitutional Law", National 2 Book Trust India, 1994.

Mahendra Prasad Singh and Himanshu Roy, "Indian Political System", Pearson India, 4th edition, 2017. 3

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	-	-	-	3
CO2	-	-		-	-	2
CO3	-	-	-	-	-	3
CO4	-	-	-	-	-	2
CO5	-	-	-	-	-	3
Average	-	-	-	-	-	2.6

Subject Code	Subject Name	Category	L	Т	Р	С
CU19211	RF SYSTEM DESIGN LABORATORY	PC	0	0	4	2

Ob	Objectives:				
	To enable the students to verify the basic principles and design aspects involved in high frequency				
•	communication systems components				
	To expose the student to different high frequency components and conduct the experiments to analyze and				
-	interpret data to produce meaningful conclusion and match with theoretical concepts.				
•	To design and develop RF components using microstrip technology				

List of Experiments

1	Measurement of S parameters for a) Inductor b) Capacitor c) impedance matching circuits, filters using
T	network analyzer

- **2** Design of /2, /4 micro strip transmission line.
- **3** Design of microstrip inductor and capacitor.
- **4** Design of impedance matching network.
- **5** Design of low pass, high pass, band pass and band stop filter at RF.
- **6** Design and characterization of microstrip patch antenna array.
- 7 Design and characterization of Mixer
- 8 Design and characterization of VCO

Total Contact Hours :

60

9

Course Outcomes:

On completion of the course, students will be able to

- Apply knowledge to identify a suitable architecture and systematically design an RF system.
- Comprehensively record and report the measured data, and would be capable of analyzing, interpreting the
- experimentally measured data and produce the meaningful conclusions.
- Design and characterize microstrip patch antenna array.
- Design and develop filters.
- Characterize Mixer and VCO.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	2	1
CO2	2	2	2	3	2	1
CO3	2	3	3	2	3	2
CO4	2	3	3	2	3	2
CO5	2	2	2	2	2	1
Average	2.2	2.4	2.4	2.2	2.4	1.4

SEMESTER III

Subject Code	Subject Name	Category	L	Т	Р	С
CU19301	WIRELESS AD HOC AND SENSOR NETWORKS	PC	3	0	0	3

Ob	Objectives:			
•	To learn the concepts of Ad hoc wireless networks			
•	To understand the basics of routing protocols			
•	To learn the security concepts			
•	To study the architecture and MAC protocols of sensor networks			
•	To know the concepts of various operating systems and routing protocols of sensor networks			

UNIT-I ADHOC NETWORKS AND ROUTING PROTOCOLS

Ad hoc Wireless Networks – Heterogeneity in Mobile Devices – Types of Ad hoc Mobile Communications – Types of Mobile Host Movements – Challenges Facing Ad hoc Mobile Networks. Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks – Classifications of Routing Protocols – Table–Driven Routing Protocols – Destination Sequenced Distance Vector (DSDV) – Wireless Routing Protocol (WRP) – Cluster Switch Gateway Routing (CSGR) – Source–Initiated On–Demand Approaches – Ad Hoc On–Demand Distance Vector Routing (AODV) – Dynamic Source Routing (DSR) –Temporally Ordered Routing Algorithm (TORA) –Location–Aided Routing (LAR) – Power–Aware Routing (PAR) – Zone Routing Protocol (ZRP).

UNIT-II MULTICAST ROUTING 9					
Issues in Designing a Multicast Routing Protocol – Operation of Multicast Routing Protocols – An Architecture					
Reference Model for Multicast Routing Protocols -Classifications of Multicast Routing Protocols - Tree-Based					
Multicast Routing Protocols- Mesh-Based Multicast Routing Protocols - Summary of Tree and Mesh based Protocols					
- Energy-Efficient Multicasting - Multicasting with Quality of Service Guarantees - Application Dependent					
Multicast Routing –Comparisons of Multicast Routing Protocols.					
UNIT-III SECURITY AND ENERGY MANAGEMENT 9					
Security in Ad Hoc Wireless Networks - Network Security Requirements - Issues and Challenges in Security					
Provisioning – Network Security Attacks – Key Management – Secure Routing in Ad hoc Wireless Networks. Energy					
Management in Ad Hoc Wireless Networks – Introduction – Classification of Energy Management Schemes – Battery					
Management Schemes – Transmission Power Management Schemes –System Power Management Schemes.					
UNIT-IVSENSOR NETWORKS – ARCHITECTURE AND MAC PROTOCOLS9					
Single node architecture – Hardware components, Network architecture – Sensor network scenarios, types of sources					
and sinks, single hop versus multi-hop networks, multiple sinks and sources, physical layer and transceiver design					
consideration in wireless sensor networks, choice of modulation, MAC protocols - fundamentals of wireless MAC					
protocols, low duty cycle protocols and wakeup concepts - SMAC, contention based protocols - CSMA, PAMAS,					
Schedule based protocols -LEACH, Traffic-adaptive medium access protocol (TRAMA).					
UNIT-VSENSOR NETWORKS – ROUTING PROTOCOLS AND OPERATING SYSTEMS9					
Gossiping and agent-based unicast forwarding, Energy-efficient unicast, Broadcast and multicast, geographic routing,					
mobile nodes, Data-centric routing - SPIN, Directed Diffusion, Energy aware routing, Gradient-based routing -					
COUGAR, ACQUIRE, Hierarchical Routing - LEACH, PEGASIS, Location Based Routing - GAF, GEAR.					
Introduction to TinyOS – NesC, Programming in TinyOS using Nes C, Simulator TOSSIM.					
Total Contact Hours : 45					

Course Outcomes:			
On completion of the course, students will be able to			
Acquire the knowledge of wireless Adhoc networks.			
• Solve the various security issues in Adhoc sensor networks			
• Acquire the knowledge on sensor node and its architectures			
• Design energy efficient routing protocols			
• Acquire the knowledge of operating system and simulator tools.			

Ref	erence Books(s) / Web links:
1	C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks Architectures and Protocols", Prentice Hall,
I	PTR, 2004.
2	C. K. Toh, "Ad Hoc Mobile Wireless Networks Protocols and Systems", Prentice Hall, PTR, 2001.
3	Charles E. Perkins, "Ad Hoc Networking", Addison Wesley, 2000.
1	KazemSohraby, Daniel Minoli and TaiebZnati, "Wireless Sensor Networks Technology-Protocols and
-	Applications", John Wiley & Sons, 2007.
5	Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks: an information processing approach", Elsevier
·	publication, 2004.
(C.S.Raghavendra Krishna, M.Sivalingam and Taribznati, "Wireless Sensor Networks", Springer publication,
0	2004.
	Holger Karl, Andreas willig, "Protocol and Architecture for Wireless Sensor Networks", John Wiley publication,
7	Jan 2006.
	K.Akkava and M.Younis, "A Survey of routing protocols in wireless sensor networks". Elsevier Adhoc Network
8	Journal, Vol.3, no.3, pp. 325-349, 2005.
	Philin Levis "TinyOS Programming" 2006 – www.tinyos.net
9 Fining Levis, ThiyOS Flogranning, 2000 – www.thiyOs.net.	
10	I.F. Akylidiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", computer
	networks, Elsevier, 2002, 394 - 422.
11	Jamal N. Al-karaki, Ahmed E. Kamal, "Routing Techniques in Wireless sensor networks: A survey", IEEE
11	wireless communication, December 2004, $6 - 28$.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	1	2	1	1
CO2	3	3	2	3	3	2
CO3	2	2	1	2	1	1
CO4	3	3	2	3	3	2
CO5	3	2	3	3	3	3
Average	2.6	2.4	1.8	2.6	2.2	1.8

PROFESSIONAL ELECTIVES

PROFESSIONAL ELECTIVE-I

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P11	ADVANCED SATELLITE COMMUNICATION SYSTEMS	PE	3	0	0	3

Ob	Objectives:		
•	To understand the basics of satellite orbits		
•	Learn M2M developments and satellite applications		
•	Understand Satellite Communication in IPv6 Environment		
•	To understand the basic concepts of remote sensing and navigation systems.		
٠	To study the various broadcast and satellite networking systems		

UNIT-I	OVERVIEW OF COMMUNICATION		9			
Overview of	f satellite communication and orbital mechanics, coverage angle an	d slant range, eclipse, placem	ent of			
satellite in g	satellite in geostationary orbit. Link budget Parameters, Link budget calculations, Auxiliary Equations, Performance					
Calculations	Calculations.					
UNIT-II	M2M DEVELOPMENTS AND SATELLITE APPLICATIONS		9			
Overview of	f the Internet of Things and M2M- M2M Applications Examples a	and Satellite Support-Satellite	Roles			
Context and	Applications- Antennas for Satellite M2M Applications- M2M	Market Opportunities for Sa	tellite			
Operators- U	Jltra HD Video/TV and Satellite Implications- High Throughput Sat	ellites (HTS) and Ka/Ku Spot	Beam			
Technologie	s- Aeronautical, Maritime and other Mobility Services.					
UNIT-III	SATELLITE NETWORKING SYSTEM WITH IPV6		9			
Overview of	f IPv6 and its benefits- Migration and Coexistence- Implementation	scenarios and support- Prepar	ations			
for IPv6 in S	Satellite communication- Satellite specific Protocol issues in IPv6 –	Impact of IPv6 on Satellite Ne	twork			
architecture	and services-Detailed transitional plan- IPv6 demonstration over satel	lites				
UNIT-IV	SATELLITE NAVIGATION AND GLOBAL POSITIONING S	YSTEM	9			
Introduction	- Commercial Imaging - Digital Globe - GeoEye - Meteorology - M	eteosat - Land Observa	tion –			
Landsat- Re	emote Sensing Data- Sensors- Overview - Optical Sensors: Car	meras-Non-Optical Sensors-	Image			
Processing -	Image Interpretation- System Characteristics. Global Navigation S	atellite Systems - Basic conce	pts of			
GPS. Space	segment, Control segment, user segment, GPS constellation, GPS m	easurement characteristics, sel	ective			
availability ((AS), Anti spoofing (AS). Applications of Satellite and GPS for 3D p	osition, Distress and Safety-Co	ospas-			
Sarsat.						
UNIT-V	BROADCAST SYSTEMS		9			
Introduction	- Satellite Radio Systems - XM Satellite Radio Inc Sirius Sat	tellite Radio -world space - 1	Direct			
Multimedia	Broadcast- MBCO and TU Multimedia - European Initiative	es - Direct-to-Home Televis	ion -			
Implementation Issues - DTH Services- Representative DTH Systems - Military Multimedia Broadcasts - US Global						
Broadcast Service (GBS)- Business TV(BTV), GRAMSAT, Specialized services - E -mail, Video conferencing,						
Internet.						
		Total Contact Hours :	45			
Course Out	Course Outcomes:					
On completi	on of the course, students will be able to					

•	Analyze the satellite orbits
•	Prepare the budget plan for the uplink and downlink subsystems
•	Understand GPS based navigation system.
•	Analyze IPv6 in satellite system
•	Outline various Broadcasting systems.

• Outline various Broadcasting systems.

Refe	erence Books(s) / Web links:
1	Dennis Roddy, 'Satellite Communication', McGraw Hill International, 4th Edition, 2006.
2	Daniel Minoli 'Innovations in Satellite Communication and Satellite Technology' Wiley, 2015
3	Daniel Minoli, "Satellite Systems Engineering in an IPv6 Environment", CRC Press, First Edition, 2009.
1	Global Positioning Systems, Inertial Navigation, and Integration. Mohinder S. Grewal California State University
4	at Fullerton, A John Wiley & Sons, Inc. Publication.
5	Satellite Systems Engineering in an IPv6 Environment, Daniel Minoli, CRC Press.
6	Satellite systems for personal Applications, Madhavendra Richharia, A John Wiley and Sons, Ltd.Publication.
7	Dennis Roddy, 'Satellite Communication', McGraw Hill International, 4th Edition, 2006.
0	Wilbur L. Pritchard, Hendri G. Suyderhoud, Robert A. Nelson, 'Satellite Communication Systems Engineering',
8	Prentice Hall/Pearson, 2007 (Books to be added)

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	1	3
CO2	3	3	2	3	3	2
CO3	3	3	3	3	3	3
CO4	3	3	3	2	2	3
CO5	2	3	3	3	2	2
Average	2.8	2.8	2.6	2.6	2.2	2.6

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P12	REAL TIME EMBEDDED SYSTEMS	PE	3	0	0	3

Ob	jectives:
•	To study the concepts and basic architecture of ARM processor model
•	To understand the concepts of program designing.
•	To design multiple tasks using ARM processor.
•	To enable the network based design.
•	To apply for real time modeling

UNIT-I INTRODUCTION TO EMBEDDED COMPUTING	9					
Complex systems and microprocessors - Design example: Model train controller - Embedded system design process -						
Formalism for system design - Instruction sets Preliminaries - ARM Processor - CPU: Programming input and output						
- Supervisor mode, exception and traps - Coprocessor - Memory system mechanism - CPU performance - CPU						
power consumption.						
UNIT-II COMPUTING PLATFORM AND DESIGN ANALYSIS						
CPU buses - Memory devices - I/O devices - Component interfacing - Design with microprocessors - Developm	ment					
and Debugging - Program design - Model of programs - Assembly and Linking - Basic compilation techniques -						
Analysis and optimization of execution time, power, energy, program size – Program validation and testing.						
UNIT-III PROCESS AND OPERATING SYSTEMS 9	9					

Multiple tasks and multi processes - Processes - Context Switching - Operating Systems - Scheduling policies								
Multiprocessor - Inter Process Communication mechanisms - Evaluating operating system performance - Pow								
optimization strategies for processes, Examples of RTOS – Vxworks, POSIX.								
UNIT-IV HARDWARE ACCELERATES & NETWORKS								
Accelerators - Accelerated system design - Distributed Embedded Architecture - Networks for Embedded Systems								
Network based design – Internet enabled systems.								
UNIT-V CASE STUDY	9							
Hardware and software co-design - Data Compressor - Software Modem - Personal Digital Assistants - Set-Top-								
Box. – System-on-Silicon – FOSS Tools for embedded system development.								
Box. – System-on-Shicon – FOSS Tools for embedded system development.								

Course Outcomes:

On completion of the course, students will be able to

- Describe The Architecture And Programming Of ARM Processor
- Outline the concepts of embedded systems
- Explain the basic concepts of real time operating systems.
- Use the system design techniques to develop software for embedded system
- Model real time applications using embedded system concepts •

Reference Books(s) / Web links:

- Wayne Wolf, "Computers as Components Principles of Embedded Computer System Design", Morgan 1 Kaufmann Publisher, 2006.
- 2 David E-Simon, "An Embedded Software Primer", Pearson Education, 2007.

K.V.K.K.Prasad, "Embedded Real-Time Systems: Concepts, Design & Programming", dreamtech press, 2005.
 Tim Wilmshurst, "An Introduction to the Design of Small Scale Embedded Systems", Pal grave Publisher, 2004.

- Sriram V Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata Mc-Graw Hill, 2004. 5
- Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006. 6

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	3	3	3	3	3
CO2	2	2	3	3	2	2
CO3	2	2	3	3	3	3
CO4	2	2	3	3	3	3
CO5	3	3	3	3	3	3
Average	2	2.4	3	3	2.8	2.8

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P13	MEMS AND NEMS	PE	3	0	0	3

Ob	Objectives:							
•	To introduce the concepts of micro electro mechanical devices.							
•	To know the fabrication process of microsystems.							
٠	To know the design concepts of micro sensors and micro actuators.							
٠	To introduce the concepts of quantum mechanics and nano systems.							

UNIT-I OVERVIEW AND INTRODUCTION	9
New trends in Engineering and Science: Micro and Nano scale systems-Introduction to Design of	of MEMS and NEMS,
Overview of Nano and Micro electro mechanical Systems, Applications of Micro and Nan	o electro mechanical
systems, Micro electromechanical systems, devices and structures Definitions, Materials for M	EMS: Silicon, silicon
compounds, polymers, metals	
UNIT-II MEMS FABRICATION TECHNOLOGIES	9
Microsystem fabrication processes: clean room standards, Semiconductor wafer cleaning, F	Photolithography, Ion
Implantation, Diffusion and Oxidation. Thin film depositions: LPCVD, Sputtering, Evapor	ation, Electroplating;
Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Mic	romachining, Surface
Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Micr	rosystems packaging,
Essential packaging technologies, Selection of packaging materials.	
UNIT-III MICRO SENSORS	9
MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, (Capacitive and Piezo
Resistive Pressure sensors- engineering mechanics behind these Microsensors. Case study: Pie	ezo-resistive pressure
sensor, MEMS Gas sensors.	1
UNIT-IV MICRO ACTUATORS	9
Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alle	oys, Actuation using
piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Co	omb drive actuators),
Micromechanical Motors and pumps. Case study: Micro Tweezers, Micro Accelerometers.	
UNIT-V NANOSYSTEMS AND QUANTUM MECHANICS	9
Atomic structures and Quantum mechanics, Molecular and Nanostructure Dynamics: Schrodinge	er equation and Wave
function theory, Density functional theory, Nanostructures and Molecular Dynamics, Electromag	gnetic Fields and their
quantization, Molecular wires and Molecular circuits.	
Total Conta	ct Hours : 45

Course Outcomes:

On completion of the course, students will be able to

- Students are enriched with the concepts of MEMS and NEMS.
- Students can design a system using MEMS components
- Students are able to design various MEMS sensors
- Students are able to design micro actuators
- Students can understand nanosystems theory.

Reference Books(s) / Web links:

1	Marc	: Madou	, "Func	lamentals	of Mic	crof	abri	cation"	, CRC	press	1997.	
-	2					1						_

2 Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001

3 Tai Ran Hsu,"MEMS and Microsystems Design and Manufacture", Tata Mcraw Hill, 2002.

- 4 Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006,
- 5 Sergey Edward Lyshevski, "MEMS and NEMS: Systems, Devices, and Structures" CRC Press, 2002

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	3	2	2
CO2	2	2	2	2	2	2
CO3	2	2	1	3	2	3
CO4	3	2	2	3	2	3
CO5	3	2	3	3	2	3
Average	2.4	2	2	2.8	2	2.6

Subject	Subject Name	Category	L	Т	Р	С
Code						
CU19P14	MULTIMEDIA COMPRESSION TECHNIQUES	PE	3	0	0	3

Ob	Objectives:			
•	To understand the various storage requirements and evaluation techniques for data compression			
•	To learn the various Text Compression techniques			
•	To know about the various speech compression methods			
•	To understand the Image Compression techniques and standards			
•	To gain knowledge on Video compression techniques and standards			

INTRODUCTION UNIT-I

Special features of Multimedia - Graphics and Image Data Representations -Fundamental Concepts in Video and Digital Audio - Storage requirements for multimedia applications -Need for Compression - Taxonomy of compression techniques - Overview of source coding, source models, scalar and vector quantization theory - Evaluation techniques - Error analysis and methodologies.

UNIT-II TEXT COMPRESSION

Compaction techniques - Huffman coding - Adaptive Huffman Coding - Arithmetic coding - Shannon-Fano coding -Dictionary techniques - LZW family algorithms.

UNIT-III AUDIO COMPRESSION

Audio compression techniques - µ- Law and A- Law companding. Speech compression- waveform codecs-source codecs- hybrid codecs-Shorten compressor, Frequency domain and filtering - Basic sub-band coding - Application to speech coding - G.722 -Application to audio coding - MPEG audio, progressive encoding for audio - Silence compression, speech compression techniques - Formant and CELP Vocoders. 9

UNIT-IV IMAGE COMPRESSION

Predictive techniques - DM, PCM, and DPCM: Optimal Predictors and Optimal Quantization- Contour based compression - Transform Coding - JPEG Standard - Sub-band coding algorithms: Design of Filter banks - Wavelet based compression: Implementation using filters - EZW, SPIHT coders - JPEG 2000 standards - JBIG, JBIG2 Standards.

VIDEO COMPRESSION **UNIT-V**

Video compression techniques and standards - MPEG Video Coding I: MPEG - 1 and 2 MPEG Video Coding II: MPEG - 4 and 7 - Motion estimation and compensation techniques - H.261 Standard - DVI technology - PLV performance - DVI real time compression - Packet Video. : 45

Total Contact Hours

9

Cou	Course Outcomes:				
On	On completion of the course, students will be able to				
•	Explain Scalar quantization theory and evaluation techniques				
•	Understand different coding techniques				
•	Use the audio compression techniques				
•	Describe Contour based compression and Motion estimation techniques				
	Explain the various video and real time compression methods				

Re	ference Books(s) / Web links:
1	Khalid Sayood: Introduction to Data Compression, Morgan Kauffman Harcourt India, 2nd Edition, 2000.
2	David Salomon: Data Compression – The Complete Reference, Springer Verlag New York Inc., 2nd Edition,
3	2001. Yun O Shi Huifang Sun: Image and Video Compression for Multimedia Engineering - Fundamentals
	Algorithms & Standards, CRC press, 2003.

- 4 Peter Symes: Digital Video Compression, McGraw Hill Pub., 2004. Mark Nelson: Data compression, BPB Publishers, New Delhi, 1998. 5
- Mark S.Drew, Ze-Nian Li: Fundamentals of Multimedia, PHI, 1st Edition, 2003. 6
- Watkinson, J: Compression in Video and Audio, Focal press, London. 1995. 7
- Jan Vozer : Video Compression for Multimedia, AP Profes, NewYork, 1995 8

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	2
CO2	3	3	3	2	2	2
CO3	3	3	3	2	2	2
CO4	3	3	3	2	2	2
CO5	3	3	3	2	3	2
Average	3	3	3	2	2.2	2

Subject Code	Subject Name	Category	L	Т	P	С
CU19P15	HIGH PERFORMANCE NETWORKS	PE	3	0	0	3

$\mathbf{\Omega}$	•			
()	hie	ett	Ves	•

- To develop a comprehensive understanding of multimedia networking.To study the types of VPN and tunneling protocols for security. •
- •
- To learn about network security in many layers and network management.

UNIT-I INTRODUCTION		9		
Review of OSI, TCP/IP; Multiplexing, Modes of Communication, Switching, Routing. SONET - 1	DWDM – ISI	DN –		
BISDN, Frame Relay, ATM.				
UNIT-II MULTIMEDIA NETWORKING APPLICATIONS		9		
Streaming stored Audio and Video - Best effort service - protocols for real time interactive appl	ications - Beg	yond		
best effort - scheduling and policing mechanism - integrated services -RSVP- differentiated service	·s.			
UNIT-III ADVANCED NETWORKS CONCEPTS		9		
VPN-Remote-Access VPN, site-to-site VPN, Tunneling to PPP, Security in VPN.MPLS-op	peration, Rou	ıting,		
Tunneling and use of FEC, Traffic Engineering, MPLS based VPN, overlay networks-P2P connection	ons.			
UNIT-IV TRAFFIC MODELLING		8		
Little's theorem, Need for modeling, Poisson modeling and its failure, Non- poisson models, Net	work perform	nance		
evaluation.				
UNIT-V NETWORK SECURITY AND MANAGEMENT		10		
Principles of cryptography – Authentication – integrity – key distribution and certification – Access control and: fire				
walls - attacks and counter measures - security in many layers. Infrastructure for network management - The internet				
standard management framework - SMI, MIB, SNMP, Security and administration - ASN.1				
Total Contact 1	Hours :	45		

Course Outcomes:

On	On completion of the course, students will be able to				
•	Understand the basic concepts of TCP/IP and ISDN				
•	Describe about multimedia networking				
•	Analyze the security and tunneling methods of advanced networks.				
•	Assign the suitable the traffic models for the given network layer				
•	Manage network security				

Re	Reference Books(s) / Web links:			
1	J.F. Kurose & K.W. Ross,"Computer Networking- A top down approach featuring the internet", Pearson, 2 nd			
1	edition, 2003.			
2	Walrand .J. Varatya, High performance communication network, Morgan Kauffman – Harcourt Asia Pvt. Ltd. 2 nd			
	Edition, 2000.			

3 LEOM-GarCIA, WIDJAJA, "Communication networks", TMH seventh reprint 2002.

4	Aunuragkumar, D. MAnjunath, Joy kuri, "Communication Networking", Morgan Kaufmann Publishers, 1Ed. 2004.
~	

- 5 HersentGurle& petit, "IP Telephony, packet Pored Multimedia communication Systems", Pearson education 2003.
- 6 Fred Halsall and Lingana Gouda Kulkarni,"Computer Networking and the Internet" fifth edition,

^o Pearson education

- 7 Nader F.Mir, Computer and Communication Networks, first edition.
- 8 Larry l.Peterson& Bruce S.David, "Computer Networks: A System Approach"-1996

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	1	1	2	2
CO2	2	1	1	1	2	2
CO3	3	2	2	2	3	2
CO4	3	2	3	2	3	2
CO5	2	2	2	2	2	2
Average	2.6	1.6	1.8	1.6	2.4	2

PROFESSIONAL ELECTIVE -II

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P21	RF MEMS	PE	3	0	0	3

Obj	Objectives:				
•	To learn the basic building blocks of RF electronics and Its improved feature				
•	To acquire knowledge on RF switches and various passive components.				
•	To understand the concepts of RF filters and oscillators				
•	To study the basics of MEMS phase shifters				
	To acquire knowledge on reliability and packaging.				

LINIT L INTRODUCTION OF DE MEMS	0
UNIT-1 INTRODUCTION OF RF MEMS	. 9
Basic building blocks of RF system, RF MEMS Features- High Frequency effects, Introduction to M	icrowave
Engineering, RF transmission lines: theory, Types of transmission lines, Impedance matching, S – param	eters and
ABCD Parameters, Smith Chart for Impedance matching.	
UNIT-II SWITCHES AND PASSIVE COMPONENTS	9
Introduction, basic design, case studies, Micromachined passive components, theory, features, tunable ca	apacitors,
inductors, RF modeling of passive RF MEMS components.	•
MEM switches: shunt MEM switch, low voltage hinged MEM switch, push-pull series switch, folded bear	n springs
suspension series switch	
UNIT-III FILTERS AND OSCILLATORS	9
Design concepts, Mechanical filters: design approaches, MEMS RF filters; Microwave filters: SAW and BA	W filters,
Micro machined tunable filter, RF MEMS Oscillators - fundamentals, Micromachined cavity oscillator, ME	MS based
voltage controlled oscillator.	
UNIT-IV PHASE SHIFTERS	9
Introduction, RF MEMS Phase shifters, Design of switched delay line phase shifters Antennas: Intr	oduction,
Microstrip antennas, Micromachined antennas, Micromachined Transmission lines and components for sub n	nillimeter
wave applications, Reconfigurable antennas	
UNIT-V RELIABILITY AND PACKAGING	9
MEMS packaging, RF MEMS packaging, Wafer level packaging.	
Total Contact Hours	: 45

Course Outcomes:

On completion of the course, students will be able to

- Understand various parameters of RF signals and their interpretation in MEMS.
- Design passive RF MEMS components and switches
- Optimize the design of RF MEMS oscillators and filters
- Design and fabricate antennas using MEMS technology
- Understand the significance of packaging for improved performance.

Reference Books(s) / Web links:

1 Gabriel M. Rebeiz, RfMems: Theory, Design, And Technology, Wiley.

2 Vijay K.Varadan, K.J. Vinoy, K.A. Jose., "RF MEMS and their Applications", John Wiley and sons, LTD, 2002

3 Hector J. De Los Santos, "RF MEMS Circuit Design for Wireless Communications", Artech House, 2002.

4 Stepan Lucyszyn, Advanced RF MEMS (The Cambridge RF and Microwave Engineering Series)" Cambridge University Press, 2010, ISBN: 0521897718.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	1
CO2	2	3	2	3	2	1
CO3	2	3	3	3	2	1
CO4	2	2	2	2	2	1
CO5	2	2	2	2	3	3
Average	2.2	2.6	2.2	2.6	2.2	1.4

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P22	DIGITAL COMMUNICATION RECEIVERS	PE	3	0	0	3

Objectives:					
• To und	erstand the basic communication techniques				
• To gain	knowledge about optimum receivers				
• To know about channel fading and its effects					
• To kno	w various synchronization techniques				
• To lear	n various adaptive channel equalization				
UNIT-I	UNIT-I REVIEW OF DIGITAL COMMUNICATION TECHNIQUES				
Base band c	ommunication; signal space representation, linear and nonlinear mod	ulation techniques, Error tracking	ng and		
Spectral cha	racteristics of digital modulation.				
UNIT-II	OPTIMUM RECEIVERS FOR AWGN CHANNEL		9		
Correlation	demodulator matched filter, maximum likelihood sequence detector	, optimum receiver for CPM s	ignals,		
M-ary ortho	gonal signals, envelope detectors for M-ary and correlated binary sig	nals.			
UNIT-III	RECEIVERS FOR FADING CHANNELS		9		
Characteriza	ation of fading multiple channels, statistical models, flat and fi	requency selective fading, div	versity		
technique, C	Optimal receivers for data detection and synchronization parameter es	stimation, coded waveform for	fading		
channel.					
UNIT-IV	SYNCHRONIZATION TECHNIQUES		9		
Carrier and	signal synchronization, carrier phase estimation-PLL, Decision direct	cted loops, symbol timing estin	nation,		
maximum li	kelihood and non-decision directed timing estimation, joint estimatio	n.			
UNIT-V VADAPTIVE EQUALIZATION 9					
Zero forcing algorithm, LMS algorithm, adaptive decision-feedback equalizer and Equalization of Trellis-coded					
signals. Kal	man algorithm, blind equalizers and stochastic gradient algorithm.	· · · · · · · · · · · · · · · · · · ·	1		
		Total Contact Hours :	45		

Course Outcomes:

On completion of the course, students will be able to

- Students are enriched with the basics of baseband communication
- Students are able to analyze the various receivers for AWGN channel.
- Students are able to characterize the fading multiple channels
- Students are able to know the various synchronization techniques
- Students can able to design receivers

Reference Books(s) / Web links:

- 1 Heinrich Meyer, Mare Moeneclacy, Stefan.A.Fechtel, "Digital communication receivers ", Vol I & Vol II, John Wiley, New York, 1997.
- 2 U.Mengali&A.N.D'Andrea, Synchronization Techniques for Digital Receivers, Kluwer, 1997.
- 3 John.G.Proakis, "Digital communication "4th Edition, McGraw-Hill, New York, 2001.
- 4 E.A.Lee and D.G. Messerschmitt, "Digital communication", 2nd Edition, Allied Publishers, New Delhi, 1994.
- 5 Simon Marvin, "Digital communication over fading channel; An unified approach to performance Analysis ", John Wiley, New York, 2000.
- 6 H.Meyr&G.Ascheid, Synchronization in Digital Communications, John Wiley, 1990.
- 7 R. G. Gallager, Principles of Digital Communication, Cambridge University Press, 2008.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	1	1	1
CO2	3	3	3	1	1	1
CO3	3	3	3	1	1	1
CO4	3	3	3	1	1	1
CO5	3	3	3	1	1	1
Average	3	3	3	1	1	1

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P23	COGNITIVE RADIO	PE	3	0	0	3

Ob	jectives:
	To enable the student to understand the evolving paradigm of cognitive radio communication and the enabling
•	technologies for its implementation.
	To enable the student to become knowledgeable in the essential functionalities and requirements in designing
•	software defined radios and their usage for cognitive communication.
٠	To expose the student to the evolving next generation wireless networks and their associated challenges.

UNIT-I	INTRODUCTION TO SDR	9			
Definitions and potential benefits, software radio architecture evolution - foundations, technology trade-offs and					
architecture	implications				
UNIT-II	SDR ARCHITECTURE	9			
Essential fu	nctions of the software radio, architecture goals, quantifying degrees of programmability, top	level			
component	topology, computational properties of functional components, interface topologies among plug and	l play			
modules, are	chitecture partitions.				
UNIT-III	INTRODUCTION TO COGNITIVE RADIOS	9			
16.1.1		• •			

Making radio self-aware, the cognition cycle, organization of cognition tasks, structuring knowledge for cognition

tasks, Enabling location and environment awareness in cognitive radios - concepts, architecture, design considerations.

UNIT-IV COGNITIVE RADIO ARCHITECTURE

Primary Cognitive Radio functions, Behaviors, Components, A–Priori Knowledge taxonomy, observe – phase data structures, Radio procedure knowledge encapsulation, components of orient, plan, decide phases, act phase knowledge representation, design rules.

UNIT-V NEXT GENERATION WIRELESS NETWORKS

The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross – layer design.

Total Contact Hours:45

9

9

Course Outcomes:

On completion of the course, students will be able to

- Understand the concepts of SDR.
- Understand the various architectures of SDR.
- Appreciate the motivation and the necessity for cognitive radio communication strategies.
- Appreciate new techniques and demonstrate their feasibility using mathematical validations and simulation tools.
- Demonstrate the impact of the evolved solutions in future wireless network design.

Ref	Cerence Books(s) / Web links:
1	Alexander M. Wyglinski, MaziarNekovee, And Y. Thomas Hou, "Cognitive Radio Communications and
I	Networks - Principles and Practice", Elsevier Inc., 2010.
2	"E. Biglieri, A.J. Goldsmith. L.J. Greenstein, N.B. Mandayam, H.V. Poor, Principles ofCognitive Radio",
	Cambridge University Press, 2013.
3	Kwang-Cheng Chen and Ramjee Prasad, "Cognitive Radio Networks", John Wiley & Sons, Ltd, 2009.
4	Khattab, Ahmed, Perkins, Dmitri, Bayoumi, Magdy, "Cognitive Radio Networks - From Theory to Practice",
-	Springer Series: Analog Circuits and Signal Processing, 2009.
5	J. Mitola, "Cognitive Radio: An Integrated Agent Architecture for software defined radio", PhD thesis, Royal
5	Institute Technology, Sweden 2000.
6	Simon Haykin, "Cognitive Radio: Brain -empowered wireless communications", IEEE Journal on
	selected areas in communications, Feb 2005.
-	Ian F. Akyildiz, Won - Yeol Lee, Mehmet C. Vuran, ShantidevMohanty, "NeXt generation /dynamic
7	spectrum access / cognitive radio wireless networks: A Survey Elsevier Computer Networks, May 2006.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	3	2	1
CO2	2	3	2	3	2	1
CO3	2	3	3	3	2	1
CO4	3	3	3	2	3	1
CO5	2	2	2	2	3	3
Average	2.2	2.7	2.4	2.6	2.4	1.4

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P24	VLSI FOR WIRELESS COMMUNICATION	PE	3	0	0	3

Ob	jectives:
•	To understand the concepts of basic wireless communication concepts.
•	To study the parameters in receiver and low noise amplifier design.
•	To study the various types of mixers designed for wireless communication.
•	To study and design PLL and VCO.
•	To understand the concepts of VLSI architecture for multiplier and power amplifiers in wireless communication.

UNIT-I	COMMUNICATION CONCEPTS		9				
Introduction	- Overview of Wireless systems - Standards - Access Methods	- Modulation schemes -	Classical				
channel – W	ireless channel description - Path loss - Multipath fading - Standard	Translation					
UNIT-II	RECEIVER ARCHITECTURE & LOW NOISE AMP	LIFIERS	9				
Receiver fro	nt end - Filter design - Non-idealities - Design parameters - Noise	figure & Input intercept poi	nt. LNA				
Introduction	- Wideband LNA design - Narrow band LNA design: Impedance m	atching & Core amplifier.					
UNIT-III	MIXERS		9				
Balancing M	Balancing Mixer - Qualitative Description of the Gilbert Mixer - Conversion Gain - Distortion - Noise - A Complete						
Active Mixe	Active Mixer. Switching Mixer - Distortion, Conversion Gain & Noise in Unbalanced Switching Mixer - A Practical						
Unbalanced	Switching Mixer. Sampling Mixer - Conversion Gain, Distortion,	Intrinsic & Extrinsic Noise i	n Single				
Ended Samp	ling Mixer.						
UNIT-IV	FREQUENCY SYNTHESIZERS		9				
PLL – Phase	e detector - Dividers - Voltage Controlled Oscillators - LC oscillator	rs - Ring Oscillators - Phase	e noise –				
Loop filters	& design approaches - A complete synthesizer design example (I	DECT) – Frequency synthesi	zer with				
fractional di	vider.						
UNIT-V IMPLEMENTATIONS & POWER AMPLIFIERS 9							
VLSI archite	ecture for Multitier Wireless System - Hardware Design Issues for a N	Next generation CDMA Syste	m–				
Power ampl	fier design.						
		Total Contact Hours	: 45				

Course	Outcomes:
--------	------------------

On completion of the course, students will be able to
Design LNA and Mixers
Evaluate frequency synthesizers
Design and analyze power amplifiers

Ref	ference Books(s) / Web links:
1	Bosco H Leung "VLSI for Wireless Communication", Pearson Education, 2002.
2	B.Razavi, "RF Microelectronics", Prentice-Hall, 1998.
3	BehzadRazavi, "Design of Analog CMOS Integrated Circuits" McGraw-Hill, 1999.
4	Emad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI wireless design – Circuits & Systems", Kluwer
+	Academic Publishers, 2000.
5	J. Crols and M. Steyaert, "CMOS Wireless Transceiver Design," Boston, Kluwer Academic Pub., 1997.
6	Thomas H.Lee, "The Design of CMOS Radio - Frequency Integrated Circuits", Cambridge University Press
U	,2003.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	1
CO2	3	3	3	3	3	2
CO3	3	3	3	3	2	1

CO4	3	3	3	3	3	2
CO5	3	3	3	3	3	2
Average	3	3	2.8	2.8	2.6	1.6

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P25	DIGITAL COMMUNICATION OVER FADING CHANNELS	PE	3	0	0	3

Ob	jectives:
•	To study and understand the wireless channels
•	To learn how to model the fading channels mathematically
٠	To understand the coherent and non-coherent detections
•	To investigate the performance metrics of the digital communication
۲	To derive the error rates of the wireless communication systems

UNIT-I FADING CHANNEL CHARACTERIZATION AND MODELING 9 System Performance Measures: average SNR, outage probability, average bit error probability, amount of fading, average outage duration. Main characteristics of fading channels: Slow and fast fading, flat and frequency selective fading. Multipath modeling using Rayleigh, Nakagami-m, Rice distributions. Log normal Shadowing. **COHERENT AND NON-COHERENT DETECTIONS** UNIT-II 0 Ideal Coherent Detection: M-ary Phase-Shift-Keying (M-PSK), Differentially Encoded M-ary Phase-Shift-Keying (M-PSK), /4-QPSK, Offset QPSK (OQPSK) or Staggered QPSK (SQPSK), , Minimum-Shift-Keying (MSK) Nonideal Coherent Detection, Non-Coherent Detection. UNIT-III USEFUL EXPRESSIONS FOR EVALUATING ERROR PERFORMANCE 9 Integrals Involving the Gaussian Q-Function: Rayleigh Fading Channel, Nakagami-q (Hoyt), Nakagami-n (Rice) Integrals Involving the Incomplete Gamma Function: Rayleigh, Nakagami-n (Rice), Nakagami-m, Log-Normal Shadowing Channel Integrals Involving Other Functions: M-PSK Error Probability Integral, Rayleigh Fading Channel, Nakagami-m, Arbitrary Two-Dimensional Signal Constellation Error Probability Integral, Higher-Order Integer Powers of the Gaussian Q-Function. Rayleigh Fading Channel, Nakagami-m Fading Channel. UNIT-IV PERFORMANCE OF MULTICHANNEL RECEIVERS 9 Diversity Combining: Diversity Concept, Mathematical Modeling, Brief Survey of Diversity Combining Techniques, Pure Combining Techniques, Hybrid Combining Techniques, Complexity-Performance Tradeoffs. Maximal-Ratio Combining (MRC): Receiver Structure, PDF-Based Approach, MGF-Based Approach: Average Bit Error Rate of Binary Signals, Average Symbol Error Rate of Square M-QAM Signals, Bounds and Asymptotic SER Expressions ANALYSIS OF SELECTION COMBINING AND SWITCHED DIVERSITY UNIT-V 9 Selection Combining: MGF of Output SNR, Average Output SNR, Outage Probability and Analysis, Average

Selection Combining: MGF of Output SNR, Average Output SNR, Outage Probability and Analysis, Average Probability of Error, BDPSK and Non-Coherent BFSK, Coherent BPSK and BFSK. Switched Diversity: Dual-Branch Switch-and-Stay Combining (SSC), Performance of SSC over Independent Identically Distributed Branches, Effect of Branch Unbalance, Effect of Branch Correlation.

Total Contact Hours : 45

Course Outcomes:

On completion of the course, students will be able to

- Model the fading channel mathematically
- Differentiate the coherent and non-coherent detections
- Appreciate the various analytical tools used in the evaluation of wireless systems
- Can derive performance metrics such as outage, error probability and capacity analysis
- Understand the transmission of signals over signal antenna and multiple antennas

Reference Books(s) / Web links:

- 1 M.K.Simon, M.-S. Alouini,"Digital Communication over Fading Channels" John Wiley & Sons Inc., 2nd Edition, 2000.
- 2 John Proakis, MasoudSalehi "Digital Communication", McGraw Hill Education, 5th Edition, 2014.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	3	3	2	2
CO2	3	3	3	3	2	2
CO3	3	3	3	3	2	2
CO4	3	3	2	2	1	2
CO5	3	3	2	3	2	2
Average	3	3	2.6	2.8	1.8	2

PROFESSIONAL ELECTIVE- III

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P31	SPEECH AND AUDIO SIGNAL PROCESSING	PE	3	0	0	3

Objectives:

•	To study the	basic c	concepts	of sp	peech	and audio.	

- To study the analysis of various M-band filter banks for audio coding
- To learn various transform coders for audio coding.
- To study the speech processing methods in time and frequency domain

UNIT-IFUNDAMENTALS OF SPEECH AND AUDIO9)					
Introduction - Review of Signal Processing Theory-Speech production mechanism - Nature of Speech signal -						
Discrete time modeling of Speech production - Classification of Speech sounds - Phones - Phonemes - Phonetic a	and					
Phonemic alphabets – Articulatory features.						
Absolute Threshold of Hearing - Critical Bands- Simultaneous Masking, Masking-Asymmetry, and the Spread	l of					
Masking- Non-simultaneous Masking - Perceptual Entropy - Basic measuring philosophy - Subjective versus object	tive					
perceptual testing - The perceptual audio quality measure (PAQM) - Cognitive effects in judging audio quality.						
UNIT-II TIME AND FREQUENCY DOMAIN METHODS FOR SPEECH 9)					
Time domain parameters of Speech signal - Methods for extracting the parameters: Energy, Average Magnitude	ie –					
Zero crossing Rate - Silence Discrimination using ZCR and energy, Short Time Fourier analysis - Formant extract	tion					
- Pitch Extraction using time and frequency domain methods. Homomorphic Speech Analysis: Cepstral analysis	s of					
Speech – Formant and Pitch Estimation – Homomorphic Vocoder.						
UNIT-III LINEAR PREDICTIVE ANALYSIS OF SPEECH 9)					
Formulation of Linear Prediction problem in Time Domain – Basic Principle – Auto correlation method – Covariance						
method - Solution of LPC equations - Cholesky method - Durbin's Recursive algorithm - lattice formation a	and					
solutions - Comparison of different methods - Application of LPC parameters - Pitch detection using LPC paramet	ters					

– Formant analysis – VELP – CELP.	

UNIT-IV	TIME-FREQUENCY ANALYSIS: FILTER BANKS AND TRANSFORMS	9				
Introduction	-Analysis-Synthesis Framework for M-band Filter Banks- Filter Banks for Audio Coding: D	esign				
Consideratio	ns - Quadrature Mirror and Conjugate Quadrature Filters- Tree-Structured QMF and CQF M-band I	Banks				
- Cosine Modulated "Pseudo QMF" M-band Banks - Cosine Modulated Perfect Reconstruction (PR) M- band Banks						
and the Mod	and the Modified Discrete Cosine Transform (MDCT) - Discrete Fourier and Discrete Cosine Transform - Pre-echo					
Distortion- H	Pre-echo Control Strategies.					

UNIT-V AUDIO CODING AND TRANSFORM CODERS

9

Lossless Audio Coding-Lossy Audio Coding- ISO-MPEG-1A,2A,2A Advanced, 4AudioCoding - Optimum Coding in the Frequency Domain - Perceptual Transform Coder -Brandenburg-Johnston Hybrid Coder - CNET Coders - Adaptive Spectral Entropy Coding -Differential Perceptual Audio Coder - DFT Noise Substitution -DCT with Vector Quantization -MDCT with Vector Quantization.

Total Contact Hours:45

Course Outcomes:

On completion of the course, students will be able to

- Model Speech production system and describe the fundamentals of speech
- Use different speech analysis technique
- Choose an appropriate audio coder
- Analyze the time and frequency domain methods for speech processing
- Design a speech processing system for study of articulatory phonetics

Reference Books(s) / Web links:

- 1 Digital Processing of Speech signals L.R.Rabiner and R.W.Schaffer Prentice Hall –1978.
- 2 Digital Audio Signal Processing, Second Edition, Udo Zölzer, A John Wiley& sons Ltd Publicatioons
- 3 Applications of Digital Signal Processing to Audio And Acoustics Mark Kahrs, Karlheinz Brandenburg, Kluwer
- ³ Academic Publishers New York, Boston, Dordrecht, London, Moscow

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	2
CO2	3	3	3	3	3	2
CO3	3	3	3	3	3	3
CO4	3	3	3	3	3	2
CO5	2	2	2	2	2	2
Average	2.8	2.8	2.6	2.6	2.6	2.2

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P32	DIGITAL IMAGE AND VIDEO PROCESSING	PE	3	0	0	3

Ob	Objectives:				
•	To know the digital image fundamentals and transforms				
•	To study various techniques for image enhancement and restoration.				
•	To learn various techniques for image segmentation and compression.				
•	To acquire the knowledge of extracting information from surveillance videos.				
•	To understand the models used for recognition Human Activity, Face and Gait.				

UNIT-I	DIGITAL IMAGE FUNDAMENTALS AND IMAGE ENHANCEMENT	9				
Steps in digital image processing, Elements of digital image processing systems and visual perception, brightness						
contrast, hue	e, saturation, mach band effect, 2D image transforms-DFT, DCT, KLT, SVD.					
UNIT-II	IMAGE ENHANCEMENT AND RESTORATION	9				
Spatial avera	aging, Directional Smoothing, Median, Geometric mean, Harmonic mean, Contra harmonic mean f	ilters,				
Homomorph	ic filtering, Color image enhancement.					
Reasons for	image degradation, Image degradation model, Inverse filter, Wiener filter					
UNIT-III	IMAGE SEGMENTATION AND COMPRESSION	9				
Edge detection, Thresholding, Region based segmentation – Region growing, Region splitting and Merging.						
Need for dat	a compression, Huffman, Run Length Encoding, Shift codes, Arithmetic coding, Transform coding,	JPEG				
standard.						

UNIT-IV VIDEO ANALYTICS							
Introduction - Video Basics - Fundamentals for Video Surveillance, Object Detection and Tracking: Adaptiv							
Background	Modelling and Subtraction - Pedestrian Detection and Tracking	, Vehicle Detection and Trac	king –				
MPEG comp	pression.						
UNIT	UNIT HUMAN ACTIVITY, FACE AND GAIT RECOGNITION 9						
The framew	ork for activity inference - Human Activity Recognition - Activ	ity modeling using 3D shape,	Video				
summarizati	on - Suspicious Activity Detection - Human Face Recognition fro	om video – Human Recognition	n using				
gait: HMM	gait: HMM Framework for Gait Recognition.						
Total Contact Hours :							

Co	Course Outcomes:				
On	On completion of the course, students will be able to				
•	Describe digital image fundamentals and transforms.				
٠	• Exhibit various image enhancement and restoration techniques.				
•	Demonstrate various image segmentation and compression techniques.				
•	• Describe surveillance videos for analytics.				
•	Model a framework for Human Activity. Face and Gait Recognition.				

Text Book(s):

- Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing', Pearson, Second Edition, 2004.
 Michael Berthold, David J.Hand, "Intelligent Data Analysis", Springer, 2007.

Reference Books(s) / Web links:

-	
1	Anil K. Jain, Fundamentals of Digital Image Processing', Pearson 2002.
2	Rafael C. Gonzalez, Richard E. Woods, Steven Eddins,' Digital Image Processing using MATLAB', Pearson
4	Education, Inc., 2004.
3	AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
4	Yunqian Ma, Gang Qian, "Intelligent Video Surveillance: Systems and Technology", CRC Press (Taylor and
4	Francis Group), 2009
5	Rama Chellappa, Amit K.Roy- Chowdhury, Kevin Zhou.S, "Recognition of Humans and their
3	Activities using Video", Morgan & Claypool Publishers, 2005

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	2
CO2	3	3	3	2	2	2
CO3	3	3	3	2	2	2
CO4	3	3	3	2	2	3
CO5	3	3	3	2	3	3
Average	3	3	3	2	2.2	2.4

Subject Code	Subject Name	Category	L	Т	P	С
CU19P33	RADAR SIGNAL PROCESSING	PE	3	0	0	3

Ob	Objectives:				
•	To understand the Radar Signal acquisition and sampling in multiple domains				
•	To provide clear instruction in radar DSP basics				
•	To equip the skills needed in both design and analysis of common radar algorithms				
•	To understand the basics of synthetic aperture imaging and adaptive array processing				
•	To illustrate how theoretical results are derived and applied in practice				

UNIT-I INTRODUCTION TO RADAR SYSTEMS	9
History and application of radar, basic radar function, elements of pulsed radar, review of signal processing c	oncepts
and operations, A preview of basic radar signal processing, radar system components, advanced radar	r signal
processing	
UNIT-II SIGNAL MODELS	9
Components of a radar signal, amplitude models, types of clutters, noise model and signal-to-noise ratio, ja	mming,
frequency models: the doppler shift, spatial models, spectral model	
UNIT-III SAMPLING AND QUANTIZATION OF PULSED RADAR SIGNALS	9
Domains and criteria for sampling radar signals, Sampling in the fast time dimension, Sampling in slo	w time:
selecting the pulse repetition interval, sampling the Doppler spectrum, Sampling in the spatial and angle din	nension,
Quantization, I/Q Imbalance and Digital I/Q	
UNIT-IV RADAR WAVEFORMS	9
Introduction, waveform matched filter, Matched filtering of moving targets, The ambiguity function, The pul	se burst
waveform, frequency-modulated pulse compression waveforms, Range side lobe control for FM wavefor	ms, the
stepped frequency waveform, Phase-modulated pulse compression waveforms, COSTAS Frequency Codes.	
UNIT-V DOPPLER PROCESSING	9
Alternate forms of the Doppler spectrum, Moving target indication (MTI), Pulse Doppler processing, dwell-to	o- dwell
stagger, Pulse pair processing, additional Doppler processing issues, clutter mapping and the moving target d	letector,
MTI for moving platforms: adaptive displaced phase centre antenna processing.	
Total Contact Hours	: 45

Course Outcomes:

On completion of the course, students will be able to

- Understand the concepts of radar processing
- Analyze the various amplitude and frequency models
- Outline the concepts of sampling and quantization
- Analyze the various radar waveforms
- Explain the processing of radar signal and its associated issues.

Reference Books(s) / Web links:

INCI	terence books(s) / web miks.
1	Fundamentals of Radar Signal Processing, Mark A. Richards McGraw-Hill, New York, 2005
2	Principles of Radar and Sonar Signal Processing, Francois Le Chevalier, Artech House
3	systems, Peak Detection and Tracking, Michael O Kolawole ,2010,Elseveir
4	Introduction to Radar Systems 3/E, Skolnik, McGraw Hill.
5	Radar Principles, Peyton Z. Peebles, 2009 Wiley India
6	Radar Design Principles-Signal Processing and the environment, Fred E. Nathanson, PHI
U	

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	3
CO2	3	3	3	2	2	2
CO3	3	3	3	3	3	2
CO4	3	3	3	3	3	2
CO5	3	3	3	2	2	2
Average	3	3	3	2.6	2.6	2.2

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P34	ELECTROMAGNETIC INTERFERENCE AND		3	0	0	3
	COMPATIBILITY					

Obj	ectives:
•	To understand the basics of EMI
•	To acquire knowledge on EMI problems
•	To gain ideas on Solution methods in PCB
•	To learn Measurement technique for emission
	To understand Measurement technique for immunity

UNIT-I EMI/EMC CONCEPTS

EMI-EMC definitions and Units of parameters; Sources and victim of EMI; Conducted and Radiated EMI Emission and Susceptibility; Transient EMI, ESD; Radiation Hazards.

UNIT-II EMI COUPLING PRINCIPLES

Conducted, radiated and transient coupling; Common ground impedance coupling; Common mode and ground loop coupling; Differential mode coupling; Near field cable to cable coupling, cross talk; Field to cable coupling; Power mains and Power supply coupling.

UNIT-III EMI CONTROL TECHNIQUES

Shielding- Shielding Material-Shielding integrity at discontinuities, Filtering- Characteristics of Filters-Impedance and Lumped element filters-Telephone line filter, Power line filter design, Filter installation and Evaluation, Grounding-Measurement of Ground resistance-system grounding for EMI/EMC-Cable shielded grounding, Bonding, Isolation transformer, Transient suppressors, Cable routing, Signal control. EMI gaskets

UNIT-IV EMC DESIGN OF PCBS

EMI Suppression Cables-Absorptive, ribbon cables-Devices-Transient protection hybrid circuits ,Component selection and mounting; PCB trace impedance; Routing; Cross talk control Electromagnetic Pulse-Noise from relays and switches, Power distribution decoupling; Zoning; Grounding; VIAs connection; Terminations.

UNIT-V EMI MEASUREMENTS AND STANDARDS

Open area test site; TEM cell; EMI test shielded chamber and shielded ferrite lined anechoic chamber; Tx /Rx Antennas, Sensors, Injectors / Couplers, and coupling factors; EMI Rx and spectrum analyzer; Civilian standards-CISPR, FCC, IEC, EN; Military standards-MIL461E/462. Frequency assignment - spectrum conversation. British VDE standards, Euro norms standards in japan - comparisons. EN Emission and Susceptibility standards and Specifications.

Total Contact Hours:45

9

9

9

9

9

Course Outcomes:

On	On completion of the course, students will be able to				
•	Design a EMI free system				
•	Demonstrate their acquired knowledge in reducing system level crosstalk				
•	Design high speed Printed Circuit board with minimum interference				
•	Make our world free from unwanted electromagnetic environment				

Reference Books(s) / Web links:

1	V.P.Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE Press, Newyork, 1996.
2	Clayton R.Paul," Introduction to Electromagnetic Compatibility", John Wiley Publications, 2008
3	Henry W.Ott.,"Noise Reduction Techniques in Electronic Systems", A Wiley Inter Science Publications, John Wiley and Sons, Newyork, 1988.
4	Bemhard Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artech house, Norwood, 1986.
5	Don R.J.White Consultant Incorporate, "Handbook of EMI/EMC", Vol I-V, 1988.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	-	-	1	2
CO2	3	2	1	1	1	2
CO3	3	3	3	3	3	1
CO4	3	3	3	3	3	2
CO5	3	3	3	3	3	2
Average	3	2.6	2.5	2.5	2.2	1.8

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P35	SOFT COMPUTING	PE	3	0	0	3

Ob	jectives:
	To learn the key aspects of soft computing and neural networks.
	To know about the components and building block hypothesis of Genetic algorithm.
	To understand the features of neural network and its applications

- To gain insight onto Neuro Fuzzy modeling and control.
- To gain knowledge in machine learning through Support vector machines.

INTRODUCTION TO SOFT COMPUTING UNIT-I

Evolution of Computing - Soft Computing Constituents - From Conventional AI to Computational Intelligence -Machine Learning Basics.

UNIT-II NEURAL NETWORKS

Machine Learning using Neural Network, Adaptive Networks - Feed Forward Networks- Supervised Learning Neural Networks - Radial Basis Function Networks - Reinforcement Learning - Unsupervised Learning Neural Networks - Adaptive Resonance Architectures -Advances in Neural Networks.

UNIT-III GENETIC ALGORITHMS

Introduction, Building block hypothesis, working principle, Basic operators and Terminologies like individual, gene, encoding, fitness function and reproduction, Genetic modeling: Significance of Genetic operators, Inheritance operator, cross over, inversion & deletion, mutation operator, Bitwise operator, GA optimization problems, JSPP (Job Shop Scheduling Problem), TSP (Travelling Salesman Problem), Differences & similarities between GA & other traditional methods, Applications of GA.

UNIT-IV FUZZY LOGIC

Fuzzy Sets - Operations on Fuzzy Sets - Fuzzy Relations - Membership Functions-Fuzzy Rules and Fuzzy Reasoning - Fuzzy Inference Systems - Fuzzy Expert Systems - Fuzzy Decision Making.

NEURO-FUZZY MODELING UNIT-V

Adaptive Neuro-Fuzzy Inference Systems - Coactive Neuro-Fuzzy Modeling - Classification and Regression Trees -Data Clustering Algorithms - Rule base Structure Identification - Neuro-Fuzzy Control - Case Studies.

> **Total Contact Hours** : 45

9

9

9

Course Outcomes:

On completion of the course, students will be able to

- Understand machine learning through neural networks.
- Remember various learning algorithm used in neural network.
- Write Genetic Algorithm to solve the optimization problem
- Apply fuzzy logic concepts for decision making •
- Analyze Neuro Fuzzy system for clustering and classification

Reference Books(s) / Web links:

- 1 Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2003.
- 2 KwangH.Lee, "First course on Fuzzy Theory and Applications", Springer–Verlag Berlin Heidelberg, 2005.
- **3** George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995.
- 4 James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.
- **5** David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Addison Wesley, 2007.
- 6 Mitsuo Gen and RunweiCheng,"Genetic Algorithms and Engineering Optimization", Wiley Publishers 2000.
- 7 Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall, 1998.
- 8 S.N.Sivanandam, S.N.Deepa, "Introduction to Genetic Algorithms", Springer, 2007.
- 9 Eiben and Smith "Introduction to Evolutionary Computing" Springer
- E. Sanchez, T. Shibata, and L. A. Zadeh, Eds., "Genetic Algorithms and Fuzzy Logic Systems: Soft Computing
 Perspectives, Advances in Fuzzy Systems Applications and Theory", Vol. 7, River Edge, World Scientific, 1997.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	-	3	2
CO2	1	3	3	2	3	2
CO3	1	3	3	2	1	1
CO4	1	2	3	2	1	-
CO5	1	2	3	2	1	-
Average	1.4	2.4	2.6	2	1.8	1.7

PROFESSIONAL ELECTIVE- IV

Subject Code	Subject Name	Category	L	Т	P	С
CU19P41	DETECTION AND ESTIMATION THEORY	PE	3	0	0	3

Ob	Objectives:				
	To learn the usage of tools from probability and signal processing domains				
	To gain knowledge on detection of deterministic signals				
•	To obtain optimum detector/estimator for an digital communication system				
•	To learn the detection of random signals with unknown parameters				
•	To identify the (error) performance bounds of any detector/estimator adopted in communication systems				

NIT-I STATISTICAL DECISION THEORY 9
yesian, minimax, and Neyman-Pearson decision rules, likelihood ratio, receiver operating characteristics, composite
pothesis testing, locally optimum tests, detector comparison techniques, asymptotic relative efficiency.
VIT-II DETECTION OF DETERMINISTIC SIGNALS 9
atched filter detector and its performance; generalized matched filter; detection of sinusoid with unknown
plitude, phase, frequency and arrival time, linear model
NIT-III DETECTION OF RANDOM SIGNALS 9
timator-correlator, linear model, general Gaussian detection, detection of Gaussian random signal with unknown
rameters, weak signal detection.
yesian, minimax, and Neyman-Pearson decision rules, likelihood ratio, receiver operating characteristics, composite pothesis testing, locally optimum tests, detector comparison techniques, asymptotic relative efficiency. NIT-II DETECTION OF DETERMINISTIC SIGNALS 9 atched filter detector and its performance; generalized matched filter; detection of sinusoid with unknown plitude, phase, frequency and arrival time, linear model 9 NIT-III DETECTION OF RANDOM SIGNALS 9 timator-correlator, linear model, general Gaussian detection, detection of Gaussian random signal with unknown rameters, weak signal detection. 9

UNIT-IV	NONPARAMETRIC DETECTION		9	
Detection in the absence of complete statistical description of observations, sign detector, Wilcoxon detector, detector				
based on quantized observations, robustness of detectors.				
UNIT-V	NIT-V ESTIMATION OF SIGNAL PARAMETERS			
Minimum variance unbiased estimation, Fisher information matrix, Cramer-Rao bound, sufficient statistics, minimum				
statistics, complete statistics; linear models; best linear unbiased estimation; maximum likelihood estimation,				
invariance principle; estimation efficiency; Bayesian estimation: philosophy, nuisance parameters, risk functions,				
minimum mean square error estimation, maximum a posteriori estimation.				
		Total Contact Hours :	45	

Co	urse Outcomes:		
On	On completion of the course, students will be able to		
•	State various detection problems in hypotheses testing framework		
•	Describe various estimation algorithms for their error performance		
•	Develop algorithms for various estimation problems		
•	Design various sequential procedures for detection/estimation problems		
•	Formulate algorithms for tracking		

Reference	Books(s) /	Web	links:

1 H. L. Van Trees, "Detection, Estimation and Modulation Theory: Part I, II, and III", John Wiley, NY, 1968.

2 H. V. Poor, "An Introduction to Signal Detection and Estimation", Springer, 2/e, 1998.

3 S. M. Kay, "Fundamentals of Statistical Signal Processing: Estimation Theory", Prentice Hall PTR, 1993.

4 S. M. Kay, "Fundamentals of Statistical Signal Processing: Detection Theory", Prentice Hall PTR, 1998.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	3	2	3	2
CO2	3	3	3	3	2	2
CO3	3	3	3	3	2	2
CO4	3	3	3	3	3	3
CO5	3	3	3	3	3	2
Average	3	3	3	2.8	2.6	2.2

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P42	INTERNETWORKING MULTIMEDIA	PE	3	0	0	3

Ob	Objectives:		
•	To discuss the various multimedia standards		
•	To understand the different broadband technologies		
•	To analyze the transport protocols and its applications		
٠	To study various multimedia communication standards		
•	To analyze multimedia across Wireless Network		

UNIT-I MULTIMEDIA NETWORKING	9		
Digital Sound, Video and Graphics – Basic Multimedia Networking – Multimedia Characteristics – Evolution of			
Internet Services Model - Network Requirements for Audio/ Video Transform - Multimedia Coding and Compre			
for Text, Image Audio And Video.			
UNIT-II BROADBAND NETWORK TECHNOLOGY	9		

Broadband Services – ATM and IP, IPV6, High Speed Switching – Resource Reservation, Buffer Management – Traffic Shaping – Caching – Scheduling and Policing, Throughput, Delay and Jitter Performance – Storage and Media Services – Voice and Video Over IP – MPEG–2 over ATM/IP – Indexing Synchronization of Requests – Recording and Remote Control.

UNIT-III RELIABLE TRANSPORT PROTOCOL AND APPLICATIONS	9			
Multicast over Shared Media Network – Multicast Routing and Addressing – Scaling Multicast and NBMA Networks				
- Reliable Transport Protocols - TCP Adaptation Algorithm - RTP, RTCP - MIME - Peer-to-Peer Computing -				
Shared Application - Video Conferencing, Centralized and Distributed Conference Control - Distributed Virtual				
Reality – Light Weight Session Philosophy				
UNIT IV MULTIMEDIA COMMUNICATION STANDADDS	0			

 UNIT-IV
 MULTIMEDIA COMMUNICATION STANDARDS
 9

 Objective of MPEG – 7 Standard – Functionalities and Systems of MPEG–7 MPEG–21 Multimedia Framework
 Architecture – Content Representation – Content Management and Usage – Intellectual Property Management – Audio Visual System – H322: Guaranteed QOS LAN Systems – MPEG_4 Video Transport across Internet.
 9

 UNIT-V
 MULTIMEDIA COMMUNICATION ACROSS NETWORKS
 9

 Packet Audio/Video in The Network Environment –Video Transport across Generic Networks – Layered Video
 9

Coding– Error Resilient Video Coding Techniques – Scalable Rate Control – Streaming Video Across Internet – Multimedia Transport Across ATM Networks and IP Network – Multimedia Across Wireless Networks. Total Contact Hours : 45

Total Contact Hours

Course Outcomes:

On completion of the course, students will be able to

- Apply various communication standards in multimedia communication
- Utilize different networks for multimedia communication
- Understand Broadband Network technology
- Improve different protocols for efficient communication.
- Address various multimedia communication standards

Ref	Reference Books(s) / Web links:				
1	B O Szuprowicz, "Multimedia Networking", McGraw Hill, Newyork, 1995.				
2	K R Rao, Zoran S, Bojkovic and Dragorad A, Milovanovic "Multimedia communication systems", PHI, 2003.				
3	Jon Crowcroft, Mark Handley, Ian Wakeman "Internetworking Multimedia" Harcourt, Singapore, 1998.				
4	Tay Vaughan, "Multimedia Making it to work", 4th edition Tata McGraw Hill, NewDelhi, 2000.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
C01	3	3	3	2	2	2
CO2	3	3	3	3	2	2
CO3	3	3	3	3	2	2
CO4	3	3	3	3	3	2
CO5	3	3	3	3	3	2
Average	3	3	3	2.8	2.4	2

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P43	MILLIMETER WAVE COMMUNICATION	PE	3	0	0	3

Ob	jectives:
•	To understand the fundamentals of Millimeter wave devices and circuits.
•	To understand the various components of Millimeter wave Communications system.
•	To know the antenna design at Millimeter wave frequencies.

UNIT-I INTRODUCTION

Millimeter wave characteristics- millimeter wave wireless, implementation challenges, Radio wave propagation for mm wave: Large scale propagation channel effects, small scale channel effects, Outdoor and Indoor channel models, Emerging applications of millimeter wave communications.

MM WAVE DEVICES AND CIRCUITS UNIT-II

Millimeter wave generation and amplification: Peniotrons, Ubitrons, Gyrotrons and Free electron lasers. HEMT, models for mm wave Transistors, transistor configurations, Analog mm wave components: Amplifiers, Mixers, VCO, PLL. Metrics for analog mm wave devices, Consumption factor theory, Trends and architectures for mm wave wireless, ADC's and DAC's.

UNIT-III MM WAVE COMMUNICATION SYSTEMS

Modulations for millimeter wave communications: OOK, PSK, FSK, QAM, OFDM, Millimeter wave link budget, Transceiver architecture, Transceiver without mixer, Receiver without Oscillator, Millimeter wave calibration, production and manufacture, Millimeter wave design considerations.

UNIT-IV MM WAVE MIMO SYSTEMS

Massive MIMO Communications, Spatial diversity of Antenna Arrays, Multiple Antennas, Multiple Transceivers, Noise coupling in MIMO system, Potential benefits for mm wave systems, Spatial, Temporal and Frequency diversity, Dynamic spatial, frequency and modulation allocation.

UNIT-V ANTENNAS FOR MM WAVE SYSTEMS

Antenna beamwidth, polarization, advanced beam steering and beam forming, mm wave design consideration, Onchip and In package mm wave antennas, Techniques to improve gain of on-chip antennas, Implementation for mm wave in adaptive antenna arrays, Device to Device communications over 5G systems, Design techniques of 5G mobile.

Total Contact Hours

45

:

Course Outcomes:

On completion of the course, students will be able to

- Understand the basic concepts of Millimeter wave devices and circuits
- Analyze the Millimeter wave devices for various applications
- Design antenna for Millimeter wave frequencies
- Assess Knowledge of Millimeter wave technology. •
- Implementation of mm wave in adaptive antenna arrays •

Reference Books(s) / Web links:

K.C. Huang, Z. Wang, "Millimeter Wave Communication Systems", Wiley-IEEE Press, March 2011. 1 Robert W. Heath, Robert C. Daniel, James N. Theodore S. Rappaport, Murdock, "Millimeter Wave Wireless Communication", Prentice Hall, 2014. 3. Xiang, W; Zheng, K; Shen, X.S; "5G Mobile Communications: 2

Springer, 2016.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	1	2	1
CO3	3	3	3	2	1	2
CO4	3	3	3	2	1	2
CO5	3	3	3	2	1	1
Average	3	3	3	1.8	1.4	1.4

9

9

9

Q

9

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P44	COMMUNICATION NETWORK SECURITY	PE	3	0	0	3

Ob	Objectives:		
•	To introduce the concept of classical encryption techniques		
•	To understand the various cryptographic techniques		
٠	To introduce the fundamental concept of public key encryption and hash functions		
٠	To introduce IP security		

• To learn the concept of security attacks and recent trends in wireless network security

DATA ENCRYPTION STANDARD UNIT-I

Services - Mechanisms and Attacks - OSI security Architecture - Model for Network Security - Classical Encryption Techniques - Symmetric Cipher Model - Substitution Techniques - Transposition Techniques - Rotor Machines-Stenography - Block Ciphers and Data Encryption Standard - Simplified DES - Block Cipher Principles, Data Encryption Standard - Strength of DES- Differential and Linear Crypt Analysis, Block Cipher Design Principles -Block Cipher Modes of Operation. ADVANCED ENCRYPTION STANDARD **UNIT-II** 9

Advanced Encryption Standard – Evaluation Criteria for AES, AES Cipher– Contemporary Symmetric Ciphers – Triple DES, Blowfish, RC5 - Characteristics of Advanced Symmetric Block Ciphers - RC4 Stream Cipher -Confidentiality using Symmetric Encryption – Placement of Encryption Function – Traffic Confidentiality – Key Distribution and Random Number Generation.

UNIT-III PUBLIC KEY ENCRYPTION AND HASH FUNCTIONS

Public Key Cryptography and RSA – Principles of Public Key Cryptosystems – RSA Algorithm – Key Management and other public key cryptosystems - Key Management- Diffie-Hellman Key Exchange - Elliptic Curve Arithmetic -Elliptic Curve Cryptography - Message Authentication and Hash Functions - Authentication Requirements -Authentication Functions - Message Authentication Codes - Hash Functions and MACs; Hash Algorithms - MD5 Message Digest Algorithm, Secure Hash Algorithm RIPEMD 160, HMAC- Digital Signatures and Authentication Protocols - Digital Signature Standards.

NETWORK SECURITY PRACTICE UNIT-IV

Authentication Applications - Kerberos - X.509 Authentication Service- Electronic Mail Security, Pretty Good Privacy - S/MIME- IP Security - IP Security Overview- IP Security Architecture, Authentication Header Encapsulating Security Payload - Combining Security Associations -Web Security - Web Security Considerations -Secure Sockets Layer and Transport Layer, Security - Secure Electronic Transaction. 9

UNIT-V WIRELESS NETWORK SECURITY

Security Attack issues specific to Wireless systems: Worm hole, Tunnelling, DoS. WEP for Wi-Fi network, Security for 4G networks: Secure Ad hoc Network, Secure Sensor Network.

> **Total Contact Hours** :

9

9

45

Course Outcomes:

On completion of the course, students will be able to

- Apply public key crypto system and analyze with the applications.
- Apply authentication protocols and web security methods. •
- Address the basic issues and challenges in wireless networks.
- Address various Security attacks issues. •
- Familiar with IP security. •

Reference Books(s) / Web links:

1	William Stallings, "Network Security Essentials", 2nd edition, Prentice Hall of India New Delhi, 2004.
2	Charlie Kaufman, "Network Security Private Communication in Public World" 2nd edition, Prentice Hall of India New Delhi, 2004.
3	William Stallings, "Cryptography and Network Security", 3rd edition, Prentice Hall of India, New Delhi, 2004.
4	R.K.Nichols and P.C. Lekkas," Wireless Security" McGraw Hill 2002.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	1
CO2	3	3	3	3	3	2
CO3	3	3	2	2	2	2
CO4	3	3	3	3	2	2
CO5	3	3	3	3	3	2
Average	3	3	2.6	2.8	2.6	1.8

Subject Code	Subject Name	Category	L	Т	Р	С
CU19P45	INTERNET OF THINGS	PE	3	0	0	3

Ob	Objectives:		
•	To understand the fundamentals of Internet of Things		
•	To learn about IoT Architecture		
•	To learn about the basics of IOT protocols		
•	To build a small low cost embedded system using Raspberry Pi.		
٠	To apply the concept of Internet of Things in the real world scenario.		

INTRODUCTION TO IoT UNIT-I

Internet of Things - Physical Design- Logical Design- IoT Enabling Technologies - IoT Levels & Deployment Templates - Domain Specific IoTs - IoT and M2M - IoT System Management with NETCONF-YANG- IoT Platforms Design Methodology

UNIT-II IoT ARCHITECTURE

M2M high-level ETSI architecture - IETF architecture for IoT - OGC architecture - IoT reference model - Domain model - information model - functional model - communication model - IoT reference architecture 0

UNIT-III IoT PROTOCOLS

Protocol Standardization for IoT - Efforts - M2M and WSN Protocols - SCADA and RFID Protocols - Unified Data Standards - Protocols - IEEE 802.15.4 - BACNet Protocol - Modbus- Zigbee Architecture - Network layer -6LowPAN - CoAP - Security 9

BUILDING IOT WITH RASPBERRY PI & ARDUINO UNIT-IV

Building IOT with RASPERRY PI- IoT Systems - Logical Design using Python - IoT Physical Devices & Endpoints -IoT Device -Building blocks -Raspberry Pi -Board - Linux on Raspberry Pi - Raspberry Pi Interfaces -Programming Raspberry Pi with Python - Other IoT Platforms - Arduino.

UNIT-V CASE STUDIES AND REAL-WORLD APPLICATIONS

Real world design constraints - Applications - Asset management, Industrial automation, smart grid, Commercial building automation, Smart cities - participatory sensing - Data Analytics for IoT - Software & Management Tools for IoT Cloud Storage Models & Communication APIs - Cloud for IoT - Amazon Web Services for IoT.

Total Contact Hours : 45

9

9

Co	Course Outcomes:		
On	On completion of the course, students will be able to		
•	Analyze various protocols for IoT		
٠	Develop web services to access/control IoT devices.		
٠	Design a portable IoT using Raspberry Pi		
•	Deploy an IoT application and connect to the cloud.		
•	Analyze applications of IoT in real time scenario		

Reference Books(s) / Web links:					
1	ArshdeepBahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015				
2	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer,				
	2011.				
3	Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.				
4	Jan Ho" ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From				
	Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.				
5	Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things – Key applications and Protocols",				
	Wiley, 2012.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	2
CO2	3	3	3	2	2	2
CO3	3	3	2	2	2	2
CO4	3	3	3	3	2	2
CO5	3	3	3	3	3	2
Average	3	3	2.6	2.4	2.2	2