

DEPARTMENT OF MECHATRONICS ENGINEERING

B.E. MECHATRONICS ENGINEERING

CURRICULUM AND SYLLABUS – R2023 Choice Based Credit System

I Sem to VIII Sem

RAJALAKSHMI ENGINEERING COLLEGE (An Autonomous Institution Affiliated to Anna University Chennai) DEPARTMENT OF MECHATRONICS ENGINEERING **CURRICULUM AND SYLLABUS – R2023 Choice Based Credit System B.E. MECHATRONICS ENGINEERING**

VISION:

To attain excellence in academics, research and technological advancement in Mechatronics Engineering with a concern for society. **MISSION:**

- To impart high quality professional education and produce Mechatronics Engineers with all round knowledge of multidisciplinary branches of engineering and technology.
- To foster skill sets required to be a global professional in the areas of automation, intelligent systems, robotics, research for technology management and to fulfill the expectations of industry and needs of the society.

To inculcate entrepreneurial qualities for creating, developing and managing global engineering ventures.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO I: Graduates will have comprehensive knowledge in the analytical, scientific and engineering fundamentals necessary to model, analyse and solve engineering problems and to prepare them for graduate studies and for successful careers in industry.

PEO II: Graduates will effectively design and develop products in the areas such as automation, manufacturing, Internet of Things, machine vision, system simulation, intelligent systems and robotics.

PEO III: Graduates will acquire Technical expertise, Leadership skills, Ethical practices and Team spirit with a concern towards greener society.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering 1. specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching 2. substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design system components or 3. processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and research methods including design of 4. experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools 5. including prediction and modelling to complex engineering activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and 6. cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and 7. environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. 8.

Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in 9. multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Engineering Graduates will be able:

PSO 1: To innovate a Mechatronics system to meet the requirements and specifications.

PSO 2: To analyze and improve the performance of a Mechatronics system and enhance the intellectual capabilities of the system PSO 3: To lead professional career in industries or an entrepreneur by applying Engineering and Management principles and practices.

						1	EU/P	O Map	ping						
PEO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
0															
PEO I	3	3	2	2	2	1	1	-	2	1	1	1	3	2	2
PEO II	3	3	3	1	3	1	1	-	-	-	-	1	2	3	2
PEO III	-	-	-	-	-	3	3	3	3	2	2	2	2	2	3

DEA / DA Manning

CURRICULUM

SEMESTER I

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С	
		THEORY	Y COURSE						
1.	HS23111	Technical Communication I	HSM	2	2	0	0	2	
2.	MA23112	Algebra and Calculus	BS	4	3	1	0	4	
3.	GE23111	Engineering Graphics	ES	6	2	0	4	4	
4	GE23211	Engineering Mechanics	ES	3	2	1	0	3	
5	GE23117	தமிழர்மரபு /Heritage of Tamils	MC	1	1	0	0	1	
	LAB ORIENTED THEORY COURSE								
6.	EE23132	Basic Electrical Engineering	ES	5	3	0	2	4	
		LABORATO	ORY COURSE						
7.	GE23121	Engineering Practices – Civil and Mechanical	ES	2	0	0	2	1	
8.	GE23122	Engineering Practices – Electrical and Electronics	ES	2	0	0	2	1	
9.	MT23121	Computer Aided Drawing Laboratory	ES	2	0	0	2	1	
		MANDATO	RY COURSE						
10.	MC23112	Environmental Science and Engineering	MC	3	3	0	0	0	
		TOTAL		30	16	2	12	21	

SEMESTER II

SL.	COURSE	COURSE TITLE	CATEGORY	CONTACT	T	т	р	С
NO.	CODE	COOKSE IIIEE	CAILOOKI	PERIODS	L	1	1	C
		THEORY	COURSE					
1.	MA23212	Differential Equations and Complex Variables	BS	4	3	1	0	4
2	GE23217	தமிழரும் தொழில்நுட்பமும் / Tamils and Technology	МС	1	1	0	0	1
3.	CY23131	Chemistry for Electronics Engineering	BS	5	3	0	2	4
4.	PH23131	Physics of Materials	BS	5	3	0	2	4
5	GE23131	Programming Using C	ES	7	1	0	6	4
6.	MT23131	Elements of Mechatronics	ES	4	2	0	2	3
		LABORATO	RY COURSE					
7	HS23221 /	Technical Communication II /	UCM	2	0	0	2	1
7.	HS23222	English for Professional Competence	пзіvi	2	0	0	2	1
		MANDATO	RY COURSE					
8.	MC23111	Indian Constitution and Freedom Movement	МС	3	3	0	0	0
		TOTAL		31	16	1	14	21

SEMESTER III

SL.	COURSE	COURSE TITLE	CATEGORY	CONTACT	L	Т	Р	С				
NO.	CODE			PERIODS								
	THEORY COURSE											
1.	MA23311	Transforms and Applied Partial	BS	4	3	1	0	4				
		Differential Equations										
		LAB ORIENTED	E									
2.	MT23331	Analog Devices and Drives	PC	4	2	0	2	3				
3	MT23332	Digital System Design	PC	4	2	0	2	3				
4	MT23333	Manufacturing Technology	PC	5	3	0	2	4				
5	MT23334	Mechanics of Solids	PC	5	3	0	2	4				
6.	CS23336	Introduction to Python Programming	ES	5	1	0	4	3				
		TOTAL		27	14	1	12	21				

SEMESTER IV

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
		THEORY	Y COURSE					
1	MT23411	Fluid Mechanics and Thermal Sciences	PC	4	4	0	0	4
2		Open Elective - I	OE	3	3	0	0	3
		LAB ORIENTED	THEORY COURS	E				
3.	MA23432	Statistics and Numerical Methods	BS	5	3	0	2	4
4.	MT23431	Microcontrollers and Embedded Systems	PC	5	3	0	2	4
5.	MT23432	Sensors and Instrumentation	PC	5	3	0	2	4
6.	MT23433	System Dynamics and Control	PC	5	3	0	2	4
		LABORATO	ORY COURSE					
7.	MT23421	Fluid Mechanics and Heat Transfer Laboratory	PC	2	0	0	2	1
8	GE23421	Soft skills – I	EEC	2	0	0	2	1
		31	19	0	12	25		

SEMESTER V

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
		THEORY	COURSE					
1	GE23311	Fundamentals of Management for	HSM	3	3	0	0	3
		Engineers						
2	MT23511	Semiconductor Manufacturing	PC	3	3	0	0	3
3	MT23512	Industrial Electronics	PC	3	2	1	0	3
4	MT23513	Basic Engineering Research Methods	PC	3	3	0	0	3
5		Open Elective - II	OE	3	3	0	0	3
6	MT23PXX	Professional Elective -I	PE	3	3	0	0	3
		LABORATO	ORY COURSE					
7	CS23422	Python Programming for Machine	ES	4	0	0	4	2
		Learning						
8	MT23522	Industrial Electronics Laboratory	PC	2	0	0	2	1
9	MT23523	Internship	EEC	2 weeks	0	0	2	1
10	GE23521	Soft Skills – II	EEC	2	0	0	2	1
		TOTAL	28	17	1	10	23	

SEMESTER VI

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С					
	THEORY COURSE												
1 MT23611 Fundamentals of Machine Design PC 3 2 1 0 3													
2	MT23612	Ethics in Robotics and Artificial	PC	3	3	0	0	3					
Z		Intelligence											
3	MT23PXX	Professional Elective -II	PE	3	3	0	0	3					
		LAB ORIENTED	THEORY COURSE										
4	MT23631	Industrial Robotics	PC	5	2	1	2	4					
5	MT23632	Applied Hydraulics and Pneumatics	PC	5	2	1	2	4					
		LABORATO	ORY COURSE										
6	GE23621	Problem Solving Techniques	EEC	2	0	0	2	1					
7	GE23627	Design Thinking and Innovation	EEC	4	0	0	4	2					
		TOTAL		25	12	3	10	20					

SEMESTER VII

SL.	COURSE	COURSE TITLE	CATEGORY	CONTACT	L	Т	Р	С
NO.	CODE			PERIODS				
		THEORY	Y COURSE					
1	MT23PXX	Professional Elective - III	PE	3	3	0	0	3
2	MT23PXX	Professional Elective - IV	PE	3	3	0	0	3
3	MT23711	Industrial Automation	PC	3	2	1	0	3
4	MT23712	Machine Vision	PC	4	3	1	0	4
		LABORATO	ORY COURSE					
5	MT23721	Computer Aided Engineering Laboratory	PC	2	0	0	2	1
6	MT23722	Industrial Automation Laboratory	PC	2	0	0	2	1
7	MT23723	Mechatronics Engineering Problem Solving Using AI, ML and DL	PC	4	-	-	4	2
8	MT23724	Project Work Phase I	EEC	4	-	-	4	2
		TOTAL	25	11	2	12	19	

SEMESTER VIII

SL.	COURSE	COURSE TITLE	CATEGORY	CONTACT	L	Т	Р	С			
NO.	CODE			PERIODS							
	THEORY COURSE										
1	MT23PXX	Professional Elective - V	PE	3	3	0	0	3			
2	MT23PXX	Professional Elective - VI	PE	3	3	0	0	3			
		PRACTIC	AL COURSE								
3	MT23821	Project Work Phase II	EEC	16	-	-	16	8			
		TOTAL		22	6	0	16	14			

TOTAL NO. OF CREDITS: 164

				ELECTIVE COURSES	LIST (VERTICALS)			
Category		Vertical A	Vertical B	Vertical C	Vertical D	Vertical E	Vertical F	Vertical G
Offered	Professional	Computational	Logistics and Supply	Mechanical &	Electronics &	Robotics &	Diversified	Diversified
In	Elective	Engineering	Chain Management	Industrial	Electrical	Automation	Diversineu	Diversitieu
Sem V	PE I	ME23A11 Machine Learning for Intelligent Systems	ME23B11 Reliability and Maintenance Engineering	AT23D11 Advanced Automotive Materials	EE23D11 Analysis of Electrical Machines	RO23C14 Collaborative Robotics	CS23A31 Business Analytics	MT23G11 Social Innovation in Industry 4.0
Sem v		ME23A12 CAD and CAE	ME23B12 Warehousing Automation	MT23C11 Technology Management	MT23D11 Neural Networks and Fuzzy Systems		CD23C22 Data Visualization	EC23E18 Industry 4.0 and IIoT
	DE II	ME23A13 Numerical Heat Transfer	ME23B13 Operations Management	ME23611 Additive Manufacturing Technologies	MT23D12 Virtual Instrumentation	ME23C11 Drone Technologies	CS23A33 Cyber Security and Forensics	MT23G12 New Spinning Technologies
Sem VI	FE II	ME23A14 Theory on Computation and Visualization	ME23B14 Material Handling Equipment, Repair and Maintenance				MT23F11 Enterprise resource Planning	AT23D18 Vehicle Control Systems
	PE III	ME23A15 Computational Bio- Mechanics	ME23B15 Container Logistics	MT23C12 Work System Design and Ergonomics	EE23C11 High Voltage Direct Current Transmission	MT23E11 Medical Robotics	ME23F14 Hybrid and Electrical Vehicles	MT23G13 Fundamentals of Digital Twin
Som VII		ME23A16 Advanced Statistics and Data Analytics	ME23B16 Production Planning and Control	MT23C13 Theory of Metal Cutting	MT23D13 Intelligent Control Systems	MT23E12 Mechatronics System Design	MT23F12 Smart Hospitality Management	MT23G14 Research Paper Writing and Research Funding
Sem vii	PE IV	ME23A17 Noise Acoustics and Vibrations	ME23B17 Operations Research	MT23C14 Theory of Metal Forming	ME23C18 Haptics and Immersive Technologies	MT23E13 Underwater Robotics	MT23F13 Introduction to Large Language Models	ME23D11 Product Design and Development
				MT23C15 Lean Manufacturing and Six Sigma	MT23D14 Battery Management System	MT23E14 Wireless Networks for Industrial Automation	MT23F14 Computer Vision and Deep Learning	MT23G16 Smart Industrial Wastewater Treatment
	PE V	ME23A18 Computational Solid Mechanics	ME23B18 Supply Chain and Logistics Management	MT23C16 Advanced Welding Technologies	EE23A14 Energy Storage Systems	MT23E15 Agricultural Robotics	MT23F15 Internet Tools and Java Programming	EC23E13 BioMEMS
Sem VIII	PE VI	ME23A19 Computational Fluid Dynamics	ME23B19 Data Science	ME23E19 Non- Destructive Testing and Evaluation	MT23D15 VLSI and FPGA	MT23E16 CNC Technology	MT23F16 Introduction to Database Systems	MT23G16 Environmental Impact Assessment
	1.2. 11					MT23E17 Automotive Mechatronics	AI23632 Natural Language Processing	ME23G16 Entrepreneurship Development

SUMMARY

DEPA	ARTMENT OF MECHATRONICS ENGI	NEER	ING								
S. No.	Subject Area			Cre	edits Pe		Credits Total	Percentage %			
	Semester	Ι	II	III	IV	V	VI	VII	VIII		
1	Humanities, Social Studies and Management Science (HSM)	3	2	0	0	3	0	0	0	8	4.88%
2	Rasic Sciences (BS)	4	12	4	4	0	0	0	0	24	14 63%
3	Engineering Sciences (ES)	14	7	3	0	2	0	0	0	24	15.85%
4	Professional Core (PC)	0	0	14	17	10	14	11	0	66	40.24%
5	Professional Electives (PE)	0	0	0	0	3	3	6	6	18	10.98%
6	Open Electives (OE)	0	0	0	3	3	0	0	0	6	3.66%
7	Project Work/ Employability Enhancement Course (PR/EEC)	0	0	0	1	2	3	2	8	16	9.76%
	TOTAL	21	21	21	25	23	20	19	14	164	
8.	Non-Credit*/ (Mandatory)			_	-	-	-	-	-		

SEMESTER I

HS23111	TECHNICAL COMMUNICATION I	Category	L	Т	Р	С
	Common to all branches of B.E/B. Tech programs	HSM	2	0	0	2
Objectives: T	he course shall					
Facilitate stude	ents develop their comprehension skills					
Enable student	s to improve their receptive skills					
Equip learners	with better vocabulary and enhance their writing skills					
Aid students s	peak effectively in all kinds of communicative contexts.					
Improve the le	arners' basic proficiency in workplace communication					
UNIT-I	DEVELOPING COMPREHENSION SKILLS					06
Listening: Intr	oduction to Informational listening – Listening to Podcasts, News					
Reading: Inter	ntional Reading - Short Narratives and Passages.					
Speaking: Intr	oducing Oneself, Narrating a Story / Incident.					
Writing: Sequ	ential Writing - connecting ideas using transitional words (Jumbled Sentences),	, Process Desci	ription			
Grammar: Ve	erbs – Main & Auxiliary: Simple Tenses – Form, Function and Meaning.					
Vocabulary: V	Word formation – Prefix, Suffix, Compound Words.					
UNIT-II	LISTENING AND EXTENDED READING					06
Listening: De	ep Listening – Listening to Talk Shows and Debates					
Reading: In-d	epth Reading - Scanning Passages					
Speaking: Des	scribing Current Issues, Happenings, etc.					
Writing: Note	Making, Note Taking – Paragraph Writing					
Grammar: Co	ontinuous Tenses, Prepositions, Articles					
Vocabulary: (Dne Word Substitutes, Phrasal Verbs.					
UNIT-III	FORMAL WRITING AND VERBAL ABILITY					06
Listening: Lis	tening to Lectures and Taking Notes					
Reading: Inter	rpretation of Tables, Charts and Graphs					
Speaking: SW	OT Analysis on Oneself					
Writing: Form	hal Letter Writing and Email Writing					
Grammar: Pe	rfect Tenses, Phrases and Clauses, Discourse Markers					
Vocabulary:	Verbal Analogy / Cloze Exercise					0.6
UNIT-IV	ENHANCING SPEAKING ABILITY					06
Listening: Lis	tening to eminent voices of one's interest (Martin Luther King, APJ Abdul Kala	im, etc.)				
Reading: 11m	ed Reading, Filling KWL Chart.					
Speaking: Jus	t a Minute, Impromptu					
Crommon (W	KIISI, INSTRUCTIONS.					
Grammar: V	Vin Questions / Yes of No Questions, Imperatives					
	I ANCHACE FOR WORKDIACE					06
UNII-V Listoning: Evi	LANGUAGE FOR WORKFLACE					00
Reading: Exte	ensive Ensuening (Auturo books, rendering of poenis, etc.)					
Speaking: She	noire reauning (Jigsaw Reauning, Shorr Studies, Novels)					
Writing: Reco	mmendations Essay Writing					
Grammar. In	mersonal Passive Reported Speech Concord					
Vocabulary ·	Informal Vocabulary and Formal Substitutes					
, ocubului y .		Tot	al Cor	tact I	Iouro	s• 30
		100		uner I	-0ur	

Course	Course Outcomes:					
On con	On completion of the course students will be able to					
CO1	Apply their comprehension skills and interpret different contents effortlessly					
CO2	Read and comprehend various texts and audio visual contents					
CO3	Infer data from graphs and charts and communicate it efficiently in varied contexts					
CO4	Participate effectively in diverse speaking situations					
CO5:	Present, discuss and coordinate with their peers in workplace using their language skills					

Text	tbook(s):
1	Effective Technical Communication by M. Ashraf Rizvi (Author) 2nd Edition Paperback 2017
2	Sylvan Barnet and Hugo Bedau, 'Critical Thinking Reading and Writing', Bedford/St. Martin's: Fifth Edition (June 28,
	2004)
3	Meenakshi Upadhyay, Arun Sharma – Verbal Ability and Reading Comprehension.
4	Teaching Speaking: A Holistic Approach, Book by Anne Burns and Christine ChuenMeng Goh, Cambridge University
	Press

Reference Books(s) / Web links:

1 Basic Vocabulary in Use: 60 Units of Vocabulary Practice in North American English With Answers 2nd Edition by

Michael McCarthy (Author), Felicity O'Dell (Author), John D. Bunting (Contributor)

2 Reading Development and Difficulties By Kate Cain

3 The 7 Habits of Highly Effective People by Stephen Covey, Simon and Schuster, UK

4 Everybody Writes: Your Go-To Guide to Creating Ridiculously Good Content Hardcover by Ann Handley (Author)

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HS23111.1	-	-	-	1	-	-	-	-	-	3	-	-	-	-	1
HS23111.2	-	-	-	1	-	-	-	-	-	3	-	-	-	-	1
HS23111.3	-	1	-	1	-	-	-	-	-	3	-	-	-	-	1
HS23111.4	-	-	-	2	-	-	-	-	1	3	-	-	-	-	1
HS23111.5	-	-	-	1	-	-	-	-	1	3	-	-	-	-	1
Average	-	1	-	1.2	-	-	-	-	1	3	-	-	-	-	1

MA23112	ALGEBRA AND CALCULUS	Category	L	Т	Р	С
	Common to I Sem. B.E. – AERO, AUTO, MECH, MCT, R&A, CIVIL,	BS	3	1	0	4
	BIOTECH, FOOD TECH. AND CHEM					

Objectives: The course shall

• Provide knowledge in using matrix algebra techniques and the concepts of rank and nature of the matrix.

• Provide understanding of the techniques by numerical way of solving matrix Problems.

• Provide understanding of the techniques of analyzing the data and apply the concept of correlation and regression in real life problems.

• Provide the understanding of the techniques of calculus those are applied in the Engineering problems.

• Provide the understanding of the techniques of Integration those are applied in finding area and volumes.

UNIT-I	MATRICES	12			
Matrices - E	igenvalues and eigenvectors - Diagonalization of matrices using orthogonal transformation - Cayley-Hamilton				
Theorem (w	ithout proof) -Quadratic forms- Reduction to canonical form using orthogonal transformation- Numerical compu	itation			
of Eigen val	ue using Power method				
UNIT-II	STATISTICS	12			
Scatter diag	ram - Karl Pearson coefficient of correlation for raw data -Spearman rank correlation coefficient - Lines of regre	ession			
- Regression	equation X on Y and Y on X- Curve fitting by Principle of least squares - Fitting a straight-line $y = ax+b$ and a				
parabola y	$=ax^2+bx+c.$				
UNIT-III	FUNCTIONS OF SEVERAL VARIABLES	12			
Partialdiffer	entiation-Totalderivative-Changeofvariables-Jacobians-Partialdifferentiationofimplicitfunctions-				
Taylor'sserie	esforfunctionsoftwovariables–Maximaandminimaoffunctionsoftwovariables–Lagrange's method of undetermine	ed			
multipliers.					
UNIT-IV	INTEGRAL CALCULUS	12			
Integral Calo	culus: Definite Integrals as a limit of sums - Applications of integration to area, volume - Improper integrals: Bet	ta and			
Gamma inte	grals- Numerical computation of integrals -Trapezoidal rule- Gaussian Two-point quadrature				
UNIT-V	MULTIPLE INTEGRAL	12			
Double integ	Double integrals-Change of order of integration-Area enclosed by plane curves-Triple integrals-Volume of solids- Numerical				
computation	of double integrals- Trapezoidal rule.				
	Total Contact Hou	rs: 60			

Cours	e Outcomes:
On con	mpletion of the course students will be able to:
CO1	Apply the concept of Eigenvalues and eigenvectors, diagonalization of a matrix for solving problems and numerical way
	of solving matrix problems
CO2	Apply the concept of analysis of data, correlation and regression in real life situation.
CO3	Analyse, sketch and study the properties of different curves and to handle functions of several variables and problems of
	maxima and minima.
CO4	Evaluate area and volume using single integration and numerical integration
CO5	Evaluate surface area and volume using multiple integrals.

Text	tbook(s):	
1	1.	Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
2	2.	T Veerarajan, Fundamentals of Mathematical Statistics, yesdee publications, 2017.
3	3.	T Veerarajan, Engineering Mathematics – I, Mc Graw Hill Education, 2018.

Reference Books(s) / Web links:

Ramana. B.V., "Higher Engineering Mathematics ", McGraw Hill Education Pvt.Ltd, New Delhi, 2016. Gupta S.C. and Kapoor V.K."Fundamentals of Mathematical Statistics", Sultan and Sons. Erwin Kreyszig, "Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MA23112.1	3	2	1	-	-	-	-	-	-	-	1	-	-	-	-
MA23112.2	3	2	-	1	-	-	-	-	-	-	1	1	1	-	-
MA23112.3	2	2	-	-	-	-	-	-	-	-	1	1	-	-	-
MA23112.4	3	3	1	-	-	-	-	-	-	-	1	1	-	-	-
MA23112.5	2	2	-	-	-	-	-	-	-	-	-	-	1	-	-
Average	2.6	2.2	1	1	-	-	-	-	-	-	1	1	1	-	-

GE23111	ENGINEERING GRAPHICS	Category	L	Т	Р	С
	Common to I sem. B.E Aeronautical Engineering, Automobile Engineering,	ES	2	0	4	4
	Civil Engineering, Mechanical Engineering, Mechatronics & Robotics and					
	Automation					

0	bjectives: The course shall
•	Teach the importance of drawing in engineering applications.
٠	Develop students' graphic skills for the communication of concepts, ideas, and the design of engineering products.
٠	Expose students to existing national standards related to technical drawings.
٠	Improve students' visualization skills to enable the development of new products.
•	Enhance students' technical communication skills through the use of communicative drawings.

CONCEPT	S AND CONVENTIONS (Not for Examination)			01		
Importance	of graphics in engineering applications-Use of drafting instruments- BIS conventior	is and specifications-				
Size, layout	and folding of drawing sheets- Lettering and dimensioning. Basic Geometrical cons	tructions				
UNIT-I	PLANE CURVES AND PROJECTION OF POINTS		5	5+12		
Curves used	in engineering practices: Conics-Construction of ellipse, parabola and hyperbola by	eccentricity method - Cy	cloi	idal		
Curves-Con	struction of cycloid, epicycloid and hypocycloid - Construction of involutes of squa	re and circle-Drawing of	tang	gents		
and normal t	o the above curves.					
Principles of	Projection and Projection of points.		-			
UNIT-II	PROJECTION OF LINES AND PLANE SURFACES		6	5+12		
Projection o	f straight lines (First angle projection) inclined to both the principal planes - Determ	ination of true lengths and	l tru	ie		
inclinations	by rotating line method					
Projection o	f planes (polygonal and circular surfaces) inclined to both the principal planes by rot	ating object method.				
UNIT-III	PROJECTION OF SOLIDS AND PROJECTION OF SECTIONED SOLID	S	6	5+12		
Projection o	f simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to	one of the principal planes	s by	,		
rotating obje	ect method.					
Sectioning of	f solids in simple vertical position when the cutting plane is inclined to HP and perp	endicular to VP – obtainir	ng tr	ue		
shape of the	section.					
Practicing th	ree-dimensional modeling of simple objects by CAD software (Not for examination)				
UNIT-IV	DEVELOPMENT OF SURFACE AND ISOMETRIC PROJECTIONS		6	5+12		
Developmen	t of lateral surfaces of simple and sectioned solids - Prisms, pyramids cylinders and	cones.				
Principles of	isometric projection-isometric scale-Isometric projections of simple solids and true	ncated solids - Prisms, pyr	ami	ds,		
cylinders an	d cones					
Model maki	ng of isometric projection of combination of solids as assignment (Not for End seme	ster)				
UNIT-V FREE HAND SKETCHING AND PERSPECTIVE PROJECTIONS 6+1						
Free Hand s	Free Hand sketching: Freehand sketching of multiple views from pictorial views of objects - Freehand sketching of pictorial views					
of object from multiple views						
Perspective projection of simple solids-Prisms, pyramids, cylinder and cone by visual ray method.						
		Total Contact Hours	:	9		
				0		

Te	xtbook(s):				
1	Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.				
2	Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2017.				
Re	Reference Books(s) / Web links:				

Ke	Reference Books(s) / Web links:						
1	Varghese P I., "Engineering Graphics", McGraw Hill Education (I) Pvt. Ltd., 2013.						
2	Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P)Limited, 2008.						
3	Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2017.						
4	Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill Publishing Company Limited, New Delhi, 2018.						

Cours On cor	Course Outcomes: On completion of the course students will be able to							
CO1	O1 Construct different plane curves and to comprehend the theory of projection							
CO2	Draw the basic views related to projection of lines and planes							
CO3	Draw the projection of simple solids and to draw the projection of development of surfaces of Sectioned solids in simple vertical position							
CO4	Draw the orthographic projection from pictorial objects and Isometric projections of simple solids							
CO5	Visualize Perspective view of simple solids							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23111.1	3	2	2	1	-	1	-	2	2	2	-	2	-	1	1
GE23111.2	3	2	2	1	-	1	-	2	2	2	-	2	-	1	1
GE23111.3	3	2	2	1	2	1	-	2	2	2	-	2	-	1	1
GE23111.4	3	2	2	1	-	1	-	2	2	2	-	2	-	1	1
GE23111.5	3	2	2	1	-	1	-	2	2	2	-	2	-	1	1
Average	3	2	2	1	2	1	-	2	2	2	-	2	-	1	1

GE23211	ENGINEERING MECHANICS	Category	L	Т	P	С
	Common to I Sem BE- AERO, AUTO, MECH, MCT, R&A, CIVIL,	ES	2	1	0	2
	BIOTECH, FOOD TECH. AND CHEM	Lo	2	1	U	5

Oł	bjectives: The course shall
٠	Provide a thorough understanding of the basics of mechanics and apply the concept of equilibrium of system of forces.
٠	Provide a thorough understanding of the concept of equilibrium and to solve problems of rigid bodies.
٠	Teach about the centroid and center of gravity of objects and moment of inertia
٠	Introduce the basic concepts of friction.
٠	Teach the concepts in kinematics and kinetics of rigid bodies in plane motion.

UNIT-I STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – Resolution of forces – Vector operations of forces - Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility.

UNIT-II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports –Action and reaction forces –stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force - Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in two and three dimensions (classroom lecture only) – (Descriptive treatment only)

UNIT-III PROPERTIES OF SURFACES AND SOLIDS

Centroids - First moment of area – Second moment of area and centre of mass – Centroids of lines and areas - Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem – Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia.

UNIT-IV DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion - Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.

UNIT-V FRICTION AND RIGID BODY DYNAMICS

Friction force – Laws of sliding friction - Characteristics of dry friction – equilibrium analysis of simple systems with sliding friction –wedge friction, Ladder friction, Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

Total Contact Hours : 45

Tex	xtbook(s):
1	Beer, F.P and Johnston Jr. E.R, Cornwell and Sanghi ., "Vector Mechanics for Engineers (In SI Units): Statics and
	Dynamics", 12th Edition, McGraw-Hill Publishing company, New Delhi (2018).
2	Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing
2	House Pvt. Ltd., 2005.

Re	ference Books(s) / Web links:
1	Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics - Volume 1, Dynamics- Volume 2", 7th Edition, Wiley India, 2018.

12

07

08

09

09

2	Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 14th Edition, Pearson Education 2017.
3	Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics – Statics and Dynamics" 4th Edition,
4	Pearson Education 2006.
5	Bhavikatti S S, Engineering Mechanics, New Age International Publishers, 2016
6	Vela Murali, "Engineering Mechanics", Oxford University Press 2010

Г

Cours On cor	e Outcomes: mpletion of the course students will be able to					
CO1	CO1 Analyze the forces in the system and to understand vectorial and scalar representation of forces and moments					
CO2	Study about the rigid body in equilibrium and to analyze the problems in engineering systems using the concept of static equilibrium					
CO3	Determine the properties of surfaces and solids by means of finding centroid, centre of gravity and moment of inertia.					
CO4	Solve problems involving kinematics and kinetics of rigid bodies in plane motion.					
CO5	Solve problems involving frictional phenomena in machines by understanding the concept of friction and the effects by the laws of friction					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23211.1	3	3	1	2	-	-	1	-	2	1	3	2	3	-	1
GE23211.2	3	3	1	2	-	-	1	-	2	1	3	2	3	-	1
GE23211.3	3	3	1	2	-	-	1	-	1	1	3	2	3	-	1
GE23211.4	3	3	1	2	-	-	1	-	3	1	3	2	3	-	1
GE23211.5	3	3	1	2	-	-	1	-	3	1	3	2	3	-	1
Average	3	3	1	2	-	-	1	-	2	1	3	2	3	-	1

GE23117	தமிழர் மரபு / Heritage of Tamils	Category	Category L T P			С	
		MC 1 0 0					
	• • • • • • •						
அலகு I	மொழி மற்றும் இலக்கியம்					03	
இந்திய ெ	மாழிக் குடும்பங்கள் - திராவிட மொழிகள் - தமிழ் 🤅	ஒரு செம்	மொ	சி -	து	பிழ்	
செவ்விலச்	கியங்கள் - சங்க இலக்கியத்தின் சமய சார்பற்ற தன்மை - சா	ங்க இலக்கி	யத்த	நில் ட	பகிர்	தல்	
அறம் - தி	நக்குறளில் மேலாண்மைக் கருத்துக்கள் - தமிழிக் காப்பிய	ங்கள், தமி	ழகத்	தில்	சம	ഞ	
பௌத்த க	சமயங்களின் தாக்கம் - பக்தி இலக்கியம், ஆழ்வார்கள்	மற்றும் ந	நாய	ர்மா	ர்க	п -	
சிற்றிலக்க	ியங்கள் - தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி - தமி	ழ் இலக்கி	ല്പെട	பளர்	ச்சிய	பில்	
பாரதியார்	மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு						
அலகு II	📃 மரபு - பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வன	<u>ர - சிற்பக்</u>	கல	ຎ		03	
நடுகல் மு	தல் நவீன சிற்பங்கள் வரை - ஐம்பொன் சிலைகள் - பழங்	தடியினர் ட	மற்று	ம் அ	வர்	கள்	
தயாரிக்கு	ம் கைவினைப் பொருட்கள், பொம்மைகள் - தேர் செய்யும் க	லை - சுடும	ண்	சிற்ட	ாங்க	ள் -	
நாட்டுப்புற	றத் தெய்வங்கள் - குமரிமுனையில் திருவள்ளுவர் சிலை - இன	சக் கருவில	கள் -	மிரு	தங்	கம்,	
பறை, வீன	ண, யாழ், நாதஸ்வரம் - தமிழர்களின் சமூக பொருளாதா	ர வாழ்வில்) கே	ாவில்	ல்கள	ின்	
பங்கு.							
அலகு III	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்					03	
தெருக்கூத்	து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்	டம், தோல்	பான	வக்	ዀዸ	ந்து,	
சிலம்பாட்ட	_ம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்						
அலகு IV	தமிழர்களின் திணைக் கோட்பாடுகள்					03	
தமிழகத்தி	ன் தாவரங்களும், விலங்குகளும் - தொல்காப்பியம் மற்றும்	சங்க இலச்	கிய	த்தில	ல் அ	கம்	
மற்றும் புற	றக் கோட்பாடுகள் - தமிழர்கள் போற்றிய அறக்கோட்பாடு -	சங்ககாலத	ந்தில்	தமி	ழத்	தில்	
எழுத்தறிவ	ம், கல்வியும் - சங்ககால நகரங்களும் துறை முகங்களும்	- சங்ககால	<u>த</u> ்தி	ல் ஏ	ற்று	பதி	
மற்றும் இற	றக்குமதி - கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி						
அலகு V	இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்கு	ந <mark>த்</mark> தமிழர்	களி	कं		03	
	பங்களிப்பு						
இந்திய வ	ிடுதலைப்போரில் தமிழர்களின் பங்கு - இந்தியாவின்	பிறப்பகு	திகள்	ில்	தமி	ழ்ப்	
பண்பாட்டி	ன் தாக்கம் - சுயமரியாதை இயக்கம் - இந்திய மருத்துவத்	தில், சித்த	மரு	த்து	வத்த	தன்	
பங்கு - கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.							
		otal Contact I	Iours		:	15	
~ ~ ~							
Course Outco	omes: After the successful completion of the course, the student will be able to:						

CO1	Analyze the properties and behavior of fluids in motion and at rest.
CO2	Apply the principles of fluid mechanics to solve basic engineering problems.

CO3	Design and analyze simple thermal systems including heat exchangers.
CO4	Evaluate the performance of fluid and thermal systems using theoretical methods.
CO5	Utilize computational tools to simulate fluid flow and thermal processes.

Tex	t-cum-Reference Books
1	தமிழக வரலாறு - மக்களும் பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல்
1	மற்றும் கல்வியியல் பணிகள் கழகம்).
2	கணினித் தமிழ் - முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
3	கீழடி - வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
4	பொருநை - ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
5	Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6	Social Life of the Tamils – The Classical Period (Dr. S. Singaravelu) (Published by: International Institute of Tamil Studies.
7	Historical Heritage of the Tamils (Dr. S. V. Subramanian, Dr. K. D. Thirunavukkarasu) (Published by: International Institute
	of Tamil Studies).
6	The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Published by: International Institute of Tamil
0	Studies).
0	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of archaeology & Tamil
,	Nadu Text Book and Educational Services Corporation, Tamil Nadu)
1	Studies in the History of India with Special Reference to Tamil Nadu (Dr. K. K. Pillay) (Published by: The Author)
0	
1	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Textbook and Educational Services
1	Corporation, Tamil Nadu)
1	Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) - Reference Book.
2	

EE23132	BASIC ELECTRICAL ENGINEERING	Category	L	Т	Р	С
		ES	3	0	2	4

Ob	ojectives: The course shall:
•	Provide knowledge on the analysis of DC circuits.
٠	Teach methods of analysis of AC circuits.
•	Impart knowledge on principles of operation of electrical machines.
٠	Teach the basics of electrical safety measures.
٠	Provide hands on experience on electric circuits and machines

UNIT-I	DC CIRCUITS			09	
Electrical ci	rcuit elements (R, L and C), voltage and current sources, Kirchhoff's laws,	Mesh and Nodal Analysis, Sup	erpos	ition,	
Thevenin's,	Norton's Theorems and Maximum Power Transfer Theorem		_		
UNIT-II	AC CIRCUITS			09	
Representation of sinusoidal waveforms, Power and Power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL,				, RL,	
RC, RLC co	mbinations. Three phase balanced circuits.				
UNIT-III	DC MOTORS AND TRANSFORMERS			09	
Construction	n, working and characteristics of DC motors. Construction, principle of ope	ration of single-phase Transfor	mer,	EMF	
Equation.					
UNIT-IV	AC ROTATING MACHINES			09	
Construction	and basic working of three phase Alternators and Induction motors, Constru	ction and Types of single-phase	indu	iction	
motors- Cor	struction and basic working of Stepper motor, Permanent magnet Brushless	Motor (PMBLDC) (Qualitative	Treat	iment	
Only).					
UNIT-V	ELECTRICAL SAFETY MEASURES			09	
Primary and	Primary and secondary hazards- arc, blast, shocks-causes and effects-safety equipment- flash and thermal protection -Safety in the				
use of porta	ble tools - Preventive maintenance- Types of earthing and its importance-Sa	fety precautions for electrical a	pplia	nces-	
National ele	ctrical Safety code - Indian electricity acts and rules				
		Contact Hours	:	45	
List of Exp	eriments				
1. Kir	chhoff's laws.				
2. Net	work theorems (Thevenin's, Norton's and Maximum Power Transfer Theorem	ems)			
3. Det	ermination of Impedance and Current in RL, RC and RLC series circuits				
4. Me	asurement of voltage and current in three phase balanced star & delta connect	eted loads.			
5. Loa	d test on DC shunt motor (Virtual Lab)				
6. Loa	d test on single-phase transformer (Virtual Lab)				
7. Loa	d test on three phase induction motor (Virtual Lab)				
8. Loa	d test on Single phase induction motor.				
		Contact Hours	:	30	
		Total Contact Hours	:	75	

Cours	e Outcomes: After the successful completion of the course, the student will be able to:
CO1	Analyse DC circuits and apply circuit theorems.
CO2	Calculate the power and power factor in AC circuits
CO3	Comprehend the principles of electrical machines.
CO4	Realise the electrical safety precautions.
CO5	Experimentally analyze the electric circuits and machines.
-	
Toyth	nok (s):

Te	extbook (s):
1	E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
2	J. B. Gupta, "Fundamentals of Electrical Engineering and Electronics" S. K. Kataria& Sons Publications, 2010.
3	K. Venkataratnam, —Special Electrical Machinesl, Universities Press (India) Private Limited, 2008.
4	John Caddick, P.E. Mary Capelli-Schellpfeffer, M.D., M.P.A. Dennis K. Neitzel, C.P.E. "Al Winfield Electrical Safety Hand
4	Book, fifth edition, The McGraw-Hill 2012

Re	ference Books(s) / Web links:
1	Joseph A. Edminister, Mahmood, Nahri, "Electric Circuits" - Shaum Series and Systems", Schaum"s Outlines, Tata
1	McGrawHill, Indian. 5th Edison, 2017
2	D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
3	D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.
4	L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
5	https://nptel.ac.in/courses/108108076
6	E G Janardanan, —Special Electrical Machinesl, Prentice Hall India Limited, 2013.
7	Maxwell Adams.J, "Electrical safety- a guide to the causes and prevention of electric hazards", The Institution of Electric
/	Engineers, 1994.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
EE2313.1	3	3	3	3	-	3	1	1	2	1	1	1	1	2	-
EE2313.2	3	3	3	3	-	3	1	1	2	1	1	1	1	2	-
EE2313.3	3	3	3	3	-	3	1	1	2	1	1	1	1	2	-
EE2313.4	3	3	3	3	-	3	1	1	2	1	1	1	1	2	-
EE2313.4	3	3	3	3	-	3	3	1	2	1	1	1	1	2	-
Average	3	3	3	3	-	3	1.4	1	2	1	1	1	1	2	-

	GE23121	ENGINEERING PRACTICES – CIVIL AND MECHANICAL	Category	L	Т	Р	С
ES 0 0 2			ES	0	0	2	1

 Objectives: The course shall:

 •
 Provide exposure to the students with hands on experience on various basic engineering practices in Civil and Mechanical Engineering.

List of Experiments			
CIVIL ENGINEERING PRACTICE			
1. Study of pipeline joints, its location and functions: valves, taps, couplings, un	nions, reducers, and elbows in	hous	ehold
fittings.			
2. Preparation of basic plumbing line sketches for wash basins, water heaters, etc.			
3. Hands-on-exercise: Basic pipe connections – Pipe connections with different joi	ning components.		
4. Carpentry Work:			
a. Study of joints in roofs, doors, windows and furniture.			
b. Hands-on-exercise: Woodwork, joints by sawing, planning and chiseling.			
MECHANICAL ENGINEERING PRACTICE			
5. Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.			
6. Gas welding practice.			
7. Basic Machining:			
a. Simple Turning and Taper turning			
b. Drilling Practice			
8. Sheet Metal Work:			
a. Forming & Bending:			
b. Model making – Trays and funnels			
c. Different types of joints.			
9. Machine Assembly Practice:			
a. Study of centrifugal pump			
b. Study of air conditioner			
	Total Contact Hours	:	30

Cours	e Outcomes: After the successful completion of the course, the student will be able to:
CO1	Perform plumbing activities for residential and industrial buildings considering safety aspects while gaining clear
	understanding on pipeline location and functions of joints like valves, taps, couplings, unions, reducers, elbows, etc.
CO2	Perform wood working carpentry activities like sawing, planning, cutting, etc. while having clear understanding of the
	joints in roofs, doors, windows and furniture.
CO3	Produce joints like L joint, T joint, Lap joint, Butt joint, etc. through arc welding process while acquiring in depth
	knowledge in the principle of operation of welding and other accessories
CO4	Perform operations like Turning, Step turning, Taper turning, etc. in lathe and Drilling operation in drilling machine
CO5	Perform sheet metal operations like Forming, Bending, etc. and fabricating models like Trays, funnels, etc.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23121.1	1	1	1	-	-	2	1	-	2	-	-	2	-	2	1
GE23121.2	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-
GE23121.3	2	1	-	2	-	-	2	-	2	1	-	-	-	-	-
GE23121.4	1	1	1	-	-	2	1	-	2	-	-	2	-	2	1
GE23121.5	1	1	1	-	-	2	1	-	2	-	-	2	-	2	1
Average	1.2	1	1	2	-	2	1.25	-	2	1	-	2	-	2	1

GE23122	ENGINEERING PRACTICES - ELECTRICAL AND ELECTRONICS	Category	L	Т	Р	С
		ES	0	0	2	1

Γ

Ot	ojectives: The course shall:
•	Provide hands-on experience on various basic engineering practices in Electrical Engineering.
٠	Impart hands-on experience on various basic engineering practices in Electronics Engineering.
-	
Tie	st of Exnarimants

ELEC	TRICAL ENGINEERING PRACTICE										
1.	Residential house wiring using switches, fuse, indicator, lamp and energy meter	•									
2.	Fluorescent lamp wiring.										
3.	Stair case wiring.										
4.	Measurement of electrical quantities - voltage, current, power & power factor in RL circuit.										
5.	Measurement of resistance to earth of electrical equipment.										
6.	Study of Ceiling Fan and Iron Box										
ELEC	ELECTRONICS ENGINEERING PRACTICE										
1.	1. Study of electronic components and equipment's – Resistor, colour coding, measurement of AC signal parameter (peak-										
peak,	rms period, frequency) using CRO.										
2.	Study of Multimeter										
3.	Testing of electronic components.										
4.	Study of logic gates AND, OR, EXOR and NOT.										
5.	Generation of Clock Signals.										
6.	Soldering practice - Components Devices and Circuits - Using general purpose	PCB.									
7.	Measurement of ripple factor of HWR and FWR.										
		Total Contact Hours	:	30							

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:								
CO1	Fabricate the electrical circuits								
CO2	Construct the house wiring circuits								
CO3	Fabricate the electronic circuits								
CO4	Verify the truth table of logic gates								
CO5	Design the AC-DC converter using diodes and passive components								

Re	ference Books(s) / Web links:
1	Bawa H.S., "Workshop Practice", Tata McGraw – Hill Publishing Company Limited, 2007.
2	Jeyachandran K., Natarajan S. & Balasubramanian S., "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
3	Jeyapoovan T., Saravanapandian M. & Pranitha S., "Engineering Practices Lab Manual", Vikas Publishing House Pvt.Ltd, 2006.
4	Rajendra Prasad A. & Sarma P.M.M.S., "Workshop Practice", SreeSai Publication, 2002.

CO/PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23122.1	3	3	3	2	-	-	2	-	3	2	-	3	-	-	1
GE23122.2	3	3	2	2	-	-	2	-	3	2	-	3	-	-	1
GE23122.3	3	3	3	2	-	-	2	-	3	2	-	3	-	-	1
GE23122.4	3	3	3	2	-	-	-	-	3	2	-	3	-	-	1
GE23122.5	3	3	3	2	-	-	-	-	3	2	-	3	-	-	1
Average	3	3	3	2	-	-	2	-	3	2	-	3	-	-	1

MT23121	COMPUTER AIDED DRAWING LABORATORY	Category	L	Т	Р	С
		PC	0	0	2	1

Ob	ojectives: The course shall:
٠	To introduce the students the Indian standard code of practice for engineering drawing and general symbols and abbreviation used on the drawing.
٠	To provide hands on experience to develop 2D and 3D models of engineering components.
٠	To provide knowledge to use Drawing/Modeling software.

List o	f Experiments			
1.	Projection of points and lines.			
2.	Projection of planes.			
3.	Projection of Solids I			
4.	Projection of Solids II			
5.	Development of lateral surfaces			
6.	2D assembly drawing of mechanical screw jack.			
7.	2D assembly drawing of plummer block.			
8.	Reverse engineering an assembly in CAD.			
		Total Contact Hours	:	30

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:									
CO1	Develop engineering drawing and dimensioning for the industrial component using Indian Standard code of practice.									
CO2	Implement Geometric Dimensioning & Tolerancing principles in production drawing.									
CO3	Use CAD software for drafting machine components.									
CO4	Recognize various working principles of different machine elements.									
CO5	Develop 2D and 3D models of the component using manual/software.									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	3	-	-	-	-	2	-	2	2	1	1
CO2	1	1	-	-	3	-	-	-	-	2	-	2	2	1	1
CO3	1	1	-	-	3	-	-	-	-	2	-	2	2	1	1
CO4	1	1	-	-	3	-	-	-	-	2	-	2	2	1	1
CO5	1	1	-	-	3	-	-	-	-	2	-	2	2	1	1
Average	1	1	-	-	3	-	-	-	-	2	-	2	2	1	1

MC23112	ENVIRONMENTAL SCIENCE AND ENGINEERING	Category	L	Т	Р	С
		MC	3	0	0	0

Ob	Objectives: The course shall:								
٠	To develop the understanding of environmental and associated issues								
•	To develop an attitude of concern for the environment								
•	To promote enthusiasm in participating environmental protection initiatives								
٠	To develop skills to solve environmental degradation issues								

UNIT-I	AIR AND NOISE POLLUTION	09					
Definition -	Definition -sources of air pollution -chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain,						
ozone deple	ozone depletion, particulate pollutants-Air quality standards-Air quality indices - control of particulate air pollutants-gravitational						
settling char	settling chambers, cyclone separators, wet collectors, fabric filters (Bag-house filter), electrostatic precipitators (ESP)-catalytic						
converters	converters						
Noise pollut	ion -Sources; Health Effects-Standards- Measurement and control methods						
UNIT-II	WATER POLLUTION AND ITS MANAGEMENT	09					

Definition-causes-effects of water pollution-point and nonpoint sources of wastewater-marine pollution-thermal pollution-control of water pollution by physical, chemical and biological methods-wastewater treatment-primary, secondary and tertiary treatmentsources and characteristics of industrial effluents-wastewater recycling and zero liquid discharge UNIT-III SOLID WASTE AND HAZARDOUS WASTE MANAGEMENT 09 Solid waste - types- municipal solid waste management: Sources, characteristics, collection, and transportation- sanitary landfill, recycling, composting, incineration, energy recovery options from waste - Hazardous waste - Types, characteristics, and health impact - Hazardous waste management: Treatment Methods - neutralization, oxidation reduction, precipitation, solidification, stabilization, incineration and final disposal E-waste-definition-sources-effects on human health and environment- E-waste management- recovery of metals-Role of E-waste management within the initiatives of the Govt. of India- Swachh Bharat Mission-soil contamination and leaching of contaminants into groundwater SUSTAINABLE DEVELOPMENT UNIT-IV 00 Solid waste - types- municipal solid waste management: Sources, characteristics, collection, and transportation- sanitary landfill, recycling, composting, incineration, energy recovery options from waste - Hazardous waste - Types, characteristics, and health impact - Hazardous waste management: Treatment Methods - neutralization, oxidation reduction, precipitation, solidification, stabilization, incineration and final disposal E-waste-definition-sources-effects on human health and environment- E-waste management- recovery of metals-Role of E-waste management within the initiatives of the Govt. of India- Swachh Bharat Mission-soil contamination and leaching of contaminants into groundwater UNIT-V ENVIRONMENTAL MANAGEMENT AND LEGISLATION 09 Environmental Management systems - ISO 14000 series- Environmental audit-Environmental Impact Assessment- Life cycle assessment- Human health risk assessment-Environmental Law and Policy- Objectives; Polluter pays principle, Precautionary principle; The Water and Air Acts with amendments-The Environment (Protection) Act (EPA) 1986; Role of Information technology in environment and human health. Total Contact Hours : 45

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:									
CO1	Associate air and noise quality standards with environment and human health.									
CO2	Illustrate the significance of water and devise control measures for water pollution.									
CO3	Analyze solid wastes and hazardous wastes.									
CO4	Outline the goals of sustainable development in an integrated perspective.									
CO5	Comprehend the significance of environmental laws.									

Te	xtbook (s):
1	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016
2	Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers ,2018.
3	Johri R., E-waste: implications, regulations, and management in India and current global best practices, TERI Press, New Delhi

Re	ference Books(s) / Web links:
1	R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38. Edition 2010.
2	Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
3	Fowler B, Electronic Waste – 1 st Edition (Toxicology and Public Health Issues), 2017Elsevier
4	https://onlinecourses.nptel.ac.in/noc19_ge22/
5	<u>NPTEL</u>
6	https://news.mit.edu/2013/ewaste-mit

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MC23112.1	1	2	3	1	-	2	2	2	1	1	1	2	-	1	1
MC23112.2	1	2	3	1	-	2	2	2	1	1	1	2	-	-	-
MC23112.3	-	-	3	1	-	2	3	2	1	-	1	2	-	-	-
MC23112.4	-	1	2	1	1	3	3	2	1	1	1	2	-	-	-
MC23112.5	-	1	2	-	-	2	2	2	1	2	2	2	-	-	1
Average	1			1	1			2	1			2	-	1	1

SEMESTER II

MA23212	DIFFERENTIAL EQUATIONS AND COMPLEX VARIABLES	Category	L	Т	Р	С						
	Common to II Sem. B.E AERO, AUTO, BME, CIVIL, EEE, ECE,	BS	3	1	0	4						
	MECH, MCT, R&A											
Objectives: 7	The course shall:											
 Provide students with an introduction to the theory of ordinary differential equations through applications, methods of solution, and numerical approximations. 												
Introduce students to how to solve linear Partial Differential with different methods.												
Enable	Enable the students to study the Laplace Transforms, properties of Laplace Transform, inverse Laplace Transform and some											
applicat	tions to solve the differential equations and integral equations.											
 Explain 	the concept of a vector integration in a plane and in space.											
 Describ 	e basic properties of complex variables and to have the ability to compute com	olex integrals.										
UNIT-I	ORDINARY DIFFERENTIAL EQUATIONS					12						
Second and h	igher order Linear differential equations with constant coefficients - Method o	variation of par	ramete	rs – L	egend	lre's						
linear equation	ons – Numerical solution of ODE - Single Step methods: Taylor's series method	, Euler's method	1.		<u> </u>							
	PARTIAL DIFFERENTIAL EQUATIONS		1			12						
Formation of	partial differential equations - Classification of PDE – Solutions of standard	types of first or	der pa	rtial d	ifferei	ntial						
equations - La	agrange's linear equation –Linear nomogeneous partial differential equations of	second and high	ier ord	er wit	n cons	stant						
	Ι ΑΦΙ Α CE ΤΡΑΝSΕΩΡΜ				<u> </u>	12						
Laplace trans	form _Basic properties _ Transforms of derivatives and integrals of functions	Transforms of	unit st	en fur	oction	and						
impulse funct	tions periodic functions Inverse Laplace transform – Problems using Convolu	ion theorem – S	olution	n of li	near (DDE						
of second ord	ler with constant coefficients using Laplace transformation techniques		014101									
UNIT-IV	VECTOR CALCULUS					12						
Gradient, div	ergence and curl - Directional derivative - Irrotational and Solenoidal vector	fields - Vector	integr	ation	– Gre	en's						
theorem in a	plane, Gauss divergence theorem and Stokes' theorem (excluding proofs) – Si	nple application	s invo	lving	cubes	and						
rectangular parallelopipeds.												
UNIT-V	COMPLEX VARIABLES					12						
Analytic fund	ctions - Construction of analytic function - Bilinear transformation -Sing	larities – Cauc	hy's ii	itegra	l theo	orem						
(without proc	f) - Residues - Residue theorem (without proof) - Simple problems - Contour	ntegral over z =	:1.									
		Total Contact	Hours	5	:	60						
~ ~												
 Course Outc 	omes: After the successful completion of the course, the student will be able to	•										

Cours	e Outcomes: After the successful completion of the course, the student will be able to:
CO1	Apply the methods as a potent tool in the solution of a variety of problems in the natural sciences and technology.
CO2	Develop specific methodologies, techniques and resources in Partial differential equations to conduct research and
	produce innovative results in the area of specialization.
CO3	Use Laplace transform and inverse transform techniques to solve the complex problems in engineering and technology.
CO4	Apply the concepts in multivariable analysis, including space curves; directional derivative; gradient; multiple integrals;
	line and surface integrals; vector fields; divergence, curl; the theorems of Green and Stokes, and the divergence theorem
	in different fields of engineering.
CO5	Demonstrate the concept of Analytic functions, conformal mapping and complex integration in solving Engineering
	problems.

Te	xtbook (s):
1	Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
2	Veerarajan. T, Engineering Mathematics –II, Mc Graw Hill Education, 2018.
3	Erwin Kreyszig," Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi,
4	2016.
5	Glyn James, "Advanced Modern Engineering Mathematics", Pearson Education, 4th Edition, New Delhi,

Re	eference Books(s) / Web links:
1	Ramana. B.V., "Higher Engineering Mathematics ", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
2	T Veerarajan, Transforms and Partial Differential Equations, Third Edition, 2018.
3	Bali, N.P. and Manish Goyal, A Text Book of Engineering Mathematics, Lakshmi Publications Pvt. Ltd.,
•	New Delhi, 4 th Edition 2006.
4	Peter V.O'Neil, "Advanced Engineering Mathematics", Cengage Learning India Pvt., Ltd, 7th Edition,
4	New Delhi, 2012.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MA23212.1	3	2	1	-	-	-	-	-	-	-	-	1	1	-	-
MA23212.2	3	2	1	-	-	-	-	-	-	-	-	1	1	-	-
MA23212.3	3	2	1	-	-	-	-	-	-	-	-	-	-	-	-
MA23212.4	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-
MA23212.5	3	2	1	-	-	-	-	-	-	I	-	1	-	-	-
Average		2	1	-	-	-	-	-	-	-	-	1	1	-	-

GE23217	தமிழரும் தொழில்நுட்பமும் / Tamils and Technology	Category	L	Т	Р	С
		MC	1	0	0	1

அலகு I	தெசவு மற்றும் பொனைத் ததொழில்நுட்பம்	03
சங்க கா	லத்தில் நெசவுத் நதாழில் - பானைத் நதாழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்க	ள் -
பண்டங்க	ளில் கீறல் குறியீடுகள்.	
அலகு II	வடிவனமப்பு மற்றும் கட்டிடத் ததொழில்நுட்பம்	03
சங்க கா	லத்தில் வடிவனமப்பு மற்றும் கட்டுமாைங்கள் & சங்க காலத்தில் வீட்டுப்நபாருட்க	ளில்
வடிவனம	ப்பு - சங்க காலத்தில் கட்டுமாை நபாருட்களும் ெடுகல்லும் - சிலப்பதிகாரத்தில் மம	னட
அனமப்பு	பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், மகாவில்களும் - மசாழர் கால	த்துப்
நபருங்மக	காயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் - ொயக்கர் காலக் மகாயில்கள் - ம	ாதிரி
கட்டனம்	ப்புகள் பற்றி அறிதல், மதுனர மீைாட்சி அம்மை ஆலயம் மற்றும் திருமனல ொய	க்கர்
மஹால் -	நசட்டிொடு வீடுகள் - பிரிட்டிஷ் காலத்தில் நசைனையில் இெமதா - சாமராநசைிக் கட்ட	டிடக்
கனல.		
ച്ചുകര്യ	உற்பத்தித் ததொழில் நுட்பம்	03
		·
கப்பல்கட	_டும் கனல் - உமலாகவயல் - இரும்புத் நதாழிற்சானல் - இருமன்ப உருக்குதல், எஃகு - வரலார சனசா சால், பலற்றும் சங்க வொண்டுள்ளன் - வொண்டுள்ளன் வர்தல், பணி உருவர	ற்றுச
சாையல்	களாக நசயபு யற்றுய தங்க ொண்யங்கள் - ொண்யங்கள் அச்சடித்தல் - யண் உருவாக என்லான் ால்லணிகள் என்னாம் மணிகள் ாடுமன் மணிகள் அச்சடித்தல் - யண் உருவாக	க்கும் - சு
ந்தாழாறச	ലഞ്ചിലെക്ക് - ക്യലായിക്കി, കായിയാനവ് ലായിക്കി - ക്യിലായി ലായിക്കി - കിലത് ലായിക ലഞ്ജിവന് കന്നായിന്നായിന്നെ അംഗ്രാമന്ന് മറ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ്റ	- 100
ിയ്യ്യവിത്രം	தல் குள் - ந்தால்லியல் சால் ஆகள் - சால்ப்பதிகாரத்தில் மலாகளல் வலக்கள். பல்லிகள் - ந்தால்லியல் சால் ஆகள் - சால்ப்பதிகாரத்தில் மலாகளல் - வலக்கள்.	03
ച IV	வவளாணைய மற்றும் ைர்ப்பையைச்த ததொடுல் இட்டம்	05
அனண, ஏ	் ரரி, குளங்கள், மதகு - மசாழர்காலக் குமுழித் தாம்பிை் முக்கியத்துவம் - கால்ெனட பராம	ரிப்பு
- கல்ென	்டகளுக்காக வடிவனமக்கப்பட்ட கிணறுகள் - மவளாண்னம மற்றும் மவளாண்னமச் சார்	ெ்த
நசயல்பா	டுகள் - கடல்சார் அறிவு - மீை்வளம் - முத்து மற்றும் முத்துக்குளித்தல் - நபருங்கடல் கு	றித்த
பண்னடய	ப அறிவு - அறிவுசார் சமூகம்.	
அலகு V	அறிவியல் தமிழ் மற்றும் கணித்தமிழ்	03
அறிவியல்	v தமிழிை் வளர்ச்சி - கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்கனள மிை்பதிப்பு நசய்தல் - <u>ச</u>	5மிழ்
நடைந்பா	ரட்கள் உருவாக்கம் - தமிழ் இனணயக் கல்விக்கழகம் - தமிழ் மிை் நூலகம் - இனணயத்	ந்தில்
தமிழ் அக	ராதிகள் - நசாற்குனவத் திட்டம்.	
	Total Contact Hours :	15

Tex	tbook (s):
	தமிழக வரலாறு - மக்களும் பண்பாடும் - மக.மக. பிள்னள (நவளியீடு: தமிழ்ொடு பாடநூல்
1	மற்றும் கல்வியியல் பணிகள் கழகம்).
2	தணிைத் தமிழ் - முனைவர் இல. சுெ்தாம். (விகடை பிாசாம்).
3	கீழடி - னவனக ெதிக்கனரயில் சங்ககால ெகர ொகரிகம் (நதால்லியல் துனற நவளியீடு)
4	நபாருனெ - ஆற்றங்கனர ொகரிகம். (நதால்லியல் துன்ற நவளியீடு)
5	Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL - (in print)
6	Social Life of the Tamils – The Classical Period (Dr. S. Singaravelu)(Published by: International Institute of Tamil Studies.
7	Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute
/	of Tamil Studies).
8	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies).
0	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of archaeology & Tamil
9	Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)
11	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services
11	Corporation, Tamil Nadu)
12	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) – Reference Book.

CY23131	CHEMISTRY FOR ELECTRONICS ENGINEERING	Category	L	Т	Р	С
	Common to B.E. – ECE, BME, EEE, MCT and R&A	BS	3	0	2	4

Ob	Objectives: The course shall:					
٠	To understand the principles of electrochemical processes					
•	To explore the functioning of sensors and their applications in industries and health care					
٠	To get familiarized with the functioning batteries of and fuel cells					
٠	To acquire knowledge on polymeric materials used in electronics					
٠	To develop proficiency in nanomaterials					

UNIT-I DYNAMIC ELECTROCHEMISTRY 09 Applied Electrochemistry: Electrode Potential - EMF series - Corrosion- Causes, Consequences and Prevention. Surface Preparation- electropolishing -Electroplating of copper, electrophoretic deposition - Electrochemical machining, electrochemical etching - electrochemical etching of Cu from PCB. UNIT-II ELECTROCHEMICAL SENSORS 09 Electrodes - reference electrodes - ion-selective electrode, determination of electrode potential - Galvanic and concentration cells potentiometric, amperometric and conductometric methods of analysis - potentiometric sensor, optical sensor, thermal sensor, chemical biosignals - sensors for health care - glucose and urea sensors, gas sensors for CO2, O2 and NH3 sensing- blood oxygen sensor ELECTROCHEMICAL ENERGY SYSTEMS **UNIT-III** 09 Batteries- types - characteristics-fabrication and working of lead-acid battery- NICAD battery - Nickel metal hydride batteries lithium-ion battery - Supercapacitors- introduction - types - electrochemical double layer capacitor - activated carbon - carbon aerogels. Fuel cells - classification - principle, working and applications of hydrogen-oxygen fuel cell - solid oxide fuel cell - direct methanol fuel cell and proton exchange membrane fuel cells-biofuel cells. POLYMERS IN ELECTRONICS UNIT-IV 09 Conducting polymers - conducting mechanisms- polyaniline, Poly pyrrole - photonic polymers - photo resists - Introduction, Liquid crystalline phases, Identification of the mesophases, Lyotropic main chain liquid crystalline polymers, Thermotropic main chain liquid crystal polymers, Applications of liquid Crystals in Displays (LCDs) - Organic LEDs- functioning-advantages and disadvantages over conventional LEDs- commercial uses. UNIT-V NANO MATERIALS 09 Introduction-Types of nanomaterials-Emergence and challenges in nanotechnology- Synthesis routes for nanomaterials: Bottom-up and top-down approaches- Sol-gel, precipitation, Hydrothermal, Solvothermal, Microwave irradiation, Chemical Vapour Deposition (CVD), Electro deposition- Properties of nanomaterials- Mechanical properties, Chemical, Optical, Electrical and Magnetic properties-applications of nanomaterials. **Contact Hours** : 45 List of Experiments Construction and determination of EMF of simple electrochemical cells and concentration cells 1. Estimation of acids by pH metry 2 Determination of corrosion rate on mild steel by weight loss method 3. 4. Estimation of mixture of acids by conductometry 5. Estimation of extent of corrosion of iron pieces by potentiometry

- 6. Estimation of copper / ferrous ions by spectrophotometry
- 7. Estimation of DO by using sensors
- 8. Estimation of concentration of ions in the given sample solution.
- 9. Determination of molecular weight of a polymer by viscometry method
- 10. Synthesis of nanomaterials by simple precipitation method

Contact Hours	:	30
Total Contact Hours	:	75

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:					
CO1	Apply the knowledge of electrochemistry in exploring electrochemical processes.					
CO2	Associate the knowledge of sensors in health care and in pollution abatement					
CO3	Recognize the types of batteries and fuel cells					
CO4	Employ advanced materials in industrial applications and display techniques					
CO5	Develop nano and biomaterials for medical applications					

Te	xtbook (s):
1	P. C. Jain and Monika Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., ,New Delhi, 2015
2	O. G. Palanna, "Engineering Chemistry", McGraw Hill Education (India) Pvt, Ltd, New Delhi, 2017
3	Shikha Agarwal "Engineering Chemistry-Fundamentals and applications", Cambridge University Press, New Delhi, 2015

Re	ference Books(s) / Web links:
1	Gowarikar V. R., Viswanathan N.V. and Jayadev Sreedhar, —Polymer Science, New Age International (P) Ltd., New Delhi, 2011
2	Sujata V Bhat, "Biomaterials", Narosa Publishing House, New Delhi, 2002
3	PradeepT, "A Text Book of Nanoscience and Nanotechnology", Tata McGraw Hill, New Delhi, 2012
4	AN INTRODUCTION TO NANOMATERIALS AND NANOSCIENCE (PB 2020) : Asim K DAS, Mahua Das, CBS
4	publishers and distributors Pvt. Ltd.
5	NPTEL course Elementary Electrochemistry course url
5	https://onlinecourses.nptel.ac.in/noc23_cv19/preview_
6	For downloading text/reference books the weblink is given below can be used
0	http://libgen.rs/

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CY23131.1	2	2	1	-	-	-	-	-	-	-	-	1	-	1	1
CY23131.2	3	2	1	-	-	1	1	-	-	-	-	1	-	1	1
CY23131.3	2	1	1	-	-	-	-	-	-	-	-	-	-	-	1
CY23131.4	2	1	1	-	-	-	-	-	-	-	-	1	-	-	1
CY23131.5	3	2	2	-	-	-	-	-	-	-	-	1	-	-	1
Average	2.4	1.6	1.2	-	-	1`	1	-	-	-	-	1	-	1	1

PH23131	PHYSICS OF MATERIALS	Category	L	Т	Р	С
	Common to I sem. B.E AERO, AUTO, CIVIL, MECH, MCT AND R&A	BS	3	0	2	4

Objectives: The course shall:

٠	To enhance the fundamental knowledge of elasticity and its applications relevant to engineering streams.
٠	To become proficient in crystal growth and crystal systems.
٠	To introduce the essential of phase transformation in materials.
٠	To impart knowledge on the structure, properties, treatment, testing and applications of metals and alloys.
٠	To familiarize students with thermal properties and applications.

UNIT-I **PROPERTIES OF MATTER**

Elasticity-Hooke's law-stress-strain-modulus of elasticity-stress-strain diagram-Poisson's ratio-rigidity modulus-twisting couple on a cylinder-moment of inertia - torsional pendulum method. Bending of beams -bending moment-cantilever depression-theory and experiment - Young's modulus determination-uniform and non-uniform bending-I-shape girders. Viscosity-flow of motion-Reynolds number.

UNIT-II **CRYSTAL PHYSICS**

Basis - lattices - unit cell-crystal systems - Bravais lattices - number of atoms, atomic radius, co-ordination number and packing fraction - SC, BCC, FCC, HCP lattices -diamond structure - polymorphism and allotropy-graphite structure - Miller indices determination of d-space-crystal growth techniques-solution growth -melt growth- Czochralski and Bridgmann- crystal defects. 09

UNIT-III PHASE DIAGRAMS

Solid solutions - Hume-Rothery's rules -Gibb's phase rule - unary phase diagram- binary phase diagrams -isomorphous systems tie-line and lever rule - eutectic, eutectoid, peritectic, peritectoid, monotectic and syntectic systems - formation of microstructureshomogeneous and non-homogenous cooling - nucleation (Qualitative)- iron-carbon phase diagram - eutectoid steel - hypoeutectoid and hyper-eutectoid steel - diffusion - Fick's laws - T-T-T diagrams.

UNIT-IV ADVANCED MATERIALS & TESTING

Metallic glasses - preparation, properties and applications - Ceramics - types, manufacturing methods and properties -applications - Composites - types and properties - Shape memory alloys - properties and applications - Nano-materials - top down and bottom up approaches -sol-gel method-pulsed laser deposition-ball milling-hydrothermal method- properties-applications - Tensile strength - Hardness - Fatigue - Impact strength - Creep - Fracture - types of fracture.

UNIT-V THERMAL PHYSICS

Transfer of heat energy - thermal expansion of solids and liquids - expansion joints - bimetallic strips - thermal conduction, convection and radiation -rectilinear heat flow - thermal conductivity - Forbe's and Lee's disc method: theory and experiment conduction through compound media (series and parallel) - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters.

Contact Hours

09

09

09

09

45

:

Ι	List of Experiments							
1	Determination of Young's modulus of given material by non-uniform bending method							
2	Determination of moment of inertia and rigidity modulus of a wire by Torsional pendulum.							
3	Determination of Young's modulus of given beam by cantilever method							
4	Determination of Velocity of ultrasound and compressibility of given liquid – Ultrasonic interferometer							
5	Find the wavelength of Laser and particle size of given powder.							
6	Study the Hysteresis loss of ferromagnetic material by B-H curve experiment							

7.	Determination of Thermal conductivity of a bad conductor – Lee's Disc method.

- 8. Study the solar cell parameters.
- 9. Find the thickness of a given thin wire Air wedge method
- 10. Determination of viscosity of the given liquid using Poiseuille's method.

Contact Hours	:	30
Total Contact Hours	:	75

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:							
CO1	Apply the elastic nature of materials and determine the elastic moduli of different materials.							
CO2	Apply the basic knowledge of crystal structure in solids.							
CO3	Analyse and measure the properties of alloys.							
CO4	Analyse various material testing methods and use them in suitable applications.							
CO5	Understand the concepts of heat transfer in various applications.							

Te	extbook (s):
1	Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2018.
2	Gaur, R.K. & Gupta, S.L. "Engineering Physics," Dhanpat Rai Publishers, 2018.
3	Raghavan, V. "Physical Metallurgy: Principles and Practice". PHI Learning, 2019.

Reference Books(s) / Web links:

- 1 Balasubramaniam, R. "Callister's Materials Science and Engineering". Wiley India Pvt. Ltd., 2017
- 2 Resnick, R., Halliday, D., & Walker, J. "Principles of Physics", Wiley India Pvt., 2018.
- **3** Raghavan, V. "Materials Science and Engineering : A First course". PHI Learning, 2019.
- 4 https://nptel.ac.in/courses/113104068
- 5 https://archive.nptel.ac.in/courses/115/105/115105099/

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PH23131.1	3	3	2	-	-	-	-	-	-	-	-	-	1	1	1
PH23131.2	3	2	1	-	-	-	-	-	-	-	-	-	-	1	-
PH23131.3	3	3	2	-	-	-	-	-	-	-	-	1	1	1	-
PH23131.4	3	2	2	-	-	-	-	-	-	-	-	1	1	1	1
PH23131.5	3	3	2	-	-	-	-	-	-	-	-	1	1	-	-
Average	2.4	1.6	1.2	-	-	1`	1	-	-	-	-	1	-	1	1

GE23131	PROGRAMMING USING C	Category	L	Т	Р	С
		ES	1	0	6	4

Ob	Objectives: The course shall make student able:							
٠	To develop simple algorithms for arithmetic and logical problems.							
٠	To develop C Programs using basic programming constructs							
٠	To develop C programs using arrays and strings							
٠	To develop applications in C using functions, pointers and structures							
•	To develop applications using structures and union							

List of Experiments

- 1. Overview of C, Constants, Variables and Data Types
- 2. Operators and Expressions, Managing Input and Output Operations
- 3. Decision Making and Branching
- 4. Decision Making and Looping
- 5. Nested Loops while and for, Jumps in Loops
- 6. One-Dimensional Arrays
- 7. Pointers
- 8. Searching Algorithms Linear and Binary
- 9. Sorting Algorithms Bubble and Selection
- 10. Two-Dimensional and Multi-dimensional Arrays
- 11. Character Arrays and Strings Handling Functions
- 12. User-Defined Functions Recursive Functions
- 13. Passing Arrays and Strings to Functions
- 14. Scope, Visibility and Lifetime of Variables
- 15. Structures and Unions
- 16. The Preprocessor

Platform Needed: GCC Compiler for Windows/Linux

		Total Contact Hours	:	10 5				
Cours	Course Outcomes: After the successful completion of the course, the student will be able to:							
CO1	To formulate simple algorithms for arithmetic and logical problems.							
CO2	To implement conditional branching, iteration.							
CO3	To decompose a problem into functions and synthesize a complete program.							
901								

CO4 To use arrays, pointers and structures to formulate algorithms and programs.

CO5 To apply programming to solve simple numerical method problems.

Textbook (s):

1 Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Second Edition, PHI

2 Byron Gottfried, "Programming in C", Second Edition, Schaum Outline Series

Reference Books(s) / Web links:

1	Herbert Schildt, "C: The Complete Reference", Fourth Edition, McGraw Hill.
2	Yashavant Kanetkar, "Let Us C", BPB Publications
3	E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
4	NPTEL course, "Problem Solving Through Programming In C", By Prof. Anupam Basu, IIT Kharagpur

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23131.1	2	2	2	2	1	-	-	-	1	1	1	1	3	3	-
GE23131.2	2	1	1	1	1	-	-	-	-	-	1	1	3	2	-
GE23131.3	1	1	2	1	2	-	-	-	-	-	1	1	2	3	2
GE23131.4	2	2	3	2	2	-	-	-	-	-	2	1	2	2	2
GE23131.5	2	2	3	2	3	-	-	-	-	-	2	1	2	2	2
Average															

MT23131	ELEMENTS OF MECHATRONICS	Category	L	Т	Р	С
		ES	2	0	2	3

Objectives: The course shall:

- Understand the fundamental knowledge of various elements of automation.
- Understand the need for automation in process industries.
- Impart basic knowledge of sensors and actuators
- Teach the fundamental knowledge of hydraulic and pneumatic system
- Provide a clear view on Programmable Logic Controllers (PLC) and its application

UNIT-I INTRODUCTION TO AUTOMATION		06						
Automated manufacturing systems - fixed /programmable /flexible automation - Need of automation, Basic elements of automated								
systems- power, program and control. Levels of automation; control systems: Continuous and discrete control; Low	-cost auton	nation,						
Economic and social aspects of automation.								
UNIT-II SENSORS AND TRANSDUCERS		06						
Introduction to sensors and transducers - Static and dynamic characteristics-Types - Displacement, position and pro-	oximity. Ve	elocity						
and motion - force - fluid pressure - liquid flow and level - Temperature - Light - Selection of sensors.								
UNIT-III BASICS OF PNEUMATICS AND HYDRAULICS SYSTEM		06						
Operational principles and application, air compressors, Pneumatic cylinders and air motors, Pneumatic valv	es. Princip	les of						
hydraulics, Hydraulic fluids, Hydraulic- pumps, valves, and actuators.								
UNIT-IV MECHANICAL AND ELECTRICAL ACTUATION SYSTEMS		06						
Mechanical actuation System: Mechanical system - types of motion - Kinematic chain - cams - Gear Trains Belt a	ind chain d	rives						
Mechanical aspects of Motor selection. Electrical actuation system: Stepper motor, Servo motor, Solenoid switch	es							
UNIT-V PROGRAMMABLE LOGIC CONTROLLER		06						
Introduction - Basic structure - Input/output processing - programming. Timers and counters - Analogue input/output - Selection of								
PLC - Simple problems								
Contact Hours	:	30						

List of	Experiments
1.	Displacement measurement using potentiometer and LVDT and plotting the characteristic curves.
2.	Study of Characteristics and calibration of strain gauge and Load Cell
3.	Temperature measurement using Thermocouple, Thermistor and RTD and comparing the characteristics.
4.	Speed control of DC motor.
5.	Study of various types of transducers.

6.	Study of hydraulic, pneumatic and electro-pneumatic circuits.			
7.	Study of PLC and its applications.			
		Contact Hours	:	30
		Total Contact Hours	:	60

Cours	e Outcomes: After the successful completion of the course, the student will be able to:
CO1	Understand the fundamentals of automation system.
CO2	Classify and infer various types of sensors and transducers
CO3	Demonstrate various applications of hydraulic and pneumatic systems.
CO4	Illustrate the operations of mechanical and electrical actuation systems.
CO5	Acquire basic knowledge on PLC for various applications.

Te	xtbook (s):
1	Bolton W., Mechatronics: electronic control systems in mechanical and electrical engineering, Pearson Education (Singapore)
T	Pvt. Ltd., New Delhi, 2013
2	Anthony Esposito, "Fluid Power with applications", Prentice Hall international, 2009.
2	Mikell P Groover, "Automation Production Systems and Computer- Integrated Manufacturing" Pearson Education, New
3	Delhi 2008

	Re	eference	Books((s) / We	eb links	:											
ſ	1	Kuo.	B.C, "A	Automa	tic cont	rol syst	ems", F	Prentice	Hall In	dia, Ne	w Delh	i, 2007.					
ſ	2	Bagad	1 V. S.,	Mecha	tronics,	Techni	cal Put	olication	n, Pune	, 2009.							
	3 Devdas Shetty and Richard A. Kolk, Mechatronics System Design, Cengage Delmar Learning India Pvt Learning, 2012.)12.										
ſ	C	'0/P0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	P

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23131.1	3	3	3	2	-	3	-	-	2	1	1	1	2	3	1
MT23131.2	3	3	3	2	-	3	-	-	2	1	1	1	2	3	1
MT23131.3	3	3	3	2	-	3	-	-	2	1	1	1	2	3	1
MT23131.4	3	3	3	2	-	3	-	-	2	1	1	1	2	3	1
MT23131.5	3	3	3	2	3	3	-	-	2	1	1	1	2	3	1
Average															

HS23221	TECHNICAL COMMUNICATION II	Category	L	Т	Р	С
		HSM	0	0	2	1

Ob	ojectives: The course shall be able
•	To facilitate students to improve their vocabulary for a better communication
•	To enable learners to understand and reproduce language
٠	To aid students to write technical reports in a convincing manner
•	To expose students to different sentence structures
٠	To equip learners to present their ideas in an efficient manner

UNIT-I VOCABULARY FOR BETTER COMMUNICATION	06				
Listening: Telephonic Conversations and TV News					
Reading: Newspapers and Magazines					
Speaking : Conversational Practice: Speaking in a given situation, Asking permission and requesting etc,					
Writing: Job Application Letter and Resume					
Grammar: Reference words: pronouns and determiners					
Vocabulary: Guessing meanings of words in different contexts.					
UNIT-II FUNCTIONAL LANGUAGE ASPECTS	06				
Listening: Motivational listening – listening to real life challenges					
Reading: Articles and Technical reports					
Speaking: Using Polite Expressions, Indirect Questions					
Writing: Paraphrasing a Text, Poem					
Grammar: Purpose Statements, Cause and Effect Expressions					
Vocabulary: Neologisms.					
UNIT-III TECHNICAL REPORTWRITING	06				

Listening: Empathetic Listening – Giving Solutions to Problems
Reading: Inferential Reading
Speaking: Dialogues – Interviewing Celebrities / Leaders / Sportspersons, etc,
Writing: Report Writing
Grammar: Functional Usage of Expressions – used to, gone / been, etc,
Vocabulary: Words Often Confused

UNIT-IV STRUCTURAL GRAMMAR		06					
Listening: Comprehension (IELTS practice tests)							
Reading: Intensive Reading for specific information							
Speaking: Pick and Talk							
Writing: Proposals							
Grammar: Sentence Structures - Simple, Compound, Complex Sentences							
Vocabulary: Replacing dull words with vivid ones							
UNIT-V PRESENTATION SKILLS		09					
Listening: Discriminative listening – sarcasm, irony, pun, etc,							
Reading: Practice of chunking – breaking up reading materials							
Speaking: Mini presentation on some topic							
Writing: Minutes of the meeting							
Grammar: Correction of Errors							
Vocabulary: Advanced vocabulary – fixing appropriate words in the given context.							
	Total Contact Hours :	30					

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:					
CO1	Communicate effectively using appropriate vocabulary					
CO2	Use the acquired language skills to comprehend various types of language contents					
CO3	Evaluate different texts and write effective technical content					
CO4	Use appropriate sentence structures to convey their thoughts in varied contexts					
CO5	Present their concepts and ideas in an effective manner					

Te	xtbook (s):
1	Raymond Murphy, "Intermediate English Grammar," Second Edition, Cambridge University Press, 2018
2	Meenakshi Raman & Sangeeta Sharma, "Technical Communication" Third Edition, Oxford University Press, 2015
3	Teaching Speaking: A Holistic Approach, Book by Anne Burns and Christine Chen Meng Goh, Cambridge University Press

Re	ference Books(s) / Web links:
1	Michael McCarthy (Author), Felicity O'Dell (Author), John D. Bunting (Contributor), "Basic Vocabulary in Use: 60 Units of
I	Vocabulary Practice in North American English With Answers" 2nd Edition
2	Dale Carnegie, "The Art of Public Speaking," Insight Press
2	Jack C. Richards & Theodore S. Rodgers, "Approaches and Methods in Language Teaching, Second Edition, Cambridge
3	University Press
_	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HS23221.1	-	-	-	1	-	-	-	-	-	2	-	-	-	-	-
HS23221.2	-	-	-	1	-	-	-	-	-	3	-	-	-	-	-
HS23221.3	-	2	-	1	-	-	-	-	-	3	-	-	-	-	-
HS23221.4	-	-	-	1	-	-	-	-	2	3	-	-	-	-	-
HS23221.5	-	-	-	1	-	-	-	-	2	2	-	-	-	-	-
Average		2		1					2	2.6					

HS23222	ENGLISH FOR PROFESSIONAL COMPETENCE	Category	L	Т	Р	С
	Common to all branches of B.E/B. Tech programs –Second Semester	HS	0	0	2	1

Objectives: The course shall:

•	Facilitate the learners in acquiring listening and reading competence
•	Enable the learners to communicate effectively through written and oral medium
•	Assist the learners in preparing for competitive examinations
•	Train the students in acquiring corporate skills
•	Inculcate professional standards among the students and make them realize their responsibility in addressing the challenges

UNIT-I RECEPTIVE SKILLS	06							
Listening - Comprehensive Listening - Watching the news - Listening to a peer giving presentation, etc Critical Listening								
Watching a televised debate, Listening to poems - Reading - Extensive Reading - Short stories and One-act Plays - Intensive								
Reading – Articles or Editorials in Magazines, Blog posts on topics like science and technology, arts, etc.								
UNIT-II PRODUCTIVE SKILLS	06							
Speaking - Demonstrative Speaking - Process description through visual aids - Persuasive Speaking - Convincing the liste	ner with							
the speaker's view – Writing – Descriptive Writing - Describing a place, person, process – Subjective Writing – Autobic	ography,							
Writing based on personal opinions and interpretations								
UNIT-III ENGLISH FOR COMPETITIVE EXAMS	06							

An introduction to International English Language Testing System (IELTS) - Test of English as a Foreign Language (TOEFL) -Graduate Record Examination (GRE) - Civil Service, Indian Economic Service Examination, Indian Statistical Service Examination, Combined Defence Services Examination, Staff Selection- (Language Related) - Aptitude tests.

UNIT-IV CORPORATE SKILLS

Critical Thinking and Problem Solving - Case Study, Brainstorming, Q & A Discussion - Team work and Collaboration - Activities like Office Debates, Perfect Square, Blind Retriever, etc. - Professionalism and Strong Work Ethics - Integrity, Resilience, Accountability, Adaptability, Growth Mind set 06

06

30

09

 UNIT-V
 PROJECT WORK

 Case Study based on the challenges faced by the employers and the employees – Devise Plan, Provide Solution
 Total Contact Hours :

Course	Course Outcomes: After the successful completion of the course, the student will be able to:					
CO1	Interpret and respond appropriately in the listening and reading contexts.					
CO2	Express themselves effectively in spoken and written communication					
CO3	Apply their acquired language skills in writing the competitive examinations					
CO4	Exhibit their professional skills in their work place					
CO5	Identify the challenges in the work place and suggest strategies solutions					

Textbook (s):

1	How to Read Better & Faster, Norman Lewis, Goyal Publishers
2	Teaching Speaking: A Holistic Approach, Book by Anne Burns and Christine Chuen Meng Goh, Cambridge University Press
3	The Official Cambridge Guide To IELTS by Pauline Cullen, Cambridge University Press
4	The 7 Habits of Highly Effective People by Stephen Covey, Simon and Schuster, UK

Re	ference Books(s) / Web links:
1	Board of Editors. Sure Outcomes. A Communication Skills Course for Undergraduate Engineers and Technologists. Orient
1	Black Swan Limited, Hyderabad, 2013.
2	Hartley, Mary. "The Power of Listening," JaicoPublishing House; First Edition (2015).
2	Chambers, Harry. "Effective Communication Skills for Scientific and Technical Professionals," Persues Publishing,
3	Cambridge, Massachusetts, 2000.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HS23222. 1	-	1	-	-	-	-	-	-	-	3	-	-	-	-	-
HS23222. 2	-	1	-	-	-	-	-	-	-	3	-	-	-	-	-
HS23222. 3	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
HS23222. 4	-	-	-	-	-	-	2	2	-	3	-	-	-	-	-
HS23222. 5	-	-	1	-	-	-	2	-	-	3	-	-	-	-	-
Average	-	1	1	-	-	-	2	2	-	3	-	-	-	-	-

MC23111	INDIAN CONSTITUTION AND FREEDOM MOVEMENT	Category	L	Т	Р	С
	Common to all branches of B.E/B. Tech Programs - First / Second/third	MC	3	0	0	0
	Semester					

Ob	ojectives: The course shall enable student:
•	To apprehend the sacrifices made by the freedom fighters.
•	To inculcate the values enshrined in the Indian constitution.
•	To instill a sense of responsibility as the citizens of India.
•	To familiarize about the functions of the various levels of Government.
•	To be informed about Constitutional and Non- Constitutional bodies.

UNIT-I INDIAN FREEDOM MOVEMENT

British Colonialism in India-Colonial administration till 1857- Revolt of 1857- Early Resistance to British Rule-Rise of Nationalism							
in India-Indian Freedom Struggle under Mahatma Gandhi-Non- Cooperation Movement-Civil Disobedience Movement- Quit							
India Movement-British Official response to National movement- Independence of India Act 1947-Freedom and Partition.							
UNIT-II CONSTITUTION OF INDIA	09						
Historical Background - Indian Constitution: Constitution' meaning of the term, Sources and constitutional history, Consti	Historical Background - Indian Constitution: Constitution' meaning of the term, Sources and constitutional history, Constituent						
Assembly of India – Philosophical foundations of the Indian Constitution – Preamble – Fundamental Rights – Directive Prince	ciples						
of State Policy – Fundamental Duties – Citizenship – Constitutional Remedies for citizens.							
UNIT-III STRUCTURE AND FUNCTIONS OF CENTRAL GOVERNMENT	09						
Union Government - Structure of the Union Government and Functions - President - Vice President - Prime Minister - Cabinet -							
Parliament – Supreme Court of India – Judicial Review.							
UNIT-IV STRUCTURE AND FUNCTION OF STATE GOVERNMENT AND LOCAL BODY	09						

State Government - Structure and Functions - Governor - Chief Minister - Cabinet - State Legislature - Judicial System in States - High Courts and other Subordinate Courts- Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation, Panchayat Raj: Introduction, Elected officials and their roles, Village level: Role of Elected and Appointed officials. 09

CONSTITUTIONAL FUNCTIONS AND BODIES UNIT-V

Indian Federal System – Centre – State Relations – President's Rule – Constitutional Functionaries – Assessment of working of the Parliamentary System in India- CAG, Election Commission, UPSC, GST Council and other Constitutional bodies-. NITI Aayog, Lokpal, National Development Council and other Non -Constitutional bodies. 45

Total Contact Hours :

Course	Course Outcomes: After the successful completion of the course, the student will be able to:						
CO1	Appreciate the sacrifices made by freedom fighters during freedom movement.						
CO2	Be responsible citizens and abide by the rules of the Indian constitution.						
CO3	Be aware of the functions of the Indian government.						
CO4	Be knowledgeable about the functions of the state Government and the Local bodies.						
CO5	Apply the knowledge on constitutional functions and role of constitutional bodies and non-constitutional bodies.						

Textbook (s):

1	M. Laxmikanth , "Indian Polity:, McGraw-Hill, New Delhi.
2	Durga Das Basu, "Introduction to the Constitution of India", Lexis Nexis, New Delhi. 21sted 2013.
3	P K Agarwal and K N Chaturvedi ,PrabhatPrakashan, New Delhi, 1sted , 2017.

Re	ference Books(s) / Web links:
1	Sharma, Brij Kishore, "Introduction to the Constitution of India:, Prentice Hall of India, New Delhi.
2	U.R.Gahai, "Indian Political System ", New Academic Publishing House, Jalaendhar
3	Bipan Chandra, India's Struggle for Independence, Penguin Books, 2016.
4	Maciver and Page, "Society: An Introduction Analysis", Mac Milan India Ltd., New Delhi.2nded, 2014.
5	Bipan Chandra, History of Modern India, Orient Black Swan, 2009.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MC23111.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MC23111.2	-	-	-	-	-	-	-	-		-	-	-	-	-	-
MC23111.3	-	-	-	-	-	1	-	1	-	-	-	-	-	-	-
MC23111.4	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
MC23111.5	-	-	-	-	-	1	-	1	1	-	-	-	-	-	-
Average	-	-	-	-	-	1	-	1	1	-	-	-	-	-	-

SEMESTER III											
TRANSFORMS AND APPLIED PARTIAL DIFFERENTIAL	Category	L	Т	Р	С						
EQUATIONS											
Common to B.E. Mechatronics, Robotics and Automation, Chemical,	BS	3	1	0	4						
Biotech and Food technology											
	TRANSFORMS AND APPLIED PARTIAL DIFFERENTIAL EQUATIONS Common to B.E. Mechatronics, Robotics and Automation, Chemical, Biotech and Food technology	TRANSFORMS AND APPLIED PARTIAL DIFFERENTIAL Category EQUATIONS Common to B.E. Mechatronics, Robotics and Automation, Chemical, Biotech and Food technology	TRANSFORMS AND APPLIED PARTIAL DIFFERENTIAL Category L EQUATIONS Common to B.E. Mechatronics, Robotics and Automation, Chemical, BS 3 Biotech and Food technology Image: Common technology Image: Common technology	TRANSFORMS AND APPLIED PARTIAL DIFFERENTIAL Category L T EQUATIONS EQUATIONS 1 1 Common to B.E. Mechatronics, Robotics and Automation, Chemical, Biotech and Food technology BS 3 1	TRANSFORMS AND APPLIED PARTIAL DIFFERENTIAL Category L T P EQUATIONS EQUATIONS Image: Common to B.E. Mechatronics, Robotics and Automation, Chemical, BS 3 1 0 Biotech and Food technology Image: Common to B.E. Mechatronics, Robotics and Automation, Chemical, BS 3 1 0						

Objectives: The course shall enable student to:								
To express Fourier series to study the behavior of periodic functions and their appli	cations in system communication	ons,						
digital signal processing and field theory.								
• To show continuous function arising in wave and heat propagation, signals and systems using Fourier Transforms.								
To obtain solution of one-dimensional wave equation with finite difference techniques.								
• To solve one- and two-dimensional heat flow equations using finite difference methods and numerical techniques.								
• To make use of Z-transform to illustrate discrete function arising in wave and heat propagation, signals and systems.								
UNIT-I FOURIER SERIES								
Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series –								
Parseval's identity – Harmonic analysis.								
UNIT-II FOURIER TRANSFORMS								
Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine	e transforms - Properties - Tran	nsforr	ns of					
simple functions - Convolution theorem - Parseval's identity - Application to boundary w	value problems.							
UNIT-III WAVE EQUATION			12					
Solution of one-dimensional wave equation - Finite difference techniques for the solution f	or PDE- One Dimensional Wave	e Equ	ation					
by Explicit method								
UNIT-IV HEAT EQUATION			12					
One dimensional equation of heat conduction - Steady state solution of two-dimensional	al equation of heat conduction (exclu	uding					
insulated edges)- Numerical computation: One dimensional heat flow equation by implicit	it and explicit methods							
UNIT-V Z-TRANSFORMS								
Z- transforms - Elementary properties - Inverse Z - transform (using residues) - Formation of difference equations - Solution								
difference equations using Z- transform.								
	Total Contact Hours	:	60					

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:							
CO1	Demonstrate Fourier series to study the behaviour of periodic functions and their applications in engineering problems							
	such as system communications, digital signal processing and field theory.							
CO2	Apply the shifting theorems, Fourier integral theorems, Inverse Fourier sine and cosine transforms appropriate problems							
	in engineering and technology.							
CO3	Evaluate solution of one-dimensional wave equation arising in various field of engineering using finite difference							
	techniques.							
CO4	Apply the numerical techniques of differentiation to solution of heat flow equations arising in various branches of							
	engineering.							
CO5	Use Z-transform to illustrate discrete function arising in wave and heat propagation, signals and systems.							

Te	xtbook (s):
1	Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, Wiley India, 2015.
2	Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt.Ltd., New Delhi, Second
2	reprint, 2012.
3	Grewal B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014.
4	Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
5	P. Kandasamy, K. Gunavathy, Thilagavathy., "Engineering Mathematics Transforms and Partial Differential Equations",
5	S.Chand & Company, 2002.
Re	ference Books(s) / Web links:
1	N. Subramaniam, K. S. Ramaswami., "Transforms and Partial Differential Equations", Pearson Education, 2018.
2	Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
2	Ray Wylie C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition,
3	New Delhi, 2012.
4	Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi
4	Publications Pvt., Ltd.,), 7th Edition, New Delhi, 2009.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MA23311.1	3	3	-	-	-	-	-	-	-	-	-	-	2	1	2
MA23311.2	3	3	-	-	-	-	-	-	-	-	-	-	2	1	2
MA23311.3	3	3	-	-	-	-	-	-	-	-	-	-	1	2	2
MA23311.4	3	3	-	-	-	-	-	-	-	-	-	-	1	-	1
MA23311.5	3	3	-	-	-	-	-	-	-	-	-	-	1	1	-
Average	3	3	-	-	-	-	-	-	-	-	-	-	1.4	1.3	2

MT23331	ANALOG DEVICES AND DRIVES	Category	L	Т	Р	С
		PC	2	0	2	3

Ot	ojectives: The course shall enable student:
•	To analyze diodes, BJT, FET, and MOSFET operation.
•	To study the characteristics, design and implementation of basic op-amp applications.
•	To design different waveform generating circuits
٠	To develop analytical skills in DC and Stepper motor drives

To inculcate knowledge on Induction and Servo Motor Drives

UNIT-I	DIODES, TRANSISTORS AND IC FABRICATION		06
PN junct	on diode, Zener Diode, Schottky Diode, Tunnel Diode, Varactor Diode- struct	ure, operation and V-I characteristic	s. BJT
Characte	istics and Configurations, MOSFET – operation, Characteristics. Fundam	entals of monolithic IC technolog	gy and
fabricatio	n.	_	-
UNIT - I	I OP-AMP CHARACTERISTICS AND APPLICATIONS		06
Ideal op-	amp characteristics - DC, AC characteristics. Inverting and Non-inverting A	mplifiers - Voltage follower - Sur	mming
amplifier	- Difference amplifier - Differentiator - Integrator- Instrumentation amplifier-	log and antilog amplifier- Low-pass	, high-
pass and	band-pass Butterworth filters.		
UNIT-II	OSCILLATORS AND WAVEFORM GENERATORS		06
Multivib	rators - monostable, bistable. Oscillators - Hartley, Colpits, - Crystal Oscillator	r-555 Timer: Monostable and Astab	le
UNIT-IV	DC AND STEPPER MOTOR DRIVES		06
DC Moto	rs, PMDC, BLDC motors and Servomotors - Types, Principle of Operation I	DC and BLDC Driver Circuits. H Br	ridge
Circuits -	4 Quadrant Operation.		-
Stepper I	Iotor: Constructional Features – Principle of Operation – Types Stepper Moto	rs - Position and Director Control -	· Drive
Circuits			
UNIT-V	INDUCTION AND SERVO MOTORS AND DRIVES		06
AC Perm	anent Magnet Synchronous Servo Motors – Linear Electrical Motors – VFD I	Drives - AC Servo Drives - Modern	Servo
Drives -	Overview of Motion Control		
		Contact Hours :	30
List of E	xperiments:		
1.	Characteristics of CB, CE, CC Configurations		
2.	Measurement of Operational Amplifier parameter: - Common mode gain, differ	ence mode gain, CMRR, slew rate.	
3.	Realization of types of Amplifiers using IC 741.	-	
4.	Characteristics curve of Instrumentation Amplifier		
5.	Design and develop types of filters using simulation tool.		
6.	Design and Testing of Multi Vibrators		
7.	Design and Testing of Astable using NE555 Timer		
0	Design and Testing of Monostable multivibrators using NE555 Timer		

vibrators using NE555

Contact Hours	:	30
Total Contact Hours	:	60

0

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:					
CO1	Understand diode and transistor fundamentals, IC technology, and fabrication.					
CO2	Apply ideal op-amp characteristics to design and analyze various amplifier circuits.					
CO3	Develop waveform generator circuits for simple applications					
CO4	Implement advanced control strategies for DC and stepper motor drives, demonstrating proficiency in both theoretical					
	understanding and practical application.					
CO5	Use the appropriate motors for based on the specific requirements					

Те	extbook (s):
1	D. Roy Choudhary, Sheilb.Jani, —Linear Integrated Circuitsl, fifth edition, New Age, 2018.
2	Ramakant A.Gayakwad, — Op-amps and Linear Integrated Circuits, fourth edition, Pearson Education, 2015.
3	Mehta V.K. & Rohit Mehta, "Principles of Electrical Machines", 2nd Edition, S. Chand& Co. Ltd., New Delhi, 2016.

Re	eference Books(s) / Web links:
1	Rashid, —Microelectronic Circuits Analysis and design: Cengage learning,3rd edition 2017.
2	Fiore, —Op Amps & Linear Integrated Circuits Concepts & Applications, Cengage publications, 2018.
3	Floyd, Buchla, —Fundamentals of Analog Circuits, Pearson, 2002.
4	Jacob Millman, Christos C.Halkias, -Integrated Electronics - Analog and Digital circuits system, Tata McGraw
4	Hill, 2010.
5	Theraja B.L. & Theraja A.K., "A Text Book of Electrical Technology", 2nd Edition, S.Chand & Co. Ltd., New Delhi, 2012.
6	Gobal K. Dubey, "Fundamentals of Electrical Drives", 2nd Edition, Narosal Publishing House, New Delhi, 2005.

CO/PO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23331.1	3	2	1	-	-	-	-	-	1	1	-	-	2	1	-
MT23331.2	3	2	1	1	1	-	-	-	1	1	-	-	2	1	-
MT23331.3	1	2	3	2	1	-	-	-	1	1	-	-	1	2	1
MT23331.4	1	2	3	-	-	-	-	-	1	1	-	-	2	1	-
MT23331.5	1	2	3	-	-	-	-	-	1	1	-	-	1	2	-
Average	1.8	2	2.2	1.5	1	-	-	-	1	1	-	-	1.6	1.4	1

MT23332	DIGITAL SYSTEM DESIGN	Category	L	Т	Р	С
		PC	2	0	2	3

Objectives: The course shall enable student:					
•	To introduce basic postulates and minimization techniques of Boolean expressions				
•	To outline the formal procedures for the analysis and design of combinational circuits				
•	To outline the formal procedures for the analysis and design of sequential circuits				
٠	To illustrate the basic concept of Verilog Hardware Descriptive Language				

• To introduce the modeling concepts of Verilog HDL

UNIT-I LOGIC GATES AND MINIMIZATION TECHNIQUES 06 Logic circuits using gates - Boolean Postulates and Laws - Minimization of Boolean expressions - SOP, POS - Karnaugh map Minimization - Don't Care Conditions - Quine-McCuskey Method of Minimization. DESIGN OF COMBINATIONAL CIRCUITS UNIT-II 06 Adder, Subtractor, Carry Look Ahead Adder, BCD Adder - Encoder, Decoder - Multiplexer, Demultiplexer - Code Converter. UNIT-III DESIGN OF SEQUENTIAL CIRCUITS 07 Introduction to Flip-Flops and its types - Realization of one Flip-Flop using other Flip-Flop - Registers and its types - Synchronous and Asynchronous Counters. UNIT-IV INTRODUCTION TO VERILOG HDL 05 Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Synthesis, Programming Language Interface, Module. Language Constructs and Conventions: Introduction, Keywords, Identifiers, White Space, Characters, Comments, Numbers, Strings, Logic Values, Data Types, Scalars and Vectors, Operators. UNIT-V MODELING IN VERILOG HDL 06 Introduction to Gate level modeling - AND Gate Primitive, Module Structure, Other Gate Primitives, Design of Flip flops with Gate primitive. Introduction to Behavioral modeling - Operations and Assignments - Functional Bifurcation - Initial Construct - Always Construct - if AND if-else Construct - For Loop - While Loop - Forever Loop - Exercise. **Total Contact Hours** 30 List of Experiments: Verification of logic gates and flip flops. 1. Design and Implement 4-bit Parallel Adder / Subtractor using IC 7483. 2. 3. Realize 3-variable function 8:1 Mux using IC 74151 and Realize 1:8 Demux and 3:8 Decoder using IC 74138. 4. Conversion of Binary to Gray Code. 5. Conversion on BCD to Excess - 3 Code. 6. Verification of Flip Flops. 7. Design a Mod N Synchronous Counter using Simulation tool. 8. Design a Mod N Asynchronous Counter using Simulation tool. 9. Realization of Digital circuits using HDL - Combinational circuits. 10. Realization of Digital circuits using HDL - Sequential circuits.

Contact Hours	:	- 30
Total Contact Hours	:	60
	-	-

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:				
CO1	Perform minimization techniques on Boolean expressions.				
CO2	Design and develop Combinational Logic Circuit for the given requirement.				
CO3	Design and develop sequential logic circuits for simple applications.				
CO4	Explain the basic concepts of Verilog HDL.				
CO5	Compare and Analyze different modeling in Verilog HDL.				

Te	xtbook (s):
1	Morris Mano M., "Digital Design: With an Introduction to the Verilog HDL, VHDL and System Verilog", 6 th Edition, Pearson Education Pvt.Ltd., New Delhi, 2018.
2	Charles H.Roth, "Fundamentals of Logic Design", 7th Edition, Thomson Learning, 2015.
3	T.R. Padmanabhan, B Bala Tripura Sundari, Design Through Verilog HDL, Wiley 2009

Reference Books(s)	/ Web links:
--------------------	--------------

1 Thomas L. Floyd, "Digital Fundamentals", 11th Edition, Pearson Education Inc, 2014

2 John F.Wakerly, "Digital Design", 5th Edition, Pearson/PHI, 2017

3 Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", 8th Edition, TMH, 2014.

4 John.M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.

5 Donald D.Givone, "Digital Principles and Design", McGraw Hill Education, 2017.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23332.1	3	3	2	1	-	-	-	1	1	1	-	1	2	2	1
MT23332.2	3	3	3	1	1	-	1	1	1	1	-	1	3	3	3
MT23332.3	3	3	3	3	1	1	1	1	1	1	1	1	3	2	3
MT23332.4	3	-	-	-	-	-	-	1	-	-	1	-	1	1	2
MT23332.5	3	3	3	2	2	1	1	1	1	1	2	2	3	2	3
Average	3	3	2.75	1.75	1.33	1	1	1	1	1	1.33	1.25	2.4	2	2.4

MT23333	MANUFACTURING TECHNOLOGY	Category	L	Т	Р	С
		PC	3	0	2	4

Ob	ojectives: The course shall:
٠	Provide understanding of sand casting and forging processes.
٠	Provide knowledge on various welding methods and principles of additive manufacturing techniques.
•	Present insights into operations and applications of conventional and non-conventional machining processes.
•	Facilitate skill development in operating CNC machines and essentials of CNC programming.
•	Convey the processes involved in fabricating various electronic components.

UNIT-I	FOUNDRY AND FORGING			09
Sand Castin	g: Basics of Sand Mold, Types of patterns and pattern materials, Pattern alle	owances; Special Casting Proces	sses:	Shell
Casting, Inv	estment Casting, Pressure Die Casting, Centrifugal Casting; Forging & Rolli	ng Processes: Forging, Rolling,	Extr	usion.
UNIT-II	JOINING AND ADDITIVE MANUFACTURING PROCESSES			09
Fusion Weld	ling Processes: Gas Tungsten Arc Welding (GTAW), Gas Metal Arc Wel	ding (GMAW), Submerged Arc	c We	elding
(SAW), and	Electro Slag Welding (ESW); Advanced Welding Techniques: Plasma Arc	Welding (PAW), Electron Bean	n We	elding
(EBW), and	I Laser Welding; Brazing, Soldering, Additive Manufacturing Processe	s: Fused Deposition Modellin	g (F	FDM),
Stereolithog	raphy (SLA), Selective Laser Sintering (SLS), Direct Metal Laser Sintering	(DMLS).		
UNIT-III	MACHINING PROCESS			09
Conventiona	d Machining: Lathe, Shaper, Planer, Horizontal milling machine, Caps	tan and Turret lathe; Non-con	nven	tional
Machining F	rocesses: Abrasive Jet Machining (AJM), Water Jet Machining (WJM), Ice J	et Machining (IJM), Ultrasonic N	Macl	nnng
(USM), Elec	tric Discharge Machining (EDM), Electro Chemical Machining (ECM), Plas	ma Arc Machining (PAM), Elect	tron	Beam
Machining (EBM), and Laser Beam Machining (LBM).			00
UNIT-IV CNC Mashi	UNC MACHINES AND PROGRAMMING	as of CNC control systems (or		09 locad
cine Macini	at/continuous): Turning and Machining Conters: Work holding methods	in Turning and machining cont	tors:	CNC
Programmin	a Basics: Coordinates and motion (Absolute vs Incremental). Internolators	Polar coordinates introduction t	o pr	oram
planning G	and M codes: Manual Part Programming: Techniques of manual part programming:	ramming for CNC machining of	o pro	rs and
Turning, O	ters	ranning for erve machining e	cinte	is and
UNIT-V	ELECTRONIC COMPONENT MANUFACTURING			09
Electronic C	omponent Basic Fabrication Methods: Lithography, Etching, Doping, Depos	sition, Oxidation, Diffusion, Met	talliz	ation:
IC Fabricati	on Methods: Bipolar. Complementary Metal-Oxide-Semiconductor (CMO	S). BiCMOS: LED Fabrication	Me	thods:
Epitaxial gro	with, Wafer bonding; High-speed fuse Fabrication Methods: Wire drawing a	nd Spinning (Coiling).		
		Total Contact Hours	:	45
List of Expe	eriments:			
1. Pre	paration of sand mould using single piece and split piece pattern			
2. Fab	rication of tray and funnel in sheet metal			
3. Tap	er turning using lathe			
4. Kni	Irling and external thread cutting using lathe			
5. Step	p turning and drilling using Capstan / Turret lathe			
6. Dri	lling and Tapping			
7. Cut	be formation using shaper			
8. Stu	dy of Indexing mechanism in milling machine			
9. Hex	kagonal milling using vertical milling machine			
10. Spu	ir gear cutting using milling machine			
11. Gea	ar generation in gear hobbing machine			
12. Sur	face grinding and Cylindrical grinding	Constant II and		20
		Contact Hours	:	30
		Total Contact Hours	:	75

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:					
CO1	Demonstrate practical skills in sand casting and describe theoretical aspects of forging processes.					
CO2	Apply metal joining processes practically and describe the theoretical concepts of additive manufacturing.					
CO3	Execute conventional machining operations and describe the theory of unconventional machining processes.					
CO4	Describe the theoretical principles of CNC machine operation and programming.					
CO5	Describe the various electronic component fabrication techniques.					

Te	xtbook (s):
1	HajraChoudhary. S.K and Hajra Choudhary. A.K., "Elements of Workshop Technology", volume I and II, Media Promoters
	and Publishers Private Limited, Mumbai, 2014.
2	Kalpakjian. S, "Manufacturing Engineering and Technology", 7th Edition, Pearson Education India Edition, 2018

Re	ference Books(s) / Web links:
1	Roy A. Lindberg, "Processes and Materials of Manufacture", PHI / Pearson education, 2016
2	Black J.T and Ronald A. Kosher, "DeGarmo's Materials and Processes, in Manufacturing" 13th Edition, Wiley Publishers, 2021.
3	Sharma, P.C., "A Text book of production Technology", S.Chand and Co. Ltd., 2022.
4	Rao, P.N. "Manufacturing Technology Foundry, Forming and Welding", Vol 1, 4th Edition, Mcgraw Hill-2017.
5	https://nptel.ac.in/courses/112107144/
6	Michael Ouirk and Julian Serda, "Semiconductor Manufacturing Technology", Pearson, 2000

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23333.1	3	1	2	-	-	-	1	-	3	3	-	-	2	2	1
MT23333.2	3	1	2	-	-	-	1	-	3	3	-	-	2	2	1
MT23333.3	3	1	2	-	-	-	1	-	3	3	-	-	2	2	1
MT23333.4	3	2	-	-	2	-	-	-	-	-	-	-	2	2	1
MT23333.5	3	1	1	-	-	-	1	-	-	-	-	-	2	2	1
Average	3	1.2	1.75	-	2	-	1	-	3	3	-	-	2	2	1

MT23334	MECHANICS OF SOLIDS	Category	L	Т	Р	С
		PC	3	0	2	4

Ob	jectives: The course shall:
•	Cover basic principles of stress, strain, and deformation in solids.
•	Focus on analyzing transverse loading effects and stress distribution in beams.
٠	Examine torsional behavior in shafts and springs.
•	Explore methods to calculate deflections in beams and analyze column stability.
٠	Evaluate stress distributions in thin-walled cylinders and spheres.

UNIT-I	STRESS, STRAIN AND DEFORMATION OF SOLIDS		09			
Rigid bodie	Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound ba					
Thermal stre	esses – Elastic constants – Strain energy and unit strain energy – Strain energy	y in uniaxial loads – Volumetric	strains –			
principal str	esses and principal planes	-				
UNIT-II	TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM		09			
Beams – typ	bes transverse loading on beams – Shear force and bending moment in beam	s – Cantilevers – Simply supporte	l beams			
and overham	ging beams. Theory of simple bending-bending stress distribution - Load c	arrying capacity of various beams.				
UNIT-III	TORSION ON SHAFTS AND SPRINGS		09			
Torsion for	nulation stresses and deformation in circular and hollows shafts – Stepped sh	afts- Deflection in shafts fixed at	the both			
ends - Stres	ses in helical springs – Maximum shear stress in spring section including Wa	hl Factor - Deflection of helical s	orings.			
UNIT-IV	UNIT-IV DEFLECTION OF BEAMS AND COLUMNS					
Double Inte	gration method for computation of slopes and deflections in beams – Column	s – End conditions – Equivalent l	ength of			
a column –	Euler equation – Slenderness ratio – Rankine formula for columns.	-	-			
UNIT-V	THIN CYLINDERS, SPHERES AND THICK CYLINDERS		09			
Stresses in t	hin cylindrical shell due to internal pressure, circumferential and longitudinal	stresses and deformation in thin a	nd thick			
cylinders -	spherical shells subjected to internal pressure					
		Total Contact Hours	45			
List of Exp	eriments:	· · · · · ·				
1. Ter	nsion test on a mild steel rod					
2. Do	uble shear test on Mild steel and Aluminum rods					
3. To	rsion test on mild steel rod					
4. Im	pact test on metal specimen (Charpy and Izod test)					
5 Uo	drags test on metals (Drinell and Deslawell Hardness Number)					

5. Hardness test on metals – (Brinell and Rockwell Hardness Number)

6.	Deflection test on beams (Simply supported beam)			
7.	Compression test on helical springs (Closed coil)			
8.	Virtual lab experiments - https://sm-nitk.vlabs.ac.in/			
		Contact Hours	:	30
		Total Contact Hours	:	75

Course	Course Outcomes: After the successful completion of the course, the student will be able to:						
CO1	Analyze stress and strain in materials and compute the principal stresses for given stress conditions.						
CO2	Create shear force and bending moment diagrams for beams under different loading conditions.						
CO3	Compute the deformation in shafts under torsional loads.						
CO4	Determine the deflections of the beams and columns using double integration method and Euler's equation respectively						
CO5	Assess stresses in thin cylinders and spheres and calculate their deformations.						

Textbook (s):

Г

1	Bansal, R.K., "Strength of Materials", 7th edition, Laxmi Publications (P) Ltd., 2022.
2	Jindal U.C., "Strength of Materials", 2nd edition, Pearson Pvt. Ltd., New Delhi, 2017.

Reference Books(s) / Web links:

111	terence books(s) / Web miks.
1	Egor. P. Popov "Engineering Mechanics of Solids" 2nd edition, Prentice Hall of India, New Delhi, 2015.
2	Ramamurtham S., "Strength of Materials", 20th edition, Dhanpat rai publishing company, 2020.
3	Hibbeler, R.C., "Mechanics of Materials", 10 th edition, Pearson Education, 2022.
4	Ferdinand P. Been, Russell Johnson, J.r. and John J. Dewole "Mechanics of Materials", 8th edition, Tata McGraw Hill
4	Publishing 'co. Ltd., New Delhi, 2020.
5	https://nptel.ac.in/courses/112107146/
6	Egor. P.Popov "Engineering Mechanics of Solids" 2nd edition, Prentice Hall of India, New Delhi, 2015.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23334.1	3	2	2	-	1	-	1	-	-	-	-	-	3	1	1
MT23334.2	3	3	2	-	2	-	0	-	-	-	-	-	3	1	1
MT23334.3	3	2	3	-	2	-	2	-	-	-	-	-	3	1	1
MT23334.4	3	3	2	-	1	-	2	-	-	-	-	-	3	1	1
MT23334.5	3	2	1	-	2	-	2	-	-	-	-	-	3	1	1
Average	3	2.4	2	-	1.6	-	1.4	•	-	-	-	-	3	1	1

CS23336	INTRODUCTION TO PYTHON PROGRAMMING	Category	L	Т	Р	С
		ES	1	0	4	3

Ot	ojectives: The course shall:
•	To understand computers, programming languages and their generations and essential skills for a logical thinking for
•	problem solving.
٠	To write, test, and debug simple Python programs with conditionals, and loops and functions
٠	To develop Python programs with defining functions and calling them
•	To understand and write python programs with compound data-lists, tuples, dictionaries
٠	To search, sort, read and write data from /to files in Python.

List of Experiments:

- Study of algorithms, flowcharts and pseudocodes. 1.
- 2. Introduction to Python Programming and Python IDLE/Anaconda distribution.
- 3. Experiments based on Variables, Data types and Operators in Python.
- Coding Standards and Formatting Output. 4.
- 5. Algorithmic Approach: Selection control structures.
- Algorithmic Approach: Iteration control structures. 6.
- Experiments based on Strings and its operations. 7.
- 8. Experiments based on Lists and its operations.
- 9. Experiments based on Tuples and its operations. 10.
- Experiments based on Sets and its operations.
- Experiments based on Dictionary and its operations. 11. 12. Functions: Built-in functions.
- 13. Functions: User-defined functions.
- 14. Functions: Recursive functions.
- 15.
- Searching techniques: Linear and Binary.
- Sorting techniques: Bubble and Merge Sort. 16. 17. Experiments based on files and its operations.

Total Contact Hours : 75

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:						
CO1	Understand the working principle of a computer and identify the purpose of a computer programming language and						
	ability to identify an appropriate approach to solve the problem.						
CO2	Write, test, and debug simple Python programs with conditionals and loops.						
CO3	Develop Python programs step - wise by defining functions and calling them.						
CO4	Use Python lists, tuples, dictionaries for representing compound data.						
CO5	Apply searching, sorting on data and efficiently handle data using flat files.						

Textbook (s):

1	Allen B. Downey, Think Python: How to Think Like a Computer Scientist, Second edition, Updated for Python3, Shroff/ O'Reilly Publishers, 2016 (http://greenteapress.com/wp/think-python/)
	Guide Van Bossum and Fred L. Drake Ir. An Introduction to Puthon Pavised and undeted for Puthon 3.2. Natwork Theory

2 Guido Van Rossum and Fred L. Drake Jr, An Introduction to Python-Revised and updated for Python3.2, Network Theory Ltd., 2011.

Re	ference Books(s) / Web links:
1	John V Guttag, Introduction to Computation and Programming Using Python, Revised and expanded Edition, MIT Press, 2013.
2	Robert Sedgewick, Kevin Wayne, Robert Dondero, Introduction to Programming in Python: An Inter-disciplinary Approach,
4	Pearson India Education Services Pvt.Ltd., 2016.
3	Timothy A. Budd, Exploring Python, Mc-Graw Hill Education (India)PrivateLtd., 2015.
4	Kenneth A. Lambert, Fundamentals of Python: First Programs, CengageLearning, 2012.
5	Charles Dierbach, Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India
5	Edition,2013.
6	Paul Gries, Jennifer Campbell and Jason Montojo, Practical Programming: An Introduction to Computer Science using
U	Python3, Second edition, Pragmatic Programmers, LLC, 2013.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23334.1	2	2	2	2	1	-	-	-	1	1	1	1	3	3	-
MT23334.2	2	1	1	1	1	-	-	-	-	-	1	1	3	2	-
MT23334.3	1	1	2	1	2	-	-	-	-	-	1	1	2	3	2
MT23334.4	2	2	3	2	2	-	-	-	-	-	2	1	2	2	2
MT23334.5	2	2	3	2	3	-	-	-	-	-	2	1	2	2	2
Average	1.5	1.33	1.83	1.33	1.5	-	-	-	1	1	1.16	1	2	2	2

SEMESTER IV

Μ	T23411	FLUID MECHANICS AND THERMAL SCIENCES	Category	L	Т	Р	С				
			PC	4	0	0	4				
	Obj	ectives: The course shall:									
•	Introdu	ce fundamental fluid properties, fluid statics principles, and their applications in	engineering.								
•	Focus of	n fluid dynamics, governing equations, and friction losses in internal flows.									
	Provide	a qualitative understanding of hydraulic pumps and turbines, with emphasis on	their working p	rincip	les and	1					
•	applicat	ions.									
•	Introdu	ce the fundamental laws of thermodynamics and their applications.									
•	Introdu	ce thermo-fluid applications in power plants, refrigeration, and CFD.									
UN	IT-I	FLUID PROPERTIES AND FLUID STATICS					12				
Inti	roduction	to Fluid Mechanics: Definition of fluid; Importance of fluid mechanics in mechan	ronics; Differe	ntiatio	n betv	veen s	olid				
and	l fluid; Un	its and dimensions; Fluid Properties: Density, Specific weight, Specific Volume	, Viscosity (dy	namic	and k	inema	tic),				
Co	mpressibil	ity, Surface tension, Vapor pressure.									
Pas	scal's law;	Absolute, gauge, and vacuum pressures; Measurement of pressure using manome	ters and pressu	re gaug	ges, H	ydrost	tatic				
For	rces on Su	rfaces; Applications of fluid mechanics in engineering.									
UN	IIT-II	FLUID DYNAMICS AND FLOW THROUGH PIPES					12				
Inti	roduction	to Fluid Kinematics: Types of fluid flow – Rate of flow – Continuity equation; F	luid dynamics	– Equa	tions	of mo	tion				
- E	Euler's equ	ation along streamline – Bernoulli's equation – Flow Measurement Techniques	: Orifice meter	r, Ven	uri m	eter, I	Pitot				
tub	e.										
Da	rcy Weisb	ach equation - Friction factor – Major and minor energy losses - Flow through pr	pes in series ai	nd in p	aralle	– S1n	nple				
Pro	oblems.						10				
		PUMPS AND TURBINES	<u> </u>	. 1			12				
	roduction	o Pumps: Types of pumps – Construction and working principle of Reciprocation	g pump, Centr	irugal	pump.						
Hy	draulic It	irdines: Classification of turdines – Pelton wheel, Francis turdine, Kaplan tu	rbine – Applie	cations	OI P	amps	and				
	Tomes. Ind	LAWS OF THERMORYNAMICS					10				
		LAWS OF THERMODYNAMICS				1-	12				
ГUI Th		Concepts and Definitions. Thermodynamic System, control volume, pr	operties, proc	esses,	and	cycle	s –				
	rk and has	t First I aw of Thermodynamics: First law of thermodynamics applied to a close	d system Inte	rnal or	argy	51 ene	rgy,				
Sno	acific heat	t. Thist Law of Thermodynamics. Thist law of thermodynamics applied to a close	u system – mte		iergy,	Linuia	лру,				
Sec	cond law o	s. f thermodynamics applied to Heat engines. Refrigerators & Heat numps – Simpl	e Problems Co	ernot's	theor	em					
		THEPMO-FI UD APPI ICATIONS	e i iobienis. Ca	unot s	uncon		12				
Sin	nnle Rank	ine Cycle – Layout and working of modern coal power plant Introduction	to types of R	efrice	ration	and	Δir-				
Co	nditioning	systems	to types of F	unige	ation	and	/ 111-				
Bas	sic concen	ts of heat transfer - Conduction, Convection and Radiation. Heat Exchanger – I	MTD method.	Com	putatio	onal F	luid				
Dv	namics (C	FD): Introduction to CFD: Applications in fluid flow and heat transfer analysis.	interiou.	com	pututi	Jilui I	Turu				
29			Total Contact	Hour	s	•	60				
L			2000 Conduct	inour	-	· ·					
Co	urse Outc	omes: After the successful completion of the course, the student will be able to:									
CO	1 Ana	lyze fluid properties and apply the principles of fluid statics in engineering appli	cations.								
CO	2 Eva	valuate fluid flow dynamics using governing equations and assess friction losses in pipe systems.									

Describe the working principles of various hydraulic machines and their applications. Apply thermodynamics laws to engineering applications. Understand thermo-fluid applications in engineering. CO3

- CO4
- CO5

Textbook (s):								
1	Bansal RK., "Fluid Mechanics and Hydraulics Machines", 11th edition, Laxmi publications (P) Ltd., New Delhi, 2023.							
2	Nag P.K., "Engineering thermodynamics", 6th edition, Tata McGraw hill, 2017.							
3	Cengel YA., Cimbala J M., "Fluid Mechanics – Fundamentals and applications", 4th Edition, McGraw-Hill higher education,							
	2018.							
Reference Books(s) / Web links:								
1	White FM., "Fluid Mechanics", 9th Edition, Tata McGraw-Hill, New Delhi, 2022							
2	Yunus A. Cengel & Michael A. Boles, "Thermodynamics", 8th Edition 2015.							
3	Holman, J.P," Heat Transfer", 10th Edition, McGraw-Hill, 2017.							

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23411.1	3	3	2	1	1	-	1	-	-	-	-	1	2	2	-
MT23411.2	3	3	2	1	1	-	1	-	-	-	-	1	2	2	1
MT23411.3	3	2	2	1	2	-	1	-	-	-	-	1	2	2	2
MT23411.4	3	3	3	1	1	-	1	-	-	-	-	1	2	2	-
MT23411.5	3	2	3	1	2	-	2	-	-	-	-	2	2	2	2
Average	2.8	2.6	2.4	1	1.4	-	1.5	-	-	-	-	1.2	2	2	1.7
MA23432	STATISTICS AND NUMERICAL METHODS	Category	LI	r P	C										
---	--	--	---	--	--										
	Common to IV sem. B.E AERO, MCT and R&A	BS	3 () 2	4										
Oh! a stimura 7	The course shall enable students														
To appl	I ne course shall enable student: ly numerical methods to obtain approximate solutions to methomatical problem	0													
To appl To deriv	ve numerical methods for various mathematical operations and tasks, such as in	s. nterpolation_diffe	rentiation	1											
• integrat	tion the solution of linear equations and the solution of differential equations	nerpolation, and		ι,											
To anal	lyse statistical experiments leading to reliability modelling and to identify reliab	oility testing com	ponents fo	or											
assessm	nent of reliability in engineering design.		r												
To solv	the problems those are faced in testing of a hypothesis with reference to the end	rrors in decision	making.												
To anal	lyse the different mathematical models with the help of statistical deigns and ap	propriate data an	d made va	aluable	9										
conclus	sions by proper evaluation.														
r															
UNIT-I	SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEM				09										
Newton Raph	hson method – Secant method – Gauss Jordan method – Iterative method of Ga	uss Seidel –Eiger	n value of	a mat	rix by										
Jacobi metho	d for symmetric matrix.	DATION			00										
	INTERPOLATION, NUMERICAL DIFFERENTIATION AND INTEG	KATION													
	$n_1 \alpha r_0 \alpha n_0 $	- Approximatio	n of der	vates											
intermolation	netronations – Newton's forward and backward difference interpotation	nt quadratura			using										
interpolation	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin DELIABLITY	nt quadrature.			using										
UNIT-III Reliability Co	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncents: Reliability definitions. Importance of Reliability. Quality Assurance and	nt quadrature.	h Tub Cu	rve - F	using 09										
UNIT-III Reliability Co Data Analysi	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT	nt quadrature. d Reliability, Bat	th Tub Cu Functions	rve - F - Relia	using 09 Failure										
Interpolation UNIT-III Reliability Co Data Analysi Hazard Mode	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, N	d Reliability, Bat FBF, Reliability I Weibull Model-	th Tub Cu Functions Distributi	rve - F - Relia	09 Vailure ability										
Interpolation UNIT-III Reliability Co Data Analysis Hazard Mode and reliability	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, 'y y analysis.	d Reliability, Bat IBF, Reliability I Weibull Model-	th Tub Cu Functions Distributi	rve - F - Relia	09 Tailure ability ctions										
Lagrange s IinterpolationUNIT-IIIReliability CcData AnalysiHazard Modeand reliabilityUNIT-IV	necipolations – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING	d Reliability, Bat DF, Reliability I Weibull Model-	th Tub Cu Functions Distributi	rve - F - Relia	09 Vailure ability ction: 09										
Lagrange s I interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests	d Reliability, Bat DF, Reliability I Weibull Model- of significance -	th Tub Cu Functions Distributi - Z test: S	rve - F - Relia on fun	09 Failure ability ction 09 mean										
Lagrange s I interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of	Interpolations – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test.	d Reliability, Bat d Reliability, Bat TBF, Reliability I Weibull Model- of significance -	th Tub Cu Functions Distributi	rve - F - Relia on fun Single	09 Vailur ability ction 09 mean										
Lagrange s I interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA	d Reliability, Bat d Reliability, Bat TBF, Reliability I Weibull Model- of significance -	th Tub Cu Functions Distributi - Z test: S	rve - F - Relia on fun Single	09 Gailure ability ctions 09 mean										
Lagrange sinterpolationUNIT-IIIReliability CoData AnalysiHazard Modeand reliabilityUNIT-IVMaximal Likdifference ofUNIT-VDesign of Ex	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA periments - Completely randomized design – Randomized block design –Latin	d Reliability, Bat DF, Reliability I Weibull Model- of significance - square design.	th Tub Cu Functions Distributi	rve - F - Relia on fun	09 Gailure ability ctions 09 mean										
Lagrange s I interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex	polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA periments - Completely randomized design – Randomized block design –Latin	d Reliability, Bat fBF, Reliability I Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	Using Og Failure ability ction 09 mean 09										
Lagrange s i interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Experimental	Interpolations – Newton's forward and backward difference interpolation of polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA teperiments - Completely randomized design – Randomized block design –Latin	d Reliability, Bat GBF, Reliability I Weibull Model- of significance - square design. <u>Contact Ho</u>	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	09 Failure ability ction 09 mean 09										
Lagrange's I interpolation UNIT-III Reliability Cc Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Expering 1. Basi 2. Maximal Maxi	microbiations – Newton's forward and backward difference interpolation of polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTels: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA periments - Completely randomized design – Randomized block design –Latin riments (using R Software) ic Functions in R and plotting hearational functional in R and plotting	d Reliability, Bat TBF, Reliability I Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	Using Og Failur ability ction 09 mean 09										
Lagrange s I interpolation UNIT-III Reliability Cc Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Expering 1. Basi 2. Matta	Interpolations – Newton's forward and backward difference interpolation – polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA periments - Completely randomized design – Randomized block design –Latin riments (using R Software) ic Functions in R and plotting hematical functions in R – Integration	d Reliability, Bat TBF, Reliability J Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	Using Gog Gailur abilit cction 09 09 09 09										
Lagrange's I interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex 1. Basi 2. Matt 3. Con 4 Prob	Interpolations – Newton's forward and backward difference interpolation - polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA experiments - Completely randomized design – Randomized block design – Latin riments (using R Software) ic Functions in R and plotting hematical functions in R – Integration trol flow – Loops in R ability. Distributions using R_ PDE_CDE for Binomial and Poisson	d Reliability, Bat TBF, Reliability J Weibull Model- of significance - square design. <u>Contact Ho</u>	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	Using og aailur ability ction 09 mean 09 45										
Lagrange s i interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex 1. Basi 2. Mat 3. Con 4. Prob 5. Test	Interpolations – Newton's forward and backward difference interpolation – polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA reperiments - Completely randomized design – Randomized block design –Latin riments (using R Software) ic Functions in R and plotting hematical functions in R – Integration trol flow – Loops in R pability Distributions using R- PDF, CDF for Binomial and Poisson.	d Reliability, Bat TBF, Reliability J Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi - Z test: S purs	rve - F - Relia on fun Single	Using og vailur ability ction 09 mean 09 45										
Lagrange s I interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex 1. Basi 2. Matt 3. Con 4. Prob 5. Test 6. ANO	Interpolations – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telhood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA reperiments - Completely randomized design – Randomized block design –Latin riments (using R Software) ic Functions in R and plotting hematical functions in R – Integration trol flow – Loops in R pability Distributions using R- PDF, CDF for Binomial and Poisson. ing of Hypothesis – Z, F and chi-square testing OVA – one way and two way	d Reliability, Bat TBF, Reliability J Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	Using Og Failur ability ction Og mean Og 45										
Lagrange s I interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex 1. Basi 2. Matt 3. Con 4. Prob 5. Test 6. ANG 7. Relin	Interpolations – Newfort's forward and backward difference interpolation – polynomials – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an is: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA teperiments - Completely randomized design – Randomized block design –Latin riments (using R Software) ic Functions in R and plotting hematical functions in R – Integration trol flow – Loops in R pability Distributions using R- PDF, CDF for Binomial and Poisson. ting of Hypothesis – Z, F and chi-square testing OVA – one way and two way ability – MTTF, MTBF	d Reliability, Bat TBF, Reliability J Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	usiną 09 vailur abilit <u></u> ction 09 mean 09 45										
Lagrange s 1 interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex 1. Basi 2. Matt 3. Con 4. Prot 5. Test 6. ANO 7. Relia 8. Solu	Interpolations – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telhood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA teperiments - Completely randomized design – Randomized block design –Latin riments (using R Software) ic Functions in R and plotting hematical functions using R- PDF, CDF for Binomial and Poisson. ting of Hypothesis – Z, F and chi-square testing OVA – one way and two way ability – MTTF, MTBF ution of equations – system of linear equations, Newton Raphson method	d Reliability, Bat IBF, Reliability I Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	usiną 09 iailur abilit <u>;</u> ction 09 mean 09 45										
Lagrange s 1 interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex 1. Basi 2. Matt 3. Com 4. Prote 5. Test 6. ANC 7. Relia 8. Solu 9. Line	Interpolations – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance and s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA teperiments - Completely randomized design – Randomized block design – Latin riments (using R Software) ic Functions in R and plotting hematical functions using R- PDF, CDF for Binomial and Poisson. ting of Hypothesis – Z, F and chi-square testing OVA – one way and two way ability – MTTF, MTBF ation of equations – system of linear equations, Newton Raphson method	d Reliability, Bat IBF, Reliability Bat IBF, Reliability I Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi	rve - F - Relia on fun Single	09 iailure ability ctions 09 mean 09 45										
Lagrange s 1 interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex 1. Basi 2. Matt 3. Con 4. Prob 5. Test 6. ANC 7. Relin 8. Solu 9. Line 10. Read	Interpolations – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA periments - Completely randomized design – Randomized block design –Latin riments (using R Software) ic Functions in R and plotting hematical functions in R – Integration trol flow – Loops in R bability Distributions using R- PDF, CDF for Binomial and Poisson. ting of Hypothesis – Z, F and chi-square testing OVA – one way and two way ability – MTTF, MTBF ttion of equations – system of linear equations, Newton Raphson method ear regression and cubic spline interpolation ding , writing data in R and working with inbuilt data sets in R	d Reliability, Bat FBF, Reliability Bat FBF, Reliability I Weibull Model- of significance - square design. Contact Ho	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	09 iailure ability ctions 09 mean. 09 45										
Lagrange s 1 interpolation UNIT-III Reliability Co Data Analysi Hazard Mode and reliability UNIT-IV Maximal Lik difference of UNIT-V Design of Ex 1. Basi 2. Matt 3. Con 4. Prob 5. Test 6. ANC 7. Relin 8. Solu 9. Line 10. Read	Interpolations – Numerical integration – Simpsons 1/3 rule – Gaussian three poin RELIABLITY oncepts: Reliability definitions, Importance of Reliability, Quality Assurance an s: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MT els: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, V y analysis. STATISTICAL TESTING telihood estimation – Parameters of Binomial and Poisson distribution - Tests means- Chi square - F test. ANOVA periments - Completely randomized design – Randomized block design –Latin riments (using R Software) ic Functions in R and plotting hematical functions in R – Integration trol flow – Loops in R bability Distributions using R- PDF, CDF for Binomial and Poisson. ting of Hypothesis – Z, F and chi-square testing OVA – one way and two way ability – MTTF, MTBF ttion of equations – system of linear equations, Newton Raphson method ear regression and cubic spline interpolation ding , writing data in R and working with inbuilt data sets in R	d Reliability, Bat TBF, Reliability, Bat TBF, Reliability I Weibull Model- of significance - square design. Contact Ho Contact Ho	th Tub Cu Functions Distributi - Z test: S urs	rve - F - Relia on fun Single	using 09 iailure ability ctions 09 mean, 09 45 45										

Cours	Course Outcomes: After the successful completion of the course, the student will be able to:				
CO1	Demonstrate common numerical methods and used to obtain approximate solutions of linear and system of equations.				
CO2	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation,				
	integration, the solution of linear equations, and the solution of differential equations.				
CO3	Illustrate the basic concepts and techniques of modern reliability engineering tools.				
CO4	Apply the different testing tools like t-test, F-test, chi-square test to analyse the relevant real life problems.				
CO5	Analyse the different mathematical models with the help of statistical deigns and appropriate data and made valuable				
	conclusions by proper evaluation.				

Te	xtbook (s):
1	Veerarajan T., 'Probability, Statistics and Random Processes with Queueing Theory and Queueing
-	Networks', Mc Graw Hill, 2016
2	Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
2	Kandasamy P., Thilagavathi and K. Gunavathi., "Statistics and Numerical Methods", S. Chand & Company
3	Ltd. (2010).
4	Sastry S.S, "Introductory Methods of Numerical Analysis", Prentice- Hall of India PVT. LTD., 4th edition,
4	New Delhi, 2006.
Re	ference Books(s) / Web links:
1	Johnson R.A., "Miller and Freund's Probability and Statistics for Engineers", 11th Edition, Pearson
1	Education, Asia, 2011.

Walpole R.E., Myers. R.H., Myers. S.L., and Ye. K., "Probability and Statistics for Engineers and Scientists", 8th Edition, Pearson Education, Asia, 2007. 2

Spiegel M.R., Schiller. J., and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata 3

McGraw Hill Edition, 2004.

Grewal B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science", 9th Edition, Khanna. 4

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
Average	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-

MT23431	MICROCONTROLLERS AND EMBEDDED SYSTEMS	PC	L	Т	Р	С
			3	0	2	4

Oł	Objectives:		
•	Understand the architecture and functionality of microcontrollers and embedded systems.		
٠	Develop skills in programming microcontrollers for various applications.		
٠	Integrate sensors and actuators with microcontrollers for embedded solutions.		
٠	Design and implement embedded systems for real-world applications.		
٠	Gain practical experience through lab-oriented projects and assignments.		

UNIT-I INTRODUCTION TO MICROCONTROLLERS AND MICROPROCESSORS		08						
Overview of Microcontrollers: Evolution and comparison with microprocessors; Importance of microcontroller	s in mech	atronics;						
Microcontroller vs. Microprocessor. Architecture of 8085 Microprocessor and 8051 Microcontroller: Block diagram and functiona								
units; CPU, memory organization, and registers. Microcontroller Features: I/O ports and pin configuration; Interrupts and interrupt								
handling; Timers and counters.								
UNIT-II PIC MICROCONTROLLER PROGRAMMING (PIC18F458)		08						
Programming Basics: Assembly language programming: Syntax, structure, and basic concepts; C	programm	ing for						
microcontrollers: Basics, syntax, and use cases. PIC Architecture; Programming Tools: Integrated Developn	ent Envir	onments						
(IDEs); Simulators and emulators. Practical Programming: Writing and debugging simple programs; Case studie	s: Toggle o	of bits in						
PIC 18F458 and Stepper motor control using PIC Microcontroller.								
UNIT-III PERIPHERAL INTERFACING USING PIC18F458		12						
Basic Interfacing: Interfacing with LEDs, switches, LCDs, and seven-segment displays. Advanced Interfacing	g: ADC at	nd DAC						
interfacing: Concepts, techniques, and applications; Sensor interfacing: Types of sensors (temperature, light, pro-	essure), int	erfacing						
methods, and practical examples. Communication Protocols: UART, SPI, and I2C.		_						
UNIT-IV EMBEDDED SYSTEM DESIGN		07						
Embedded Systems Overview: Definition, characteristics, and applications. Real-Time Operating Systems (R'	ГOS): Bas	ics, task						
scheduling, and management. Embedded System Design Flow: Requirements, design, implementation, and test	sting. Sem	aphores,						
Priority Inversion and Priority Inheritance.		_						
UNIT-V ESP32 AND IoT APPLICATIONS		10						
Introduction to ESP32: Architecture, features, and capabilities. Programming the ESP32: Setting up the develop	ment envir	onment;						
Writing and debugging programs. Introduction to Micropython: Pyboard; IoT Applications: Remote Web-ba	ased contr	ol using						
ESP32; Temperature and Humidity Sensor Data Transfer to Mobile Phone using ESP32.		-						
Contact Hours	:	45						
List of Experiments								
1. Toggle of bits in PIC 18F458.								
2. Stepper motor control using PIC Microcontroller.								
3. Monitoring and Control of sensors using Arduino UNO.								
4. Line following and obstacle avoidance robot using Arduino UNO.								
5. Actuator control using raspberry pi.								
6. Monitoring and Control of sensors using raspberry pi.								
7. Line following and obstacle avoidance robot using raspberry pi.								
8. Remote Web based control using ESP32								
9. Temperature and Humidity Sensor Data Transfer to Mobile Phone using ESP32.								
Contact Hour	5	: 30						

Cours	Course Outcomes: Upon completion of this course the students will be able to				
CO1	Explain the architecture, instruction set, and basic programming concepts of microcontrollers.				
CO2	Write and debug programs for microcontrollers using assembly and high-level languages.				

CO3	Interface various peripherals and sensors with microcontrollers.
CO4	Design and implement embedded systems with real-time constraints.
CO5	Develop embedded solutions through hands-on lab projects and assignments.

Te	xt Book (s):
1	Mazidi, M. A., Mazidi, J. G., & McKinlay, R. D. (2007). The 8051 Microcontroller and Embedded Systems: Using Assembly and C (2nd ed.). Pearson Education.
2	Raj Kamal. (2011). Microcontrollers: Architecture, Programming, Interfacing and System Design (2nd ed.). Pearson Education India.
2	Muhammad Ali Mazidi, Rolin D. McKinlay and Danny Causey, "PIC Microcontroller and Embedded Systems: Using Assembly And C For Pic 18", Pearson Education, 2016
3	Tianhong Pan, Yi Zhu, "Designing Embedded Systems with Arduino – A Fundamental Technology for Makers", Springer Singapore, 2017
4	$C_{\text{resultan}} = D_{\text{resultan}} C_{\text{resultan}} = D_{\text{resultan}} = D_{resulta$

4	Gaonkar, R. S. (2002). Microprocessor Architecture, Programming, and Applications with the 8085 (5th ed.). Prentice Hall.

Re	Reference Books(s) / Web links:				
1	Santanu Chattopadhyay, "Embedded system Design" 2nd Edition, PHI Learning Private Limited, 2013.				
2	Derek Molloy, "Exploring Raspberry Pi Interfacing to the Real World with Embedded Linux", Wiley, 2016.				
3	Martin Bates, "PIC Microcontrollers An Introduction to Microelectronics", Third Edition, 2011				
4	Dogan Ibrahim, Ahmet Ibrahim, "The Official ESP32 Book", Elektor International Media, 2017.				
5	J. M. Hughes, "Arduino: A Technical Reference A Handbook for Technicians, Engineers, and Makers", O'Reilly Media,				
	2016.				

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23431.1	3	3	2	1	-	-	-	-	1	-	-	-	2	2	2
MT23431.2	3	3	2	2	-	-	-	-	1	-	-	-	3	2	3
MT23431.3	3	3	2	2	2	-	-	-	2	-	-	-	2	3	2
MT23431.4	3	3	3	3	2	1	1	-	2	1	1	-	3	2	3
MT23431.5	3	3	3	3	3	2	2	-	3	2	2	1	2	3	2
Average	3	3	2.4	2.2	1.8	1	1	-	1.8	1	1	0.2	2.4	2.4	2.4

MT23432	SENSORS AND INSTRUMENTATION	PC	L	Т	Р	С
			3	0	2	4

Obj	jectives:
•	Grasp measurement fundamentals, including units, calibration, and sensor characteristics.
•	Expertise in various sensors, emphasizing applications like strain gauges and thermosensitive sensors.
٠	Deepen knowledge in sensors, exploring principles and applications of accelerometers, gyroscopes, and fiber optic sensors.
٠	Introduce LabVIEW for graphical programming, emphasizing virtual instrumentation applications.
٠	Apply data acquisition systems for signal conditioning and analysis.

UNIT-I INTRODUCTION TO SENSORS AND TRANSDU	JCERS	10			
Overview of Sensors and Transducers: Definition, types, and appl	ications; Sensor Characteristics; Temperature Measurem	nent;			
Performance measures of sensors; Error Analysis and Sensor Calibra	tion Technique.				
UNIT-II SENSOR DESIGN AND SIMULATION		09			
Introduction to NI Multisim: Overview, features, and applications; D	esigning Sensor Circuits: Steps and best practices; Simula	ation			
of Sensor Circuits: Using NI Multisim to simulate various sensor circ	cuits.				
UNIT-III SENSOR INTERFACING AND DATA ACQUISI	TION	10			
Microcontroller Basics: Overview of Arduino and Raspberry Pi; Int	erfacing Sensors with Microcontrollers: Techniques and	l best			
practices; Data Acquisition: Methods and tools; IoT Sensors: Introduction and applications; Practical Applications: Interfacing IoT					
sensors with Arduino/Raspberry Pi for data acquisition.					
UNIT-IV SPECIALIZED SENSORS AND APPLICATIONS		08			
Hall Effect Transducers: Working principle and characteristics; R	FID Technology: Basics, device control, and authentica	ation			
applications; Humidity Sensors: Types and measurement techniques;	Biomedical Sensors: ECG, EMG, and EEG sensors: princi	ples			
and applications; Environment Sensors: BME680 Environmental Ser	sor, Particulate Matter Sensor (ZH06-III, ZPH05).				
UNIT-V VIRTUAL INSTRUMENTATION AND SIMULA	TION	08			
Introduction to Virtual Instrumentation: Definition and benefits; LabVIEW Basics: Overview of LabVIEW environment, data flow					
programming, and VI development; Simulation of Bridge Circuits: Wheatstone bridge, Anderson's bridge, Maxwell's inductance					
bridge, and Maxwell's inductance capacitance bridge.					
	Theory Contact Hours :	45			

 List of Experiments

 1.
 Determination of Displacement using LVDT and Strain gauge.

 2.
 Determine the Characteristics of Various Temperature Sensors.
 1. 2.

- 3. Utilize NI Multisim for designing and simulating sensor circuits.
- 4. Interface with IoT sensors and acquire data using microcontrollers like Arduino or Raspberry Pi.
- 5. Determination of characteristics of hall effect transducer.
- 6. RFID-based Device Control and Authentication.
- 7. Measurement of humidity using humidity sensor.
- 8. Explore biomedical sensors for measuring signals like ECG, EMG, or EEG.
- 9. Simulation of Wheatstone bridge and Anderson's bridge using DAQ.

10. Simulation of Maxwell's inductance bridge and Maxwell's inductance capacitance bridge using DAQ.

		Lab Contact Hours	:	30		
		Total Contact Hours	:	75		
Cours	e Outcomes: After the completion of the course, the student will be able to:					
CO1	CO1 Explain the working principles and characteristics of various sensors and transducers.					

	Explain the working principles and characteristics of various sensors and transducers.
CO2	Design and simulate sensor circuits using software tools.
CO3	Interface sensors with microcontrollers and acquire data.
CO4	Apply sensors in IoT and biomedical applications.
CO5	Develop practical skills through hands-on lab experiments.

S	
1 e	edition. Dhanpat Rai & Co. New Delhi, 2013.
2 F	Ernest O Doebelin, "Measurement Systems – Applications and Design", Tata McGraw-Hill, 2009.
3 ⁴	Albert D.Helfrick and William D. Cooper. Modern Electronic Instrumentation and Measurement Techniques, Prentice Hall of India, 1stedition, 2016

Re	ference Books(s) / Web links:
1	Patranabis D, "Sensors and Transducers", 2 nd Edition, PHI, New Delhi, 2011.
2	Jacob Fraden, "Handbook of Modern Sensors, Physics, Design and Applications", Third Edition, Springer, 2004.
3	Jovitha Jerome, "Virtual Instrumentation Using LabVIEW", PHI, New Delhi, 2010.
4	Devdas Shetty, Richard A. Kolk, "Mechatronics system design", 2 nd Edition, Cengage Learning, 2011.
5	Steve Mackay, John Park, "Practical Data Acquisition for Instrumentation and Control Systems", Elsevier, 2003,

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23432.1	3	3	2	1	-	-	-	-	1	-	-	-	2	3	1
MT23432.2	3	3	2	2	-	-	-	-	1	-	-	-	2	3	1
MT23432.3	3	3	2	2	2	-	-	-	2	-	-	-	2	3	1
MT23432.4	3	3	3	3	2	1	1	-	2	1	1	-	2	3	1
MT23432.5	3	3	3	3	3	2	2	-	3	2	2	1	2	3	1
Average	3	3	2.4	2.2	1.8	1	1		1.8	1	1	0.2	2	3	1

MT23433	SYSTEM DYNAMICS AND CONTROL	PC	L	Т	Р	С
			3	0	2	4

Ob	jectives:
•	To derive the elements of control system and their modeling using various techniques.
•	To calculate time domain specifications of control systems required for steady state analysis.
•	To analyze the frequency domain specifications of control systems required for stability analysis.
•	To examine the conditions for stability, controllability and observability.
•	To compute the digital control techniques for control of applications.

UNIT-I	CONTROL SYSTEM MODELING	09			
Basic Elements and types of Control System - Transfer function, Mathematical Modeling of Mechanical					
Electrical systems – Reduction Techniques - Block diagram, Signal flow graph.					
UNIT-II	TIME RESPONSE ANALYSIS	09			
Time response specifications - Analysis of first order and second order systems - Steady state errors – P, PI, P and PID Controllers.					
UNIT-III	FREQUENCY RESPONSE ANALYSIS	09			
Frequency r	esponse specifications – Analysis: Bode Plot, Polar Plot, and Nyquist Plot - Compensators.				
UNIT-IV	STABILITY AND STATE VARIABLE ANALYSIS	09			
Routh-Hurwitz Criterion, Root Locus Technique. State space representation of Continuous Time systems – State equations – Transfer function from State Variable Representation - Controllability and Observability.					

UNIT-V	DIGITAL CONTROL SYSTEMS			09			
Z Transform – Properties, Inversion, Digital and Discrete Time Systems – Discrete Time Signals – Causal Signa							
Linear Discrete Time Systems – Role of Z Transform in Linear Differential Equations- Stability of Discrete Time							
System.							
Theory Contact Hours :							
List of Exp	eriments						
1. Mo	delling of Physical Systems using Simulation Software (Mechanical and Elect	rical systems).					
2. Blo	2. Block Diagram Reduction of Linear Systems Using Simulation Software.						
3. Tir	ne response analysis of Linear Systems Using Simulation Software.						
4. Fre	quency response analysis of Linear Systems Using Simulation Software						
5. Sta	bility Analysis of Linear Systems Using Simulation Software (Root Locus, Bo	de and Nyquist plot).					
6. Tir	ne Response analysis of Second Order System.						
7. Ma	gnitude and phase plot of Lag and lead compensators.						
8. De	termination of transfer function and effect of feedback on DC servo motor.						
9. Eff	ect of P, PD, PI, PID controllers on Temperature control system.						
10. Stu	dy the Effect of P, PD, PI, PID controllers on second order systems.						
		Lab Contact Hours	:	30			
		Total Contact Hours	:	75			

Cours	Course Outcomes:						
On cor	On completion of course students will be able to						
CO1	Derive the transfer function of mechanical and electrical systems.						
CO2	Analyze the time domain speciation's for 1st and 2nd order systems.						
CO3	Perform frequency domain analysis of control systems required for stability analysis.						
CO4	Derive the stability and state variable analysis of continuous time systems.						
CO5	Analyze the discrete time signals for digital control.						

Te	ext Books:
1	Nagrath J and M.Gopal, "Control System Engineering", New Age International Publishers, 6th Edition, 2017.
2	Smarajit Ghosh, "Control Systems: Theory and Applications", Pearson India, 2013

Re	eference Books / Web links:
1	Benjamin.C.Kuo, "Automatic control systems", Prentice Hall of India, 9th Edition, 2014.
2	Gopal M, "Control System – Principles and Design", Tata McGraw Hill, 4nd Edition, 2012.
3	Schaum's Outline Series, "Feed back and Control Systems" Tata McGraw-Hill, 2007.
4	Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall, 2015
5	Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", 13th Edition, Pearson Education Ltd, 2017.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23433.1	1	2	3	-	3	-	-	-	2	2	2	-	2	3	1
MT23433.2	3	2	1	2	3	2	2	-	2	2	2	1	3	2	2
MT23433.3	3	2	1	-	3	2	2	-	2	2	2	1	3	2	2
MT23433.4	3	3	3	2	3	2	2	-	2	2	2	1	2	3	2
MT23433.5	3	2	2	2	-	-	-	-	2	2	2	1	2	3	3
Average	2.6	2.2	2	2	3	2	2	-	2	2	2	1	2.4	2.6	2

MT23421	FLUID MECHANICS AND HEAT TRANSFER LABORATORY	PC	L	Т	Р	С
			0	0	2	1

Ob	ojectives: The course shall:
•	Provide an understanding of the mechanical properties of various materials under diverse loading conditions.
٠	Cover standardized testing methods to evaluate the impact strength and hardness of materials.
٠	Outline the steps involved in investigating the behavior of beams and springs under deflection and compression tests.
٠	Facilitate the experimental validation of fundamental fluid mechanics principles.
٠	Cover the assessment of the performance and efficiency of hydraulic machines using experimental methods.

List of	Experiments			
1.	Determination of the Coefficient of discharge of given Orifice meter.			
2.	Determination of the Coefficient of discharge of given Venturi meter.			
3.	Determination of friction factor for a given set of pipes.			
4.	Measure and analyze the flow rate using a Rota meter.			
5.	Evaluate the heat transfer coefficient in forced convection.			
6.	Measure the head, power, and efficiency of a centrifugal pump.			
7.	Evaluate the performance characteristics of the Pelton wheel turbine.			
8.	Measure the thermal conductivity of materials using the guarded plate method.			
9.	Evaluate the coefficient of performance (COP) of an air-conditioning system.			
10.	Determine and compare the effectiveness of parallel and counter-flow heat exchan	ngers.		
		Total Contact Hours	:	30
Cours	e Outcomes: On completion of the course, the student is expected to be able to			
CO1	Determine fluid properties and understand fluid statics through experiments.			
CO2	Analyze fluid flow dynamics and measure flow rates using various techniques.			
CO3	Evaluate the performance characteristics of pumps and turbines.			
CO4	Apply thermodynamic principles in practical experiments.			
CO5	Conduct experiments on heat transfer and energy conservation.			

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	-	-	-	-	1	-	-	-	2	1	1
CO2	3	3	2	2	-	-	-	-	1	-	-	-	2	1	1
CO3	3	3	2	2	2	-	-	-	2	-	-	-	2	1	1
CO4	3	3	3	3	2	1	1	-	2	1	1	-	2	1	1
CO5	3	3	3	3	3	2	2	-	3	2	2	1	2	1	1
Ανσ	3	3	2.4	2.2	18	1	1	-	18	1	1	0.2	2	1	1

GE25421 SOFT SKILLS-I Category	L	Т	P	C
EEC	0	0	2	1

Ob	jectives: The course shall,
٠	Help students break out of shyness.
•	Build confidence
•	Enhance English communication skills.
•	Encourage students' creative thinking to help them frame their own opinions,

Course Description Learning and Teaching Strategy: The program is completely student centric where the focus is on activities led by students which include role plays, discussions, debates other games as well. These activities would be supplemented by interactive use of technology and brief trainer input.

XX7 I-	A		
week	Activity Name	Description	Objective
1	Introduction	The trainer and the college facilitator talk to the	To set expectations about the course and
		students about the course and in turn the	the students are made aware of the rules
		students introduce themselves.	and regulations involved in this program
2	If I ruled the world	This is a quick and useful game by getting	The aim of this activity is to for students
		students to form a circle and provide their point	to get to know each other and also
		of view. Each student then repeats what the	develop their listening skills as well as
		other has said and comes up with their own	learning how to agree and disagree
		opinion.	politely.
3	Picture Narrating	This activity is based on several sequential	The aim of this activity is to make the
		pictures. Students are asked to tell the story	students develop creative way of thinking.
		taking place in the sequential pictures by paying	
		attention to the criteria provided by the teacher	
		as a rubric Rubrics can include the vocabulary	
		or structures they need to use while narrating.	
4	Brainstorming	On a given topic, students can produce ideas in	The activity aims at making the students
-		a limited time. Depending on the context, either	speak freely without the fear of being
		individual or group brainstorming is effective	criticized It also encourages students to
		and learners generate ideas quickly and freely	come up with their own opinions
		The good characteristics of brainstorming are	come up with their own opinions.
		The good characteristics of brailistorning are	

		that the students are not criticized for their ideas so students will be open to sharing new ideas	
5	Debate	Is competition necessary in regards to the learning process?	The aim of this activity is to develop the students ability to debate and think out of the box
6	Short Talks	Here the students are given topics for which they take one minute to prepare and two minutes to speak. They can write down points but can't read them out they can only use it as a reference.	The activity aims at breaking the students' shyness and encouraging them to standup in front of the class and speak. It also aims at creating awareness that they are restricted for time so they only speak points that are relevant and important.
7	Debate	Will posting students' grades on bulletin boards publicly motivate them to perform better or is it humiliating?	This activity aims at enhancing the students unbiased thought process when it comes to exams and grades as well as develop their skills to debate
8	The Art of diplomacy	The facilitator proceeds to share multiple concepts of conversation and helps the participants to identify the various methods of being diplomatic and how do deal with misinformation.	The aim of the lesson is to provide an opportunity for the participants to learn about body language and choosing the appropriate words for conversation.
9	Debate	Are humans too dependent on computers?	The aim of this activity is to test the students debating skills and thought process with a topic that affects everybody in daily life.
10	Story Completion	The teacher starts to tell a story but after 2 sentences he/she asks students to work in groups to create the rest of the story which includes the plot and the ending.	This activity aims at building their narrating skills as well as their creativity and ability to work in a team.
11	Role play debate	Students scrutinize different points of view or perspectives related to an issue. For example, a debate about the question "Should students be required to wear uniforms at school?" might yield a range of opinions. Those might include views expressed by a student (or perhaps two students – one representing each side of the issue), a parent, a school principal, a police officer, a teacher, the owner of a clothing store, and others.	The aim of this activity is to get students to speak based on other people's perspective instead of their own. The students take the role of various characters and debate accordingly.
12	I Couldn't Disagree More	This is a game where students practice rebuttal techniques where one student provides a thought or an idea and the other students starts with the phrase I couldn't disagree more and continues with his opinion	The aim of this activity is to improve general communication skills and confidence.
	Feedback	At the end of the session in the final week (12) the trainer would provide feedback to the students on best practices for future benefits	The aim is to do both give feedback to students as well as obtain feedback on the course from them.

Course Ou	Course Outcomes: After the successful completion of the course, the student will be able to:									
CO1 B	Be more confident									
CO2 S	Speak in front of a large audience									
CO3 B	Be better creative thinkers									
CO4 B	Be spontaneous									
СО5 К	Know the importance of communicating in English.									

Reference Books(s) / Web links: Kings Learning work sheets.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23421.1	-	-	-	-	-	-	-	-	1	3	-	1	-	-	1
GE23421.2	-	-	-	-	-	-	1	-	1	3	1	1	-	-	1
GE23421.3	1	-	-	-	-	-	-	-	-	3	-	-	-	-	1
GE23421.4	-	-	-	-	-	-	-	-	-	3	-	-	-	-	1
GE23421.5	-	-	-	-	-	-	-	-	-	3	-	-	-	-	1
Average	1	0	0	0	0	0	1	0	1	3	1	1	0	0	1

SEMESTER V

GE23311	FUNDAMENTALS OF MANAGEMENT FOR ENGINEERS	Category	Р	С								
		HSM	3	0	0	3						
-												
Objectives:	The course shall:											
Expose the students to the basic concepts of management in order to aid in understanding how an organization functions,												
and in understanding the complexity and wide variety of issues managers face in today's business firms.												
UNIT-I INTRODUCTION TO MANAGEMENT 0												
Definition, Nature and Scope, Functions, Managerial Roles, Levels of Management, Managerial Skills, Challenges of Management;												
Evolution of	management thought. Organization: Types and environmental factors.											
UNIT-II	UNIT-II PLANNING AND DECISION MAKING 0											
General Framework for Planning – Planning Process, Types of Plans, Management by Objectives; Decision making and Problem												
Solving - Steps in Problem Solving and Decision Making.												
UNIT-III ORGANIZATION & HRM 00												
Principles of	Organization: Organizational Design & Organizational Structures; Departmenta	lization, Delega	tion; E	Empov	verme	ent,						
Centralizatio	n, Decentralization. Human Resource Management & Business Strategy: Tale	nt Management	and S	trateg	ic Hu	man						
Resource Pla	nning; Recruitment and Selection; Training and Development; Performance Ap	praisal.										
UNIT-IV	LEADING AND MOTIVATION					09						
Leadership,	Power and Authority, Leadership Styles, Leadership Skills, Leader as Mentor and	l Coach, Team L	eaders	hip. N	1otiva	ation						
- Types of N	Iotivation; Relationship between Motivation, Performance and Engagement, C	ontent Motivatio	onal Tł	neorie	s – N	eeds						
Hierarchy Tl	eory, Two Factor Theory, Theory X and Theory Y.											
UNIT-V	CONTROLLING					09						
Control, Typ	es and Strategies for Control, Steps in Control Process, Budgetary and Non- H	Budgetary Contr	ols. Cl	naract	eristi	cs of						
Effective Co	ntrols, Establishing control systems. Managing productivity- Cost control- Pu	rchase control-	Maint	enanc	e con	trol-						
Quality cont	ol- Planning operations. Managing globally- Strategies for International busines	SS.										
		Total Contac	t Hou	rs	:	45						

Cours	Course Outcomes: At the end of this course students be able to:									
CO1	Understand and apply the basic principles of management.									
CO2	Understand and apply the planning, organizing and control processes.									
CO3	Understand and design organization as well as manage and develop human resource.									
CO4	Understand various theories related to the development of leadership skills, motivation techniques and teamwork.									
CO5	Understand and apply controlling practices in all applications.									

Textbooks:

- Principles of Management, Prakash Chandra Tripathi, Tata McGraw-Hill Education, 2008. 1
- 2 Fundamentals of Management, Stephen P. Robbins, Pearson Education, 2009.

Reference Books(s) / Web links:

1

Essentials of Management, Koontz Kleihrich, Tata Mc – Graw Hill. Management Essentials, Andrew DuBrin, 9e, Cengage Learning, 2012. 2

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
GE23311.1	3	3	2	2	1	-	-	-	-	-	-	-	2	2	1
GE23311.2	3	3	3	2	2	-	-	-	-	-	-	-	2	2	1
GE23311.3	3	3	3	2	3	-	-	-	-	-	-	-	2	2	1
GE23311.4	3	2	3	3	2	-	-	-	-	-	-	-	2	2	1
GE23311.5	3	2	3	3	3	-	-	-	-	-	-	-	2	2	1
Average	3	2.6	2.8	2.4	2.2	-	-	-	-	-	-	-	2	2	1

MT23511	SEMICONDUCTOR MANUFACTURING	Category	L	Т	Р	С
		PC	3	0	0	3

Ob	ojectives: The course shall
٠	Provide comprehensive knowledge of semiconductor manufacturing processes.
٠	Develop the ability to analyze and design semiconductor manufacturing systems.
٠	Impart knowledge on the application of semiconductor principles in various industries.
•	Enhance problem-solving skills in semiconductor fabrication and process control.
•	Integrate theoretical concepts with practical applications through theoretical studies and simulations.

UNIT-I	INTRODUCTION TO SEMICONDUCTOR MANUFACTURING		09						
Overview of S	Semiconductor Manufacturing: History and significance, Major industry pl	ayers; Semiconductor Materials:	Types,						
properties, and	l applications, Silicon, Gallium Arsenide, other materials; Crystal Growth a	nd Wafer Preparation: Electronic	Grade						
Silicon, Czocl	aralski process, Float-zone process, Silicon Shaping - Wafer slicing, cleaning	g, polishing.							
UNIT-II	LITHOGRAPHY AND ETCHING PROCESSES		09						
Photolithograp	phy: Principles, Mask design, Photoresist application, Exposure, developm	ent; Advanced Lithography Tech	niques:						
Electron-beam lithography, X-Ray lithography, Ion lithography, Extreme ultraviolet lithography; Etching Processes: Wet etching									
Dry etching, F	Plasma etching, Selectivity, anisotropy in etching.								
UNIT-III DEPOSITION TECHNIQUES 09									
Chemical Vapor Deposition (CVD): Principles, Types (LPCVD, PECVD), Applications, limitations; Physical Vapor Deposition									
(PVD): Sputt	ering, Evaporation, Molecular beam epitaxy (MBE); Atomic Layer Dep	position (ALD): Process fundar	nentals,						
Advantages, a	pplications in semiconductor manufacturing.								
UNIT-IV	DOPING AND THERMAL PROCESSES		09						
Doping Techr	iques: Diffusion, Ion implantation, Control of doping profiles and concer	trations; Thermal Processes: Ox	dation,						
Annealing, Ra	pid thermal processing (RTP), Furnace types, operation; Defect Control and	Yield Enhancement: Sources of	lefects,						
Techniques fo	r defect reduction, Yield analysis and improvement strategies.								
UNIT-V	PACKAGING, TESTING AND CHARACTERIZATION		09						
Semiconducto	r Packaging: Types of packages, Packaging materials, Techniques (wire bo	nding, flip-chip); Reliability and	Failure						
Analysis: The	rmal management, Stress testing, Failure modes, mechanisms; Testing and Cl	naracterization: Electrical testing,	Optical						
testing; Advar	ced characterization techniques: AFM, SEM, TEM.								
		Total Contact Hours	45						

	Course Outcomes: At the end of this course students be able to:									
CO1 A	Analyze the fundamentals of semiconductor materials and their properties.									
CO2 A	Apply lithography and etching processes in semiconductor fabrication.									
CO3 U	Julize various deposition techniques for thin film formation.									
CO4 In	mplement doping and thermal processes in semiconductor device manufacturing.									
CO5 E	Evaluate packaging and testing methods for semiconductor devices.									

Te	Textbooks:									
1	May, Gary S., Spanos, Costas J. Fundamentals of Semiconductor Manufacturing and Process									
	Control. Germany: Wiley, 2006.									
2	Yoo, Chue San. Semiconductor Manufacturing Technology. Singapore: World Scientific, 2008.									
3	Handbook of Semiconductor Manufacturing Technology. United States: CRC Press, 2017.									

 Reference Books(s) / Web links:

 1
 Gary S. May, Simon M. Sze, "Fundamentals of Semiconductor Fabrication," Wiley, 2004.

 2
 Michael Quirk, Julian Serda, "Semiconductor Manufacturing Technology," Prentice Hall, 2nd Edition, 2001.

 3
 Yuan Taur, Tak H. Ning, "Fundamentals of Modern VLSI Devices," Cambridge University Press, 2nd Edition, 2009.

 4
 Swayam-NPTEL course on Semiconductor Devices and Circuits

 5
 Swayam-NPTEL course e: Introduction to Semiconductor Devices

 6
 S. M. Sze, "VLSI Technology" Tata McGraw Hill, 2003. (Kindly refer to this book)

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23511.1	3	3	2	2	1	-	-	-	-	-	-	-	2	2	1
MT23511.2	3	3	3	2	2	-	-	-	-	-	-	-	2	2	1
MT23511.3	3	3	3	2	3	-	-	-	-	-	-	-	2	2	1
MT23511.4	3	2	3	3	2	-	-	-	-	-	-	-	2	2	1
MT23511.5	3	2	3	3	3	-	-	-	-	-	-	-	2	2	1
Average	3	2.6	2.8	2.4	2.2	-	-	-	-	-	-	-	2	2	1

MT23512	INDUSTRIAL ELECTRONICS	PC	L	Т	Р	С
			2	1	0	3

Ob	Objectives: The course shall					
٠	Provide comprehensive knowledge of industrial electronics and its applications.					
٠	Develop the ability to analyze and design electronic circuits for industrial use.					
٠	Impart knowledge on the integration of electronic systems in various industrial processes.					
٠	Enhance problem-solving skills in industrial electronics.					
٠	Integrate theoretical concepts with practical applications through case studies and simulations.					

UNIT-I	POWER SEMICONDUCTOR DEVICES	09				
Study of Switching Devices: SCR, TRIAC, GTO, BJT, MOSFET, IGBT, and IGCT; Static Characteristics: SCR, MOSFET						
IGBT; Trigge	ring and Commutation Circuit for SCR; Introduction to Driver and Snubber Circuits					
UNIT-II PHASE-CONTROLLED CONVERTERS						
Single-Phase	Half and Full Converters; Three-Phase Half Converters and Three-Phase Full Converters; Use of Flywheel Di	ode in				
Controlled Re	ctifier Configurations; Thyristor Triggering Circuits.					
UNIT-III	INVERTERS AND CHOPPERS	09				
Classification	of Inverters: Single-Phase and Three-Phase Voltage Source Inverters (both 120° mode and 180° mode); Introd	luction				
to Integrated I	Power Modules (IPMs), Voltage Open Loop Multi-step Constant-Current Charging (VOOC). Buck-Boost Con	verter;				
Voltage and O	Current Commutated Choppers; PWM Inverters; Principle of Chopper; Chopper Classification; Step-Up and	l Step-				
Down Choppe	er.					
UNIT-IV	AC TO AC CONVERTERS	09				
Introduction	to AC Converters; Types of Regulators; Single-Phase AC Voltage Controller; Multistage Sequence C	ontrol;				
Introduction to	o VFD, Step-Up and Step-Down Cycloconverters; Single-Phase and Three-Phase Cycloconverters.					
UNIT-V INDUSTRIAL APPLICATIONS						
Solid-State Switching Circuits, Relays, Electronic Timer, Sawtooth Generator; Applications in Industrial Process Control;						
Drive Applications; Electronic Regulator; Induction Heating; Dielectric Heating.						
Total Contact Hours : 4						

Cours	Course Outcomes: At the end of this course students be able to:						
CO1	Analyze the characteristics and operations of power semiconductor devices.						
CO2	Design and implement phase-controlled converters for various applications.						
CO3	Utilize inverters and choppers in industrial electronics						
CO4	Apply AC to AC converters in industrial systems.						
CO5	Implement industrial applications using solid-state switching circuits and heating methods.						

Tex	xtbooks:
1	Biswanath Paul, "Industrial Electronics and Control," PHI Learning, 2014.
2	Sen, P. C Principles of Electric Machines and Power Electronics. United Kingdom: Wiley, 1997.
3	Bimbhra P.S. "Power Electronics" Khanna Publishers, Fifth Edition, 2012.
4	Rashid M.H., 'Power Electronics: Circuits, Devices and Applications', Pearson Education, PHI Fourth Edition, New Delhi,
	2013

Ref	ference Books(s) / Web links:
1	M.H. Rashid, "Power Electronics: Circuits, Devices and Applications," Pearson, 2014.
2	James A. Rehg, Glenn J. Sartori, "Industrial Electronics," Prentice Hall, 2005.
3	Swayam-NPTEL course on Power Electronics Applications in Power Systems
4	Swayam-NPTEL course on Fundamental of Power Electronics
5	Swayam-NPTEL course on Advance Power Electronics and Control

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23512.1	3	3	2	2	1	-	-	-	-	-	-	-	2	2	1
MT23512.2	3	3	3	2	2	-	-	-	-	-	-	-	2	2	1
MT23512.3	3	3	3	2	3	-	-	-	-	-	-	-	2	2	1
MT23512.4	3	2	3	3	2	-	-	-	-	-	-	-	2	2	1
MT23512.5	3	2	3	3	3	-	-	-	-	-	-	-	2	2	1
Average	3	2.6	2.8	2.4	2.2	-	-	-	-	-	-	-	2	2	1

MT23513	BASIC ENGINEERING RESEARCH METHODS	Category	L	Т	Р	С
		HSM	3	0	0	3

Ob	Objectives: The course shall				
•	Provide an understanding of the fundamental principles of engineering research.				
٠	Develop skills in designing and conducting engineering research.				
٠	Impart knowledge on data collection, analysis, and interpretation.				
٠	Enhance abilities in scientific writing and presentation.				
•	Integrate theoretical knowledge with practical research applications.				

UNIT-I	INTRODUCTION TO ENGINEERING RESEARCH	09			
Definition and	Scope of Engineering Research: Importance, Objectives, and Types; Research Process: Steps in the research p	rocess,			
Defining the 1	esearch problem, Formulation of hypothesis; Literature Review: Purpose, Process, Sources of literature, Wr	iting a			
literature revie	ew.				
UNIT-II	RESEARCH DESIGN AND METHODOLOGY	09			
Research Desi	ign: Types of research design, Characteristics of good research design; Sampling Techniques: Probability an	d non-			
probability sat	mpling methods, Sample size determination; Data Collection Methods: Primary and secondary data, Data col	lection			
instruments (s	urveys, interviews, observations), Design of experiments.				
UNIT-III	DATA ANALYSIS AND INTERPRETATION	09			
Data Analysis	Data Analysis: Descriptive and inferential statistics, Measures of central tendency and variability, Hypothesis testing, Correlation				
and regression	n analysis; Data Interpretation: Techniques for data interpretation, Use of statistical software for data analysi	s (e.g.,			
SPSS, R, MA	TLAB).				
UNIT-IV	SCIENTIFIC WRITING AND PRESENTATION	09			
Scientific Wri	ting: Structure and components of a research paper, Writing proposals, Abstracts, Introductions, Literature re	views,			
Methods, Res	ults, Discussions, Conclusions, and References; Presentation Skills: Effective presentation techniques, Use of	visual			
aids, Poster pr	resentations, Oral presentations.				
UNIT-V	ETHICS AND PATENTS IN RESEARCH	09			
Research Ethi	cs: Ethical issues in research, Plagiarism, Informed consent, Confidentiality, Ethical approval process; Intel	lectual			
Property Righ	ts: Patents, Trademarks, Copyrights, Filing patents, Case studies on patents in engineering.				
	Total Contact Hours :	45			

Cours	Course Outcomes: At the end of this course students be able to:						
CO1	Understand the fundamental principles and objectives of engineering research.						
CO2	Design and conduct engineering research using appropriate methodologies.						
CO3	Analyze and interpret research data using statistical tools.						
CO4	Write scientific documents and present research findings effectively.						
CO5	Apply ethical standards in research and understand the process of patenting inventions.						
-							

Textbo	oks:

1	C.R. Kothari, "Research Methodology: Methods and Techniques," New Age International, 2004.
2	Ranjit Kumar, "Research Methodology: A Step-by-Step Guide for Beginners," Sage Publications, 2014.
3	John W. Creswell, "Research Design: Qualitative, Quantitative, and Mixed Methods Approaches," Sage Publications, 2014.

Reference Books(s) / Web links:

1	Wayne C. Booth, Gregory G. Colomb, Joseph M. Williams, "The Craft of Research," University of Chicago Press, 2008.
2	Nicholas Walliman, "Research Methods: The Basics," Routledge, 2011.
3	NPTEL Course on Research Methodology and Statistical Analysis

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23513.1	3	2	1	3	1	-	-	2	2	2	-	1	1	2	1
MT23513.2	2	3	3	3	2	-	1	2	1	3	-	1	1	2	-
MT23513.3	1	2	3	3	3	-	2	2	2	3	-	2	-	1	2
MT23513.4	1	1	2	3	3	-	1	1	1	3	-	1	-	1	2
MT23513.5	1	1	2	2	3	-	3	3	2	2	-	1	-	3	2
Average	1.60	1.80	2.20	2.80	2.40	-	1.75	2	1.60	2.60	-	1.20	1	1.80	1.75

CS23422	PYTHON PROGRAMMING FOR MACHINE LEARNING	Category	L	Т	Р	С
		ES	0	0	4	2

Γ

O	Objectives: The course shall enable student:					
٠	To understand the relationship of the data collected for decision making.					
٠	To know the concept of principal components, factor analysis and cluster analysis for profiling and interpreting the data collected.					
•	Lay the foundation of machine learning and its practical applications and prepare students for real-time problem-solving in data science.					
٠	Develop self-learning algorithms using training data to classify or predict the outcome of future datasets.					
•	Distinguish overtraining and techniques to avoid it such as cross-validation.					

1.	NumPy Basics: Arrays and Vectorized Computation			
2.	Getting Started with pandas			
3.	Data Loading, Storage, and File Formats			
4.	Data Cleaning and Preparation			
5.	Data Wrangling: Join, Combine, and Reshape			
6.	Plotting and Visualization			
7.	Data Aggregation and Group Operations			
8.	Time Series			
9.	Supervised Learning			
10.	Unsupervised Learning and Pre-processing			
11.	Representing Data and Engineering Features			
12.	Model Evaluation and Improvement			
		Total Contact Hours	:	60

Cours	Course Outcomes: At the end of this course students be able to:						
CO1	Develop a sound understanding of current, modern computational statistical approaches and their application to a variety						
	of datasets.						
CO2	Analyze and perform an evaluation of learning algorithms and model selection.						
CO3	Compare the strengths and weaknesses of many popular machine learning approaches.						
CO4	Appreciate the underlying mathematical relationships within and across machine learning algorithms and the paradigms of						
	supervised and unsupervised learning.						
CO5	Design and implement various machine learning algorithms in a range of real-world applications.						
_							

Tex	xtbooks:
1	Wes McKinney, Python for Data Analysis - Data wrangling with pandas, Numpy, and ipython, Second Edition, O'Reilly
	Media Inc, 2017.
2	Andreas C. Müller and Sarah Guido, Introduction to Machine Learning with Python - A Guide for Data Scientists, First
	Edition, O'Reilly Media Inc, 2016.

Reference Boo	Reference Books(s) / Web links:														
1 Aurélien	1 Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, O'Reilly Media Inc.														
2019.					0										
b															
CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CS23422.1	2	2	2	2	1	-	-	-	1	1	1	1	3	3	-
CS23422.2	2	1	1	1	1	-	-	-	-	-	1	1	3	2	-
CS23422.3	1	1	2	1	2	-	-	-	-	-	1	1	2	3	2
CS23422.4	2	2	3	2	2	-	-	-	-	-	2	1	2	2	2
CS23422.5	2	2	3	2	3	-	-	-	-	-	2	1	2	2	2
Average	1.80	1.60	2.20	1.60	1.80	-	-	-	1	1	1.40	1	2.40	2.40	2

MT23522	INDUSTRIAL ELECTRONICS LAB	PC	L	Т	Р	С
			0	0	2	1

Ob	Objectives: The course shall:					
•	Provide comprehensive knowledge of semiconductor manufacturing processes.					
•	Develop the ability to analyze and design semiconductor manufacturing systems.					
•	Impart knowledge on the application of semiconductor principles in various industries.					
•	Enhance problem-solving skills in semiconductor fabrication and process control.					
٠	Integrate theoretical concepts with practical applications through theoretical studies and simulations.					
1.	Analysis of V-I Characteristics of SCR and Impact of Gate Current on Operation					
2.	Investigation of Bidirectional Conducting Properties of TRIAC through V-I Characteristics					
3.	Comparative Study of V-I Characteristics and Operation Modes of MOSFET and IGBT					
4.	Analysis of Output Voltage in Single-Phase Half and Full-Controlled Rectifiers					
5.	Efficiency Analysis of a Step-Up Chopper Using IGBT					
6.	Efficiency Analysis of a Step-Down Chopper Using IGBT					
7.	Control and Analysis of Output Voltage in Single-Phase AC Voltage Controllers					
8.	Speed Control and Performance Analysis of PMDC Motor Using a Chopper Circuit					
9.	Investigation of average output voltage using SCR Phase Control					

10. Investigation of average output voltage using TRIAC Phase Control

Cours	Course Outcomes: At the end of this course students be able to:					
CO1	Design and test circuits using SCR, TRIAC, MOSFET, and IGBT.					
CO2	Implement and evaluate the performance of phase-controlled rectifiers.					
CO3	Construct and analyze the operation of DC-DC converters.					
CO4	Develop and test inverter circuits for various applications.					
CO5	Apply electronic controls in simulated industrial applications.					

Total Contact Hours

30

:

Te	Textbooks & Reference Materials									
1	Lab manuals and equipment guides will be provided.									
2	Access to datasheets for various industrial electronic components.									
3	Reference to simulation software for circuit testing and validation.									

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23522.1	3	3	2	2	3	-	-	-	1	2	-	1	3	-	1
MT23522.2	3	3	3	3	3	-	-	-	2	2	-	2	3	-	2
MT23522.3	2	2	3	2	3	-	-	-	1	3	-	2	2	-	1
MT23522.4	2	2	3	3	3	-	-	-	2	3	-	2	2	-	2
MT23522.5	2	2	3	3	3	-	-	-	2	2	-	2	2	-	2
Average	2.40	2.40	2.80	2.60	3	-	-	-	1.60	2.40	-	1.80	2.40	-	1.60

MT23523	INTERNSHIP	PC	L	Т	Р	С
			0	0	2	1

Ob	Objectives: The course shall:									
٠	Provide students with practical experience in an industrial setting.									
٠	Apply theoretical knowledge gained in the classroom to real-world engineering problems.									
٠	Enhance professional skills such as teamwork, communication, and problem-solving.									
٠	Expose students to current industry practices and technologies.									
٠	Foster networking opportunities and professional relationships.									

Internship Details:

- **Duration:** 2 weeks full-time, or the equivalent in part-time hours.
- Location: Host companies in relevant industries, matching students' fields of interest and study.
- **Roles:** Students will be placed in roles that align with engineering/service discipline to ensure relevant experience. **Responsibilities:**

• Students are expected to engage with assigned projects or daily tasks that contribute to their understanding of the engineering processes in an industrial context.

- Participation in meetings, workshops, and other activities organized by the host company.
- Completion of a daily log or journal detailing their activities and learning experiences.

Assessment:

• **Internship Report:** A comprehensive report detailing the work done, learning outcomes, and personal reflections must be submitted at the end of the internship.

• **Supervisor Evaluation:** Feedback from the industry supervisor focusing on performance, engagement, and professional behaviour.

• **Presentation:** A formal presentation outlining their internship experience, key learnings, and how the experience integrates with their academic knowledge.

Preparation and Support:

- Pre-Internship Workshops: Sessions on resume writing, interview preparation, and professional etiquette.
- Mentorship: Allocation of a faculty advisor and an industry mentor to provide guidance throughout the internship.

• **Feedback Sessions:** Post-internship sessions with faculty to discuss experiences and integrate learnings into their academic and career planning.

Total Contact Hours

24

Cours	e Outcomes: At the end of this course students be able to:
CO1	Apply engineering knowledge in a professional setting.
CO2	Develop professional workplace skills, including teamwork, communication, and problem-solving.
CO3	Comprehend the operational and business aspects of engineering industries.
004	

CO4Integrate academic knowledge with practical applications.CO5Build professional networks and understand industry expectations.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
MT23523.1	3	2	3	3	2	1	-	-	2	2	-	1	2	-	-
MT23523.2	2	2	2	2	3	3	-	2	3	3	-	2	1	-	-
MT23523.3	2	3	1	1	1	2	3	1	1	1	3	2	-	2	1
MT23523.4	3	3	3	3	3	2	2	1	2	3	2	3	3	1	2
MT23523.5	1	2	1	2	1	3	2	2	3	3	2	2	1	3	3
Average	3	2	3	3	2	1	-	-	2	2	-	1	2	-	-

GE23521	SOFT SKILLS - II	Category	L	Т	Р	С
		EEC	0	0	2	1

Oł	Objectives: The course shall:									
•	Help students break out of shyness.									
•	Build confidence									
•	Enhance English communication skills.									
٠	Encourage students' creative thinking to help them frame their own opinions,									

Course Description

Learning and Teaching Strategy:

The program is completely student centric where the focus is on activities led by students which include role plays, discussions, debates other games as well. These activities would be supplemented by interactive use of technology and brief trainer input.

Week	Activity Name	Description	Objective
1	The News hour	Students are made to read news articles from the English newspapers. The students also have to find words and their meaning from the article they have not come across before and share it with the group. They then use these words in sentences of their own	The aim of this activity is not only to get the students to read the newspaper but also aims at enhancing the students' vocabulary.
2	Court Case	The facilitator provides the participants the premise of a story and proceeds to convert the story into a court case. The students are required, department-wise to debate and provide their points to win the case for their clients.	The aim of the lesson is to encourage creative and out-of-the -box thinking to ensure a good debate and defense skills.
3	The ultimate weekend	The students design activities they are going to do over the weekend and they have to invite their classmates to join in the activity. The students move around the class and talk to other students and invite them.	The aim of this activity is to develop the art of conversation among students. It also aims at practicing the grammatical structures of "going to" "have to" and asking questions.

4	The Four Corners	This is a debate game that uses four corners of the classroom to get students moving. The following is written on the 4 corners of the room "Strongly Agree, Somewhat Agree, Somewhat Disagree and Strongly Disagree". The topics are then given to the class and students move to the corner that they feel best explains their opinions	This activity aims at getting students to come up with their own opinions and stand by it instead of being overshadowed by others and forcing themselves to change based on others opinions.
5	Debate	Boarding school or day school? Which is more beneficial for a student?	The aim of this activity is to encourage students to draw up feasible points on the advantages and benefits of both. And enhance their debating ability
6	Grand Master	The facilitator starts the session by keeping an individual in mind, upon which the students guess it only through "Yes or No" questions. Post few trials the students are given same opportunity to do the same with the crowd.	The aim of the lesson is designed to teach the art of questioning. It also helps to enhance the students' speaking and listening skills.
7	Debate	Does violence on the TV and Video games influence children negatively?	This activity aims at encouraging the students to debate on real life scenarios that most students spend a lot of time on.
8	Turn Tables	This is a speaking activity where the students need to speak for and against the given topics when the facilitator shouts out 'Turn Table'.	The aim of this activity is to make the participants become spontaneous and have good presence of mind.
9	Debate	Do marks define the capabilities of a student?	This debate activity aims at allowing the students to argue on this worrisome adage of marks.
10	FictionAD	The Participants are asked to create an Ad for a challenging topic only using fictional characters.	The activity aims at developing their creativity and presentation skills.
11	Debate	Are social networking sites effective, or are they just a sophisticated means for stalking people?	This activity aims at refining the students debating skills on a very real life situation
12	Talent Hunt	Talent Hunt is a fun activity where the students are selected at random and supported to present any of their own skills.	The aim of this activity is designed to evoke their inner talents and break the shyness and the fear of participating in front of a crowd
	Feedback	At the end of the session in the final week (12) the trainer would provide feedback to the students on best practices for future benefits.	The aim is to do both give feedback to students as well as obtain feedback on the course from them.

C									
Cours	Course Outcomes: After the successful completion of the course, the student will be able to:								
CO1	Be more confident								
CO2	Speak in front of a large audience without hesitation								
CO3	Think creatively								
CO4	Speak impromptu								
CO5	Communicate in English								

Reference Books(s) / Web links: Kings Learning work sheets.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23521.1	-	-	-	-	-	-	-	-	2	3	1	1	-	-	3
GE23521.2	-	-	-	-	-	-	-	-	2	3	2	-	-	-	2
GE23521.3	-	1	-	-	-	-	-	-	2	3	1	1	-	2	3
GE23521.4	-	-	-	-	-	-	-	-	2	3	-	-	-	-	1
GE23521.5	-	1	-	-	-	-	-	-	2	3	1	1	-	1	3
Average	0	1	0	0	0	0	0	0	2	3	1.25	1	0	1.50	2.40

SEMESTER VI

MT23611	FUNDAMENTALS OF MACHINE DESIGN	Category	L	Т	Р	С			
		PC	2	1	0	3			
Objectives:	The course shall								
 Famili 	arize with various steps involved in the Design Process.								
Under require	• Understand the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements.								
• Learn	to use standard practices and standard data.								
• Use ca	talogues and standard machine components (Use of PSG Design Data Book is pe	ermitted).							
 Apply 	principles of machine design to practical problems and case studies.								
UNIT-I	Fundamental Concepts in Design					10			
Introduction	to Robots - factors influencing robot design, selection of materials based on me	chanical propert	ies - N	Iodes	of fai	lure			
-Factor of sa	afety - stresses due to bending and torsion moment - Eccentric loading, Design	against fluctuati	ing loa	nds - tl	heorie	s of			
failures.									
UNIT-II	Design of flexible elements, Shafts, and Couplings					09			
Introduction	to flexible elements, Design of belt drives – Flat, Vee, and Timing Belts.								
Design of so	lid and hollow shafts based on strength and rigidity, Rigid and flexible coupling	8.							
UNIT-III	Joints					08			
Threaded fa	steners - Bolted joints – Simple and eccentrically loaded bolted joints. Knuckle j	oints, Cotter joi	nts, Th	neory of	of bor	ıded			
joints									
UNIT-IV	Gears					09			
Design of sp	our Gears - Geometric progression - Standard step ratio – Ray diagram, kinematio	e layout - Desigi	n of sli	iding 1	mesh	gear			
box - Design	of multi speed gear box for machine tool applications.								
UNIT-V	Bearings					09			
Sliding cont	act and rolling contact bearings, Hydrodynamic journal bearings, Selection of Ro	olling Contact be	earings	i.					
		Total Contac	t Hou	rs	:	45			

Cours	Course Outcomes: At the end of this course students be able to:							
CO1	Design machine components for various types of loading.							
CO2	Carry out shaft design for different applications.							
CO3	Design threaded fasteners and joints based on the requirements.							
CO4	Design spur gears based on strength and wear considerations.							
CO5	Select suitable bearing based on application.							

Te	xtbooks:
1	Bhandari V.B., "Design of Machine Elements", 5th Edition, Tata McGraw-Hill Book Co, 2020.
2	Joseph Shigley, Charles Mischke, Richard Budynas, and Keith Nisbett, "Mechanical Engineering Design", 11th Edition, Tata
	McGraw-Hill, 2019.

Re	ference Books(s) / Web links:
1	Alfred Hall, Halowenko, A., and Laughlin, H., "Machine Design", Tata McGraw-Hill Book Co. (Schaum's Outline), 2010.
2	Ansel Ugural, "Mechanical Design – An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2003.
3	Merhyle F. Spotts, Terry E. Shoup, and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Prentice Hall, 2003.
4	Orthwein W., "Machine Component Design", Jaico Publishing Co, 2003.
5	Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005.
6	Sundararajamoorthy T.V., Shanmugam N., "Machine Design", Anuradha Publications, Chennai, 2003.
7	Prabhu T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23611.1	3	3	2	2	2	-	-	-	-	-	-	1	3	2	1
MT23611.2	3	3	3	2	2	-	-	-	-	-	-	1	3	2	1
MT23611.3	3	3	3	2	2	-	-	-	-	-	-	1	3	2	1
MT23611.4	3	2	3	3	2	-	-	-	-	-	-	1	3	2	1
MT23611.5	3	2	3	3	2	-	-	-	-	-	-	1	3	2	1
Average	3	3	3	3	2	-	-	-	-	-	-	1	3	2	1

MT23612	ETHICS IN ROBOTICS AND ARTIFICIAL INTELLIGENCE	Category	L	Т	Р	С
		PC	3	0	0	3

Ob	ojectives: The course shall:
٠	Explore ethical theories and their applications to robotics and artificial intelligence.
٠	Understand the social, legal, and ethical implications of AI and robotics in contemporary settings.
•	Develop critical skills for managing ethical decision-making in AI and robotics deployments.
•	Examine case studies and real-world scenarios to apply ethical considerations effectively.
•	Explore ethical theories and their applications to robotics and artificial intelligence.

UNIT-I	ETHICAL THEORIES AND FOUNDATIONS IN AI AND ROBOTI	ICS	09				
Introduction to Ethics: Historical and philosophical perspectives on ethics in technology; Major Ethical Theories: Utilitarianis							
Deontology,	Virtue Ethics, and their relevance to AI and robotics; Ethical Design: Prin	ciples for designing ethical AI	systems,				
including tran	sparency, accountability, and fairness.						
UNIT-II	SOCIAL AND ETHICAL IMPLICATIONS OF ROBOTICS AND A	I	09				
Social Impact	: The effect of robotics and AI on employment, privacy, and societal norms	s; Legal Implications: Overview	of laws				
and regulation	as that govern AI and robotics; Ethical AI Deployment: Strategies for ethica	l integration of AI in public and	l private				
sectors.							
UNIT-III	GOVERNANCE AND POLICY IN AI ETHICS		09				
AI Governan	ce: Frameworks for governing AI globally and nationally; Policy Making	g: Role of policy in shaping et	nical AI				
development;	International Guidelines: Discussion on global guidelines like the EU's AI r	egulations.					
UNIT-IV	ETHICAL MANAGEMENT OF AI PROJECTS		09				
Project Mana	gement: Ethical considerations in project lifecycle from conception to dep	oloyment; Risk Assessment: Ide	ntifying				
ethical risks a	nd mitigation strategies in AI projects; Stakeholder Engagement: Involving di	verse stakeholders in ethical AI p	ractices.				
UNIT-V	CASE STUDIES AND FUTURE PERSPECTIVES		09				
Case Studies:	Examination of key case studies highlighting ethical challenges and solut	ions in AI and robotics; Future	Trends:				
Emerging issu	es and future directions in AI ethics; Leadership in AI Ethics: Developing ski	lls for leading ethically in the tec	hnology				
domain.		-					
		Total Contact Hours	: 45				

Course Outcomes: At the end of this course students be able to:								
CO1	Evaluate ethical frameworks and apply them to decision-making in robotics and AI.							
CO2	Analyze the social and legal impacts of robotics and AI on society.							
CO3	Develop and implement governance frameworks that ensure ethical compliance in AI projects.							
CO4	Manage AI projects with a strong emphasis on ethical practices, transparency, and stakeholder engagement.							
CO5	Lead discussions and initiatives on future ethical challenges in AI and robotics.							
000								

Te	xtbooks:
1	Bartneck, Christoph, Christoph Lütge, and Alan Wagner. An Introduction to Ethics in Robotics and AI. Springer, 2021.
2	Lin, Patrick, Keith Abney, and Ryan Jenkins, eds. <i>Robot Ethics 2.0: From Autonomous Cars to Artificial Intelligence</i> . Oxford University Press, 2017
L	

 Reference Books(s) / Web links:

 1
 Wallach, Wendell, and Colin Allen. Moral Machines: Teaching Robots Right from Wrong. Oxford University Press, 2009.

 2
 Chatila, Raja, et al. Ethics and Robotics. IOS Press, 2016.

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23612.1	2	2	2	2	2	2	2	3	-	-	-	I	1	2	1
MT23612.2	2	3	2	3	2	3	2	3	-	-	-	I	2	3	2
MT23612.3	-	2	3	2	2	2	3	3	-	-	2	-	2	3	2
MT23612.4	-	2	3	3	2	2	2	3	2	2	3	-	1	2	3
MT23612.5	-	-	3	-	-	-	2	3	3	2	2	-	1	2	3
Average	2.0	2.3	2.6	2.5	2.0	2.3	2.2	3.0	2.7	2.0	2.5	-	1.4	2.4	2.2

MT23631	INDUSTRIAL ROBOTICS	Category	L	Т	Р	С
		PC	2	1	2	4

Ob	Objectives: The course shall						
•	Introduce the basics of Industrial Robotics and its components.						
٠	Explain the kinematics of Industrial Robots.						
٠	Discuss various robot programming languages and methods.						
•	Explore the basics of Robot Operating System (ROS).						
٠	Examine the applications of robots in industry.						

UNIT I FUNDAMENTALS OF ROBOTICS 9 Introduction to robots, classification of robots, serial and parallel manipulators, robot anatomy, robot configurations, work volume, structure, performance, mechanical grippers (screw type, rotary actuators, cam type, magnetic, vacuum, air-operated), gripper force analysis, and design. open-loop study with stepper motor, Closed-loop study with servo motor. UNIT-II KINEMATICS OF INDUSTRIAL ROBOTS 10 Coordinate frames, rotations, homogeneous coordinates, link coordinates, D-H representation, arm equation, multi-axis robot inverse kinematic problem, inverse kinematics of multi-axis robots. Path planning, Trajectory planning, **ROBOT LANGUAGES AND PROGRAMMING** 9 UNIT-III Robot language structure, textual and generations of robot programming languages, constants, variables, data objects, motion commands, end effector and sensor commands, methods of robot programming, motion interpolation, program control, and subroutines. Python for Robots. UNIT-IV **INTRODUCTION TO ROBOT OPERATING SYSTEMS (ROS)** 08 ROS concepts, writing ROS nodes, ROS tools, messages, classes, servers, simulation, and visualization in ROS. Industrial ROS, ROS examples, Programming for point to point/continuous. APPLICATIONS OF INDUSTRIAL ROBOTS UNIT-V 09 Robot applications in welding, palletizing, material handling and processing, recent trends in industrial robots, building of grippers. Mobile robot locomotion: Types of locomotion, hopping robots, legged robots, wheeled robots Introduction to cobot and its applications in industries. **Theory Contact Hours** : 45 List of Experiments Study different types of robots based on configuration, links, joints, and applications. 1. 2. Examine components of robots with drive systems and end effectors. 3. Determine the maximum and minimum positions of links. 4. Model forward and inverse kinematics for 3 and 4-axis robotic arms. 5. Perform the machine tending operation of a six-axis robot using a teach pendant. 6. Perform the palletizing operation of a six-axis robot using a teach pendant.

Offline programming of a six-axis robot using robotics simulation software.
 Identify a simple part using machine vision technology

0.	identify a simple part using machine vision technology.			
		Lab Contact Hours	:	3
				0
		Total Contact Hours	:	7
				5

Cours	Course Outcomes: Upon completion of this course the students will be able to						
CO1	Understand the basic concepts and components of industrial robotics.						
CO2	Apply kinematics to solve problems related to industrial robot motion.						
CO3	Develop and implement robot programs using various programming languages.						
CO4	Utilize ROS for robot simulation and control.						
CO5	Analyze and apply industrial robots in real-world applications.						

Text Book (s):

Saeed B. Niku, Introduction to Robotics: Analysis, Control, Applications, Wiley Publications, 2020
 Industrial Robotics, Groover, Tata McGraw-Hill, 2012

Reference Books(s) / Web links:

1 Saha S K, —Introduction to Robotics, Tata McGraw Hill Education Pvt. Ltd, 2010.

|--|

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23631.1	3	2	1	2	3	1	1	2	2	2	1	2	3	2	1
MT23631.2	3	3	2	3	2	1	1	2	2	1	2	2	3	2	2
MT23631.3	3	3	3	3	3	2	1	2	3	2	1	3	3	2	3
MT23631.4	2	3	3	3	3	2	2	2	3	2	1	3	3	3	3
MT23631.5	3	2	2	2	2	2	2	2	3	2	2	3	3	2	2
Average	2.8	2.6	2.4	2.6	3.0	2.2	1.4	1.6	2.0	1.4	1.8	2.6	3.0	2.4	2.2

MT23632	APPLIED HYDRAULICS AND PNEUMATICS	Category	L	Т	Р	С
		PC	2	1	2	4

Objectives:										
 Demonstrate and provide an understanding of the principles and working of fluid por 	wer systems									
 Provide basic knowledge about the various sources and properties of fluid power sys 	tems									
 Educate and provide an understanding of the components and operation of hydraulic 	and pneumatic systems.									
• Enable students to design and implement pneumatic and hydraulic circuits for various applications.										
 Enquire students with the skills to troubleshoot and maintain bydraulic and pneumatic systems in industrial applications. 										
- Equip students with the skins to noubleshoot and maintain nyuraune and pheumatic systems in industrial applications.										
UNIT I FLUID POWER BASICS			08							
Introduction to Fluid power, Advantages and Applications, Fluid power systems - Types	of fluids, Properties of fluid	ls, Basi	ics of							
Hydraulics - Pascal's Law, Principles of flow - Laminar and Turbulent flow, Reynolds nu	umber, Darcy's equation, Lo	sses in	fluid							
power system, Problems. Properties of air, Perfect Gas Laws, Static head pressure, Vacuu	m-Problems. Machine plum	bing, S	izing							
pneumatic lines - types of layout, pipe materials and sizes, O-rings, Sizing hydraulic lin	nes, Suction line, Return lin	es, Wo	rking							
Pressure lines.										
UNIT-II SOURCE OF FLUID POWER			08							
Sources of Hydraulic power: Pumping Theory, Pump Classification, Construction	, Working, Design, Adva	ntages,	and							
Disadvantages, Performance, Selection criterion of Linear, Rotary- Fixed and Variable di	splacement pumps - Probler	ns. Typ	bes of							
compressor, Construction and working of compressor, Performance of compressor, N	eed for compressed air con	ndition	ing –							
pneumatic dryer, Filter, regulator and lubricator, Muffler – purpose and types.			10							
UNIT-III COMPONENTS OF HYDRAULIC AND PNEUMATIC SYSTEMS		· 1 /	10							
rod loss tandem talescopic culinders flexible setuators. Cushioning mechanism Types	of actuating machanism	actu	lators							
- rou less, tandem, telescopic cymuers, nextore actuators. Cusmoning mechanism. Types	ntrol and Pressure control y	alves (Juick							
Exhaust valve sequencing and relief valve - Types Construction and Operation Power na	ck Fluid Power ANSI Sym	nols	Zuick							
INIT-IV HYDRAILLIC AND PNFLIMATIC CIRCUITS		5015.	10							
Design of hydraulic circuits Speed and force calculation of linear actuator Accumul	ators Intensifiers Regener	ative I	Pump							
Unloading, Double- pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Sy	nchronization. Fail- safe. Sr	eed co	ntrol.							
Hydrostatic transmission. Design of pneumatic circuits - Cascade method - Sequencing	Circuits Design - Combina	tional I	Logic							
Circuit Design. Introduction to Fluidics, Pneumatic logic circuits. Electrical control of p	neumatic and hydraulic circ	cuits: re	elays,							
timers, counters.	-		-							
UNIT-V SERVO MECHANISM AND TROUBLESHOOTING			09							
Servo systems - Hydro Mechanical servo systems, Electro hydraulic servo systems ar	nd proportional valves. Inst	allatior	n and							
maintenance of hydraulic and pneumatic systems - pressure compensation - temperature en	ffects - fault finding - safety	proced	lures.							
Low-cost Automation - Applications of fluid power systems - Case studies. Emerging trends	s and innovations in fluid po	wer sys	tems.							
	Theory Contact Hours	:	45							
List of Experiments										
1. Study of hydraulic and pneumatic components and standard symbols.										
2. Design and execution of Logic circuits using pneumatic trainer kit.										
3. Design and execution of speed control of pneumatic and hydraulic actuators.										
 Design and execution of flow and pressure of Hydrophic system. 										
5. Design and execution of electro pneumatic circuit with programmed logic sequen	causing a DI C									
7 Modeling and simulation of hydraulic system model using MATI AR/LabVIFW	software									
A Design and simulation of pneumatic circuit for the sequential operation										
9. Design and simulation of predmatic circuit for the sequential operation.										
10. Design and simulation of electro pneumatic circuit for the sequential operation.										
11. Design and execution of electro pneumatic circuit using electro pneumatic trainer kit.										
12. Design and simulation of Pneumatic Sequencing circuit by cascade method using	pneumatic software.									
	Lab Contact Hours	:	3							
			0							
	Total Contact Hours	:	7							
			5							

Course	Course Outcomes: Upon completion of this course the students will be able to								
CO1	Design and analyze the performance of hydraulic and pneumatic actuators by recalling operating principles of fluid power								
	systems								
CO2	Exhibit the knowledge on selection and application of components of fluid power systems								
CO3	Understand and clarify the specific functional operations of hydraulic and pneumatic systems								
CO4	Identify problems and design suitable circuits using pneumatic and hydraulic software								
CO5	Troubleshoot, maintain, and optimize the performance of hydraulic and pneumatic systems								

Te	Text Book (s):							
1	Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2013.							
2	Majumdar S.R. "Oil Hydraulic System-Principle and Maintenance" Tata McGraw Hill 2012							

Re	Reference Books(s) / Web links:							
1	Dudelyt, A Pease and John J Pippenger, "Basic Fluid Power", Prentice Hall, 1987.							
2	Joji.P, "Pneumatic Controls", Wiley India, 2008.							
3	Majumdar, S.R., "Pneumatic Systems – Principles and Maintenance", Tata McGraw Hill, 2007.							
4	Shanmugasundaram.K, "Hydraulic and Pneumatic Controls", Chand & Co, 2006.							
5	Srinivasan.R, "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008.							

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23632.1	3	3	3	2	3	2	1	-	2	1	2	3	2	2	3
MT23632.2	3	2	2	2	2	1	-	-	2	1	1	2	3	3	2
MT23632.3	3	2	3	1	2	1	-	-	1	1	1	2	3	2	2
MT23632.4	3	3	3	2	3	1	1	-	2	1	1	2	1	2	2
MT23632.5	3	3	3	3	2	2	1	-	2	1	1	2	3	2	1
Average	3	2.6	2.8	2.0	2.4	1.4	0.6	-	1.8	1	1.2	2.2	2.4	2.2	2

G	E23621	PROBLEM SOLVING TECHNIQUES	Category	L	Т	Р	С
			EEC	0	0	2	1
Obj	ectives: Thi	s laboratory course enables students					
•	To improv	e the numerical ability					
•	To improv	e problem-solving skills.					
		Topics covered					
1	Numbers	system					
2	Reading	comprehension					
3	Data arra	ngements and Blood relations					
4	Time and	1 Work					
5	Sentence	correction					
6	Coding &	& Decoding, Series, Analogy, Odd man out and Visual reasoning					
7	Percenta	ges, Simple interest and Compound interest					
8	Sentence	completion and Para-jumbles					
9	Profit and	d Loss, Partnerships and Averages					
10	Permutat	ion, Combination and Probability					
11	Data inte	rpretation and Data sufficiency					
12	Logarith	ms, Progressions, Geometry and Quadratic equations.					
13	Time, Sp	eed and Distance					
			Total Contact	Hours	5	:	30

Course Outcomes: On com	pletion of the course, the student will be able to:

Have mental alertness

Have numerical ability

• Solve quantitative aptitude problems with more confident

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23621.1	1	1	1	-	-	-	-	-	-	-	-	3	1	-	-
GE23621.2	1	1	1	-	-	-	-	-	-	-	-	3	1	-	-
GE23621.3	1	1	1	-	-	-	-	-	-	-	-	3	1	-	-
Average	1	1	1	-	-	-	-	-	-	-	-	3	1	-	-

G	E23627	DESIGN THINKING AND INNOVATION	EEC	L	Т	Р	С		
	0								
Ob	jectives: T	The students will be able to							
•	To understand the design thinking concepts and deep understanding of user needs and experiences.								
•	• To find the problem statement and To develop innovative design solutions that address identified user challenges								
•	To master the process of prototyping and iterating on designs.								
•	To conduct thorough market analysis and financial planning								
٠	To effectively communicate design concepts and findings.								

The mechatronics students are required to submit a mini project by implementing the concepts of design thinking, and the project shall be evaluated as per the norms of project work. The students can form a team of max. 3 students, and a mentor will be allotted for this purpose. The students will be encouraged to get teammates from other branches of study to promote inter disciplinary project. The assessment will be similar to that of project work.

Unit-I: Introduction to Design Thinking: The design thinking concepts - Different design thinking models - Details of Stanford Design thinking process: Empathize, Define, Ideate, Prototype, Test

Activities:

- Case studies of successful domain based Design Thinking and Innovative projects
- Group discussions on design thinking

Unit 2: Empathize and Define: User research methods (interviews, surveys, observation, contextual inquiry) - Persona development- Journey mapping – Brainstorming Defining the design problem statement

- Activities:
- Conducting user interviews and surveys
- Creating user personas and journey maps
- Identifying key user needs and pain points
- Analyze the user needs and Brainstorming to define problem statement

Unit 3: Ideate and Create: Brainstorming techniques (e.g., mind mapping, SCAMPER) - Ideation tools (e.g., design thinking tools, concept sketching) - Concept generation and evaluation (e.g. Brainstorming)

Activities:

- Group brainstorming sessions to select the best idea
- Creating concept sketches and prototypes
- Evaluating ideas based on user needs and feasibility

Unit 4: Prototype and Test: Low, Medium and high level fidelity for prototyping-Usability testing -Iterative design

Activities:

- Building low-fidelity prototypes (e.g., paper prototypes)
- Conducting usability tests with users
- Iterating on designs based on feedback

Unit 5: Market Analysis and Implementation: Market research and analysis - Business model development- Financial planning-Implementation strategies

Activities:

- Conducting market research
- Developing a business model canvas
- Creating a financial projection
- Developing an implementation plan

Course Outcomes: Upon completion of this course the students will be able toCO1Construct design challenge and reframe the design challenge into design opportunity.

 CO1
 Construct design challenge and reframe the design challenge into design opportunity.

 CO2
 Interview the user, and know the feelings of users to foster deep user understanding and be able to uncover the deep user insights and needs.

 CO3
 Develop ideas and prototypes by brainstorming.

 CO4
 Organize the user walkthrough experience to test prototype

CO5 Develop smart strategies and implementation plan that will deliver/achieve the idea/solution deduced from earlier phases.

Assessment:

- Encourage students to work on real-world design challenges based on the user needs
- Group presentations
- Quizzes and exams

• Evaluation of Project report and viva and also encourage the students for filing patent/ copyright / presenting in conference / publishing in journal

Те	xt B	ook(s):					
	1	Handbook of Design Thinking by Christian Müller-Roterberg, Kindle Direct Publishing, 2018.					
~ ~	2	Design Thinking – A Beginner's Perspective, by E Balagurusamy, Bindu Vijakumar, MC Graw Hill, 2024					
Ref	eren	ce Books:					
1 Design Thinking for Entrepreneurs and Small Businesses: Putting the Power of Design to Work – by Beverly J Apress; 1st ed. Edition, 2013							
	2 Design Thinking: Understanding How Designers Think and Work by Nigel Cross, Bloomsbury Visual Arts; 2 edition						
We	b lin	ks					
1	De	sign thinking Guide https://www.rcsc.gov.bt/wp-content/uploads/2017/07/dt-guide-book-master-copy.pdf					
2	NPTEL Course on Design Thinking and Innovation By Ravi Poovaiah ; https://onlinecourses.swayam2.ac.in/aic23_ge17/preview						
3	IIT	B Design course tools and Resources https://www.dsource.in/					

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
GE23627.1	3	2	3	3	3	2	2	3	3	3	3	3	2	2	3
GE23627.2	3	2	3	3	3	2	2	3	3	3	3	3	3	3	2
GE23627.3	3	2	3	3	3	2	2	3	3	3	3	3	3	2	2
GE23627.4	3	2	3	3	3	2	2	3	3	3	3	3	1	2	2
GE23627.5	3	2	3	3	3	2	2	3	3	3	3	3	3	2	1

SEMESTER VII

MT23711		INDUSTRIAL AUTOMATION	Category	L	т	Р	С			
11123711			PC	2	$\frac{1}{1}$	0	3			
L			10	-	<u> </u>	0	5			
Objectives:	The course	e shall								
• Abstra	ct the impo	ortance of Automation and PLC Programming								
• Detail the architecture components of production plants using DCS										
To und	derstand the	e working of SCADA elements								
Compa	are the wor	king of SCADA, DCS and PLC								
• Teach	the workin	g of networking in industries								
UNIT-I	INDUS	TRIAL AUTOMATION AND PLC PROGRAMMING					09			
Introduction	to Industr	al Process Automation-Definition, Necessity, Evolution, Types, C	hallenges of Autor	nation A	rchite	ctur	e of			
Industrial A	utomation	Network- Process Automation with Smart and Intelligent Instrum	nents- Industry 1.0	to Indu	stry 4	.0. F	'LC			
Program Str	ucture and	Execution - Programming Devices for PLC - PLC Programmin	g Tools-Timer – (Counters	- Re	egist	ers-			
Advanced P	LC Function	ons - PLC Protocols- Selection and Commissioning of PLC								
UNIT-II	DISTR	IBUTED CONTROL SYSTEM (DCS)					09			
Computers	in Process	Automation-Architecture of Computer-Based Industrial Autor	nation System-Ha	rdware	ind S	oftw	vare			
Configuratio	on-Process	Automation Network-PC-Based Control Loop-Sampling of Pro-	cess Data- Distrib	uted Co	ıtrol	Syste	em-			
Hardware U	Inits of DC	S-Communications in DCS Architecture-Software Packages of D	CS-Operation, Mo	nitoring,	Cont	rol,	and			
Data Acquis	sition in DC	CS-Integration of DCS with PLC and SCADA DCS based Process (Control Simulation	s.						
UNIT-III	SUPER	VISORY CONTROL AND DATA ACQUISITION (SCADA)					09			
Introduction	-SCADA	Basics-Different SCADA System Topologies-Evolution of SCA	ADASCADA Arch	nitecture	Func	tions	of of			
SCADA-Ele	ements of	SCADA-SCADA, DCS, and PLC: A Comparison-SCADA	Security: Threats,	Vulner	abiliti	es,	and			
Consequence	es-SCADA	Standards Organizations-Application Areas of SCADA-SCADA	and IIoT SCADA	A Implen	ientat	ions	for			
Automation	Industries									
UNIT-IV	INDUS	TRIAL NETWORKING & M2M COMMUNICATION					09			
Introduction	to industr	ial Networking-Network Devices- Fieldbus-Types- Topology-Ber	nefits- Foundation	Fieldbu	-Con	npari	son			
with OSI M	Iodel-Med	um Access Control (MAC)- PROFIBUS-Communication via P	ROFIBUS,PROFI	NET,DP	Bus	Acco	ess-			
HART: Hig	hway Add	ressable Remote Transducer-Wireless field bus-WHART-M2M	Communication an	d Techn	ologie	es-M	i2M			
Communica	tion Protoc	ols.								
UNIT-V	INDUS	TRIAL INTERNET OF THINGS (IIOT)					09			
Introduction	: IoT and	IIoT - Evolution of IIoT – Architecture of IoT and IIoT – IIoT F	Protocols – Layout	of a Sn	art F	actor	гу —			
Benefits, Ch	allenges, T	echnological components of IIOT – Difference between IoT and II	oT – Application a	areas of I	IoT					
			Total Contact	Hours		:	45			

Cours	Course Outcomes: On completion of course students will be able to							
CO1	Discuss PLC programs for Industrial Automation Process							
CO2	Explain the architecture layout for Automation Production Plant							
CO3	Analyze the components and implementation of SCADA in process industries							
CO4	Determine the types of Networking in Industries							
CO5	Justify the difference in IoT and IIoT							

 Text Books:

 1
 Dey, Chanchal, and Sunit Kumar Sen, Industrial automation technologies, 2020, CRC Press.

 2
 Gilchrist, Alasdair, Industrial Internet use-cases. Industry 4.0., 2016, Apress, Berkeley, CA.

 Reference Books / Web links:

111	terence books/ web miks.
1	Johnson, David. Programmable Controllers for Factory Automation, 2020, CRC Press.
2	Sharma, K. L. S. Overview of industrial process automation, 2016, Elsevier.
3	Mikell P Groover, Automation, Production Systems and Computer Integrated Manufacturing, 2016, Pearson.
4	Frank D. Petruzella, Programmable Logic Controllers, 2019, Mc-Graw Hill.
5	Veena S. Chakravarthi, Internet of Things and M2M Communication Technologies Architecture and Practical Design Approach to IoT in Industry 4.0, Springer 2021.
_	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23711.1	1	2	3	1	2	1	-	-	1	2	-	-	2	2	2
MT23711.2	1	2	3	1	2	1	-	-	1	2	-	-	2	2	2
MT23711.3	1	2	3	1	2	1	-	-	1	2	-	-	2	2	2
MT23711.4	1	2	3	1	2	-	-	-	1	2	-	-	2	2	2
MT23711.5	1	2	3	1	2	-	-	-	1	2	-	-	2	2	2
Average	1.8	2	2.2	1	2	1	-	-	1	2	-	-	2	2	2

MT23712	MACHINE VISION	Category	L	Т	Р	С
		PC	3	1	0	4

0	bjectives: The course shall
٠	Enable students to understand the basics of vision systems.
٠	Teach the algorithms of vision systems.
٠	Instruct students on recognition techniques for objects.
•	Provide knowledge on the applications and software for vision systems.
٠	Develop skills for implementing vision systems in robotic applications.

UNIT-I VISION SYSTEMS

Basic Components - Elements of visual perception, Lenses: Pinhole cameras, Gaussian Optics - Cameras - Camera-Computer interfaces 12

VISION ALGORITHMS UNIT-II

Fundamental Data Structures: Images, Regions, Sub-pixel Precise Contours - Image Enhancement: Gray value transformations, image smoothing, Fourier Transform - Geometric Transformation - Image segmentation - Segmentation of contours, lines, circles and ellipses - Camera calibration - Stereo Reconstruction. 12

UNIT-III OBJECT RECOGNITION

Object recognition, Approaches to Object Recognition, Recognition by combination of views - objects with sharp edges. Deep Learning Methods: Image classification, object detection and semantic segmentation UNIT-IV APPLICATIONS 12

Face detection - Face recognition - foreground-background separation - particle filters - Chamfer matching, tracking, and occlusion - combining views from multiple cameras - human gait analysis-Application: Surveillance - In-vehicle vision system, Automotive Industries, Manufacturing, Electronics, Printing, Pharmaceutical, Biomedical, Robotics, Agricultural field. 12

UNIT-V **ROBOTS VISION**

Basic introduction to Robotic operating System (ROS) - Real and Simulated Robots - Introduction to OpenCV, Open NI and PCL, installing and testing ROS camera Drivers, ROS to OpenCV - The cv_bridge Package.

Total Contact Hours 60

12

Co	Course Outcomes: After the successful completion of the course, the student will be able to:						
•	Understand the fundamentals of vision systems.						
•	Determine appropriate vision algorithms for object prediction.						
•	Design object recognition techniques for detecting objects.						
•	Develop simple vision-based robot applications.						
•	Apply various software tools in vision robots for different applications.						

Text Book (s):

1	Carsten Steger, Weinheim,2008.	Markus	Ulrich,	Christian	Wiedemann,	"Machine	Vision	Algorithms	and	Applications",	WILEY-VCH,

2 Damian m Lyons, "Cluster Computing for Robotics and Computer Vision", World Scientific, Singapore, 2011.

Ref	ference Books(s) / Web links:
1	Rafael C. Gonzalez and Richard E.woods, "Digital Image Processing", Addition - Wesley
	Publishing Company, New Delhi, 2007.
2	Shimon Ullman, "High-Level Vision: Object recognition and Visual Cognition", A Bradford Book, USA, 2000
3	R.Patrick Goebel, "ROS by Example: A Do-It-Yourself Guide to Robot Operating System – Volume I", A Pi Robot
	Production, 2012.
-	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23712.1	3	3	3	2	1	-	-	-	-	-	-	-	2	2	1
MT23712.2	3	3	3	2	1	-	-	-	-	-	-	-	3	3	3
MT23712.3	3	3	3	3	2	2	-	-	-	-	-	1	3	2	3
MT23712.4	3	3	3	1	-	1	-	-	-	-	-	1	1	1	2
MT23712.5	3	2	2	1	-	1	-	-	-	-	-	2	3	1	3
Average	3	2.8	2.8	1.8	1.3	1.3	-	-	-	-	-	1.3	2.4	1.8	2.4

MT23721	COMPUTER AIDED ENGINEERING LABORATORY	Category	L	Т	Р	С
		PC	0	0	2	1

Ot	ojectives: The course shall
•	Enable students to model parts using CAD software.
٠	Teach students to assemble mechanical components using CAD software.
•	Provide experience in performing structural analysis using FEA software.

•	Demonstrate beam deflection analysis using FEA software.
•	Instruct students on tool path simulation for turning and milling using CAM software.
_	
	List of Experiments
1	Modelling of a part using any CAD package
2	Modelling and assembling of the mechanical assembly using any CAD package
3	Structural analysis using FEA software – any analysis package
4	Beam deflection analysis using FEA software – any analysis package
5	Modelling and tool path simulation – turning using any CAM package
6	Modelling and tool path simulation – milling using any CAM package
7	NC code generation for milling using any CAM package
8	NC code generation for turning using any CAM package
9	Mini project involving modeling and assembly of any real-time component.
	Total Contact Hours · 30

Co	ourse Outcomes: On completion of the course, the student will be able to:
٠	Model individual parts using CAD software.
•	Assemble mechanical components using CAD software.
•	Perform structural analysis and beam deflection analysis using FEA software.
•	Simulate tool paths for turning and milling using CAM software.
•	Generate NC codes for milling and turning operations using CAM software.

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23721.1	3	2	3	2	3	-	-	-	2	1	-	-	3	2	2
MT23721.2	3	2	3	2	3	-	-	-	2	1	-	-	3	2	2
MT23721.3	3	2	3	3	3	-	-	-	2	1	-	-	3	2	2
MT23721.4	3	2	3	3	3	-	-	-	2	1	-	-	3	2	2
MT23721.5	3	2	3	3	3	-	-	-	2	1	-	-	3	2	2
Average	3	2	3	2.6	3	-	-	-	2	1	-	-	3	2	2

MT23722	INDUSTRIAL AUTOMATION LABORATORY	PC	L	Т	Р	С
			0	0	2	1

Ob	ojectives:
٠	To understand the hardware and software components of PLC
•	To develop a Ladder logic program for Machine Control
•	To establish a ladder logic for conveyor-based sorting applications
٠	To generate ladder logic program for domestic and industrial applications
•	To acquire the data logging process in Mindsphere

List of Experiments

4.	Design and Implementation of Machining Process using PLC.			
5.	Design and Implementation of Conveyor Control using HMI.			
6.	Design and Implementation of Material Sorting System using PLC.			
7.	Design and Implementation of Bottle Filling Process using PLC.			
8.	Design and Implementation of Washing Machine Control using PLC.			
9.	Design and execution of Wireless Data Logging using MindSphere			
10.	Design and execution of alarm control using SCADA			
		Total Contact Hours	:	30

Co	urse Outcomes: On completion of the course, the student will be able to:
•	Develop PLC programs for Industrial Automation Process
•	Design the architecture layout for Automation Production Plant
•	Analyze the components and implementation of SCADA in process industries
•	Determine the types of Networking in Industries
•	Justify the difference in IoT and IIoT

W	b links for virtual lab (if any)
1	https://plc-coep.vlabs.ac.in/

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23722.1	3	2	2	1	3	-	-	-	2	1	-	-	3	2	2
MT23722.2	3	3	3	2	3	-	-	-	2	1	-	-	3	2	2
MT23722.3	3	3	3	2	3	-	-	-	2	1	-	-	3	2	2
MT23722.4	3	2	3	2	3	-	-	-	2	1	-	-	3	2	2
MT23722.5	3	2	3	2	3	-	-	-	2	1	-	-	3	2	2
Average	3	2.4	2.8	1.8	3	-	-	-	2	1	-	-	3	2	2

MT23723	MECHATRONICS PROBLEM SOLVING USING AI, ML AND DL	EEC	L	Т	Р	С
			-	-	4	2

Ot	ojectives: The course shall"
٠	Provide an understanding of the application of AI, ML, and DL in mechatronics.
٠	Develop problem-solving skills through mini-projects.
•	Enable students to integrate AI, ML, and DL techniques into mechatronics systems.
•	Foster innovation and creativity in designing smart mechatronic solutions.
•	Promote teamwork and project management skills.

GUIDELINE FOR REVIEW AND EVALUATION

Students will work on various case studies provided by their respective mentors. These case studies will involve solving realworld mechatronics problems using AI, ML, and DL techniques. Each case study will be supervised by a faculty member, and students will be required to present their progress and final results. Assessment:

1. **Initial Proposal Presentation (10%):** Students will present their initial proposal for the case study, including objectives, methodology, and expected outcomes.

2. **Mid-term Progress Report (20%):** Students will submit a mid-term report detailing their progress, challenges faced, and solutions implemented.

3. **Final Project Report (30%):** A comprehensive report covering the entire case study, including problem statement, methodology, implementation, results, and conclusions.

4. **Final Presentation and Demonstration (30%):** Students will present their final results and demonstrate their solutions. This will include a Q&A session with the faculty and peers.

Co	ourse Outcomes: On completion of the course, the student will be able to:
٠	Apply AI, ML, and DL techniques to solve mechatronics problems.
٠	Analyze and develop smart mechatronic solutions based on case studies.
٠	Work effectively in teams to manage and execute case study projects.
٠	Present case study findings and results clearly and concisely.

• Demonstrate innovation and creativity in designing intelligent systems.

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23723.1	3	3	3	2	3	1	2	-	2	2	1	3	3	3	2
MT23723.2	3	3	3	3	3	1	2	-	3	3	1	3	3	3	2
MT23723.3	3	3	3	2	3	1	2	-	3	3	1	3	3	3	2
MT23723.4	3	3	3	2	3	1	2	-	2	3	1	3	3	3	2
MT23723.5	3	3	3	2	3	1	2	-	3	3	1	3	3	3	2
Average	3	3	3	2.2	3	1	2	-	2.6	2.8	1	3	3	3	2

MT23724	PROJECT WORK PHASE 1	EEC	L	Т	Р	С
			-	-	4	2

Ob	pjectives: This laboratory course enables students to								
٠	Facilitate the application of engineering knowledge to real-world problems.								
٠	Encourage innovation and creativity in project design and implementation.								
٠	Develop project management and teamwork skills.								
٠	Enhance research and analytical skills.								
٠	Promote effective communication and presentation of project work.								

GUIDELINE FOR REVIEW AND EVALUATION

	Students will work on their selected projects under the supervision of a faculty advisor. This phase will involve problem
	identification, literature review, project planning, and initial development work.

Assessment Component	Mar
Continuous Internal Assessment	
Review I	5
Review II	10
Review III	15
Supervisor Assessment	10
End Semester Examinations	
Report Evaluation by the Supervisor	10
Report Evaluation by the External Examiner	10
Viva-Voce	40
Total	100

Co	urse Outcomes: On completion of the course, the student will be able to:
•	Identify and define a significant engineering problem.
•	Conduct a thorough literature review and gather relevant information.
٠	Develop a detailed project plan and execute initial development work.
٠	Work effectively in teams and manage project tasks efficiently.
٠	Communicate project progress and findings effectively through written reports and presentations.

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23724.1	3	3	3	2	2	1	2	-	3	2	2	3	3	3	2
MT23724.2	3	3	3	3	2	1	2	-	3	2	2	3	3	3	2
MT23724.3	3	3	3	2	2	1	2	-	3	2	2	3	3	3	2
MT23724.4	3	3	3	2	2	1	2	-	3	2	2	3	3	3	2
MT23724.5	3	3	3	3	2	1	2	-	3	2	2	3	3	3	2
Average	3	3	3	2.4	2	1	2	-	3	2	2	3	3	3	2

SEMESTER VIII

MT23821	PROJECT WORK PHASE II	EEC	L	Т	Р	С
			-	-	16	8

Objectives: This laboratory course enables students to

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same

• To train the students in preparing project reports and to face reviews and viva voce examination

GUIDELINE FOR REVIEW AND EVALUATION

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

The Mechatronics system designed in Phase-I need to be fabricated/ implemented in Phase II of the project.

The project report shall carry a maximum of 30 marks. The project report shall be submitted as per the approved guidelines as given by Dean-Academics. Same mark shall be awarded to every student within the project group for the project report. The viva-voce examination shall carry 50 marks. Marks are awarded to each student of the project group based on the individual performance in the viva-voce examination

 The assessment for this course will be based on continuous internal assessment and end-semester examinations as follows:

 Assessment Component
 Marks

Continuous Internal Assessment	
Review I	5
Review II	10
Review III	15
Supervisor Assessment	10
End Semester Examinations	
Report Evaluation by the Supervisor	10
Report Evaluation by the External Examiner	10
Viva-Voce	40
Total	100

Co	Course Outcomes: On completion of the course, the student will be able to:						
•	Identify and define a significant engineering problem.						
•	Conduct a thorough literature review and gather relevant information.						
•	Develop a detailed project plan and execute initial development work.						
•	Work effectively in teams and manage project tasks efficiently.						
•	Communicate project progress and findings effectively through written reports and presentations.						

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MT23821.1	3	3	3	2	2	1	2	-	3	2	2	3	3	3	2
MT23821.2	3	3	3	3	2	1	2	-	3	2	2	3	3	3	2
MT23821.3	3	3	3	2	2	1	2	-	3	2	2	3	3	3	2
MT23821.4	3	3	3	2	2	1	2	-	3	2	2	3	3	3	2
MT23821.5	3	3	3	3	2	1	2	-	3	2	2	3	3	3	2
Average	3	3	3	2.4	2	1	2	-	3	2	2	3	3	3	2

<u>PROFESSIONAL ELECTIVE COURSES</u> <u>VERTICAL A – COMPUTATIONAL ENGINEERING</u>

Ν	IE23A11	MACHINE LEARNING FOR INTELLIGENT SYSTEMS	PE	L	Т	Р	С			
		3								
Obje	ctives:									
•	• To introduce basic machine learning techniques such as regression, classification									
•	To learn about introduction of clustering, types and segmentation methods									
•	To learn a	about introduction of clustering, types and segmentation methods								
•	To learn a	about basics of neural networks and neuro fuzzy networks.								
•	To learn a	about recurrent neural networks and Reinforcement learning								
Unit	– I In	ntroduction To Machine Learning				9				
Philo	sophy of learr	ning in computers, Overview of different forms of learning, Classifica	ions vs. Regression	on, Ev	aluatio	on me	trics			
and le	oss functions i	n Classification, Evaluation metrics and loss Functions in Regression, a	Applications of AI	in Ro	ootics					
Unit	– II C	lustering And Segmentation Methods				9				
Intro	luction to clu	stering, Types of Clustering, Agglomerative clustering, K-means cl	tering, Mean Shit	ft clus	ering,	K-m	eans			
cluste	clustering application study, Introduction to recognition, K- nearest neighbor algorithm, KNN Application case study, Principal									
comp	component analysis (PCA), PCA Application case study in Feature Selection for Robot Guidance.									
Unit	– III Fu	uzzy Logic				9				
Intro	luction to Fuz	zzy Sets, Classical and Fuzzy Sets, Overview of Classical Sets, Memb	ership Function,	Fuzzy	rule g	enera	tion,			
Fuzz	/ rule generat	ion, Operations on Fuzzy Sets, Numerical examples, Fuzzy Arithme	tic, Numerical ex	ample	s, Fuz	zy Lo	ogic,			
Fuzzi	fication, Fuzz	y Sets, Defuzzification, Application Case Study of Fuzzy Logic for Ro	ootics Application	•						
Unit – IV Neural Networks										
Math	ematical Mod	els of Neurons, ANN architecture, Learning rules, Multi-layer Percept	on's, Back propa	gation,	Intro	ductio	on of			
Neur	o-Fuzzy Syste	ms, Architecture of Neuro Fuzzy Networks, Application Case Study of	Neural Networks	in Rot	otics.					
Unit	– V R	NN And Reinforcement Learning				9				
Unfo	ding Comput	tational Graphs, Recurrent neural networks, Application Case Stu-	ly of recurrent n	etworl	ts in	Robo	tics,			
Reinf	orcement lear	ning, Examples for reinforcement learning, Markov decision process	Major component	nts of	RL, Ç)-learr	ning.			
Appli	cation Case S	tudy of reinforcement learning in Robotics.								
		Tot	al Contact Hours		:	45				
Cours	se Outcomes:	Upon completion of the course students should be able to:								
•	Understand	basic machine learning techniques such as regression, classification								
•	Understand	about clustering and segmentation								
•	Model a fuz	zzy logic system with Fuzzification and Defuzzification								
•	Understand	the concepts of neural networks and neuro fuzzy networks.								
٠	Gain knowl	edge on Reinforcement learning								

S. No	Text Books:
1.	Micheal Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 3rd Edition, 2001.
2.	Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997
S. No	Reference Books:
1.	Bruno Siciliano, Oussama Khatib, —Handbook of Robotics, 2016 2nd Edition, Springer.
2	Simon Haykin, -Neural Networks and Learning Machines: A Comprehensive Foundation Third Edition, Pearson, Delhi
2.	2016.
3.	Timothy J Ross, —Fuzzy Logic with Engineering Applications, 4th Edition, Chichester, 2010.
4.	https://nptel.ac.in/courses/106106202
5.	https://nptel.ac.in/courses/108104049

PO/PSO		POs									PSOs				
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ME23A11.1	3	2	3	2	1	-	-	-	-	-	1	3	2	-	1
ME23A11.2	3	2	3	2	1	-	-	-	-	-	1	3	-	-	2
ME23A11.3	3	2	3	2	1	-	-	-	-	-	1	3	2	2	3
ME23A11.4	2	2	3	2	1	-	-	-	-	-	1	3	2	2	3
ME23A11.5	3	2	3	2	1	-	-	-	-	-	1	3	1	2	3
	1: S	light (L	ow)		2: Mo	derate (Mediun	1)		3: Sı	ıbstanti	al (High	ı)		

ME23A12	CAD and CAE	Category	L	Т	P	С
		PE	3	0	0	3

Objec	ctives:
•	Applying the fundamental concepts of computer graphics and its tools in a generic framework.
•	Creating and manipulating geometric models using curves, surfaces, and solids.
•	Applying concept of 3D modeling, visual realism, and CAD standard practices in engineering design
•	Developing mathematical models for Boundary Value Problems and their numerical solution.
•	Formulating solution techniques to solve non-linear problems

UNIT-I FUNDAMENTALS OF COMPUTER GRAPHICS	9
Design process - Computer Aided Design - Computer graphics - co-ordinate systems- 2D and 3D transformations - Graphic prim	nitives
(point, line, circle drawing algorithms) - Clipping- viewing transformation. Standards for computer graphics	
UNIT-II GEOMETRIC MODELING	9
Representation of curves - Hermite cubic spline curve, Bezier curve, B-spline curves, Surface Modeling - Surface Er	ntities,
Representation of Surface, Bezier Surface, B-Spline Surface and Coons Surface. Solid Modeling - Solid Entities, Solid Represent	tation,
Boundary Representation (B- Rep), Sweeps Representation, Constructive Solid Geometry (CSG).	
UNIT-III VISUAL REALISM and CAD STANDARDS	9
Need for hidden surface removal, The Depth - Buffer Algorithm, Properties that help in reducing efforts, Scan Line cohe	erence
algorithm, Span - Coherence algorithm, Area-Coherence algorithms, Warnock's Algorithm, Priority Algorithms- shading - co	loring
- computer animation. Standards for computer graphics- Graphical Kernel System (GKS) - standards for exchange images	Open
Graphics Library (OpenGL) - Data exchange standards - IGES, STEP, CALS etc.	
UNIT-IV FINITE ELEMENT ANALYSIS	9
Historical Background – Weighted Residual Methods - Basic Concept of FEM – Variational. Formulation of Boundary Value Pro	blems
- Ritz Method - Finite Element Modelling - Element Equations - Linear and Higher order Shape functions - Bar, Beam Element	ents –
Applications to Heat Transfer problems.	
UNIT-V NON-LINEAR ANALYSIS	9
Introduction to Non-linear problems - some solution techniques- computational procedure- material non-linearity-Plasticity and	visco-
plasticity, stress stiffening, contact interfaces- problems of gaps and contact - geometric non-linearity - modeling considerations	- Free
and Mapped meshing -Mesh quality- Error estimate- Introduction to Analysis Software.	
Total Contact Hours :	45

Cours	Course Outcomes: At the end of the course, the students would be able to							
•	Discuss the fundamental concepts of computer graphics and its tools in a generic framework.							
•	Create and manipulate geometric models using curves, surfaces and solids.							
•	Discuss concept of 3D modeling, visual realism and standard CAD practices in engineering design.							
•	Develop the mathematical models for one dimensional finite element problems and their numerical solutions.							
•	Formulate solution techniques to solve non-linear problems.							

Text Books:								
1	Ibrahim Zeid —Mastering CAD CAMI Tata McGraw-Hill Publishing Co.2007							
2	Seshu.P, —Textbook of Finite Element Analysisl, PHI Learning Pvt. Ltd., NewDelhi, 2012.							

Reference Books(s) / Web links:

Refer	Reference Books(s) / Web links:							
1	William M Neumann and Robert F.Sproul — Principles of Computer Graphics, McGraw Hill Book Co. Singapore, 1989.							
2	Donald Hearn and M. Pauline Baker — Computer Graphicsl [•] . Prentice Hall, Inc, 1992.							
3	Foley, Wan Dam, Feiner and Hughes – —Computer graphics principles & practicel, Pearson Education - 2003							
4	Reddy,J.N. —Introduction to the Finite Element Methodl, 4thEdition, Tata McGrawHill,2018.							

COa		POs									PSOs					
COs	P0/PS0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ME23A12.1		1	1	1	1	1	2	1	3	2	2	1	2	2	1	1
ME	223A12.2	2	1	1	1	1	2	1	3	2	2	1	2	2	1	1
ME	23A12.3	1	1	1	1	2	1	3	2	3	1	1	2	2	1	1
ME	23A12.4	3	3	2	2	2	1	3	2	3	1	1	1	2	1	1
ME23A12.5		3	3	2	2	2	1	3	2	3	1	1	1	2	1	1

1: Slight (Low)

```
2: Moderate (Medium)
```

3: Substantial (High)

ME23A13 NUMERICAL HEAT TRANSFER Category L T P PE 3 0 0							
	ME23A13	NUMERICAL HEAT TRANSFER	Category	L	Т	Р	С
			PE	3	0	0	3

Obje	ectives:
1	To analyse mathematical and computational methods for fluid flow and heat transfer simulations
2	To use the Nature of Numerical Methods and Methods of Deriving the Discretization Equations
3	To assess the Conduction flow analysis
4	To assess the flow of Convection and Diffusion flow analysis
5	To assess the flow parameters in internal and external flows

Unit – I	Mathematical Description of Physical Phenomena	9						
Governing Dif	Governing Differential Equation - Meaning of Differential Equation, Conservation of Chemical Species, The Energy Equation, A							
Momentum E	quation, and The Time -Average Equation for Turbulent -Flow, The General Differential Equation	ns. Nature of						
Coordinates -	Independent variables, Proper choice of coordinates, one-way and two-way coordinates problem.							
Unit – II	Discretization Methods	9						
The Nature of	Numerical Methods - The Task, The Discretization concept, The structure of Discretization Equation	n. Methods of						
Deriving the D	viscretization Equations- Taylor Series Formulation, Variation Formulation, Method of Weighted Resid	duals, Control						
volume Formu	lation and examples							
Unit – III	Heat Conduction	9						
Steady one-dia	nensional conductions, The Basic Equations, The Grid Spacing, The interface Conductivity, Nonline	arity, Source-						
term Lineariza	tion, Boundary Conditions. Unsteady oneDimensional Conduction- The General Discretization's Equa	tion, Explicit,						
Crank-Nicolso	n and Fully Implicit Schemes. Two and Three Dimensional Situations, Geometric considerations.							
Unit – IV	Convection and Diffusion	9						
Steady One-di	mensional convection and Diffusion - Upwind scheme, The exact solution, The Exponential Scheme, H	ybrid scheme.						
Discretization	Equation for Two Dimensions, Discretization Equation for Three Dimensions, One way space coordin	nate and False						
Diffusion.	Diffusion.							
Unit – V Calculation of the Flow Field 9								
Need for a special procedure, Representation of the Pressure-Gradient Term and Continuity Equation. The Momentum Equation,								
The Pressure a	The Pressure and Velocity Corrections, The SIMPLE Algorithm, The SIMPLER Algorithm and PISO Algorithms, an open source							
software can b	e used for flow problems.							

Cour	Course Outcomes: Upon completion of the course students should be able to:						
1	1 Derive and apply the governing equations and boundary conditions for Fluid dynamics						
2	Analyse Discretization concept and Discretization Equations						
3	Analyse Finite difference and Finite volume method for Conduction problems						
4	Analyse Finite difference and Finite volume method for Convection and Diffusion problems						
5	Analyse Flow field problems						

Total Contact Hours

:

45

Text Book	s:
1	Patankar, S.V. — Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 2004.
2	P. S. Ghoshdastidar, Computer Simulation of Flow and heat transfer, Tata McGraw Hill Publications, New Delhi.
3	Suhas V. Patankar, Numerical Heat Transfer and Fluid Flow, Tata McGraw Hill Book Company 2018.
4	Varsteeg, Malalasekera, An introduction to Computational Fluid Dynamics The finite volume method, Pearson
4	Prentice hall, 1995.
Reference	Books:
1	Chung, T.J. —Computational Fluid Dynamics, Cambridge University, Press, 2002
2	Fletcher, C. A. J., -Computational Techniques for Fluid Dynamics, Springer Verlag, 2011
3	Hyoung Woo Oh, — Applied Computational Fluid Dynamics, InTech Publishers, 2012
4	John F Wendt —Computational Fluid Dynamics Springer, 2012.

COs		POs										PSOs				
COS	P0/P50	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ME23A13.1		3	2	3	2	1	1	1	-	-	-	-	1	3	2	3
ME23A13.2		3	2	3	2	2	1	1	-	-	-	-	1	3	2	3
ME23A13.3		3	2	3	2	2	1	1	-	-	-	-	1	3	2	3
Μ	E23A13.4	3	2	3	2	2	1	1	-	-	-	-	1	3	2	3
ME23A13.5		3	2	3	2	2	1	1	-	-	-	-	1	3	2	3

ME23A14	THEORY ON COMPUTATION AND VISUALIZATION	Category	L	Т	Р	С
		PE	3	0	0	3

Ob	jectives:
•	To develop a comprehensive understanding of finite automata.
•	To Master the concept of regular expressions
•	To Understand the Chomsky hierarchy, explore context-free grammars and languages
•	To Acquire a foundational understanding of data visualization
•	To develop proficiency in visualizing spatial, geospatial, and multivariate data using various techniques.

Unit – I	Automata And Regular Expression			9				
Need for autor	nata theory - Introduction to formal proof - Finite Automata (FA	.) – Deterministic Finite Autom	ata (DFA	A) – Non-				
deterministic	Finite Automata (NFA) - Equivalence between NFA and DFA	A - Finite Automata with Eps	ilon trai	isitions –				
Equivalence of	f NFA and DFA Equivalence of NFAs with and without ε-moves-	Conversion of NFA into DFA	– Minim	ization of				
DFAs								
Unit – II Regular Expressions And Languages 9								
Regular expres	ssion – Regular Languages- Equivalence of Finite Automata and 1	regular expressions – Proving la	inguages	to be not				
regular (Pump	ing Lemma) – Closure properties of regular languages.							
Unit – III	Context Free Grammar And Push Down Automata			9				
Types of Gram	mar - Chomsky hierarchy of languages -Context-Free Grammar (C	CFG) and Languages – Derivation	ons and P	arse trees				
- Ambiguity i	in grammars and languages - Push Down Automata (PDA): De	efinition - Moves - Instantane	ous desc	riptions -				
Languages of	pushdown automata - Equivalence of pushdown automata and (CFG-CFG to PDA-PDA to CF	G – Dete	erministic				
Pushdown Aut	omata.							
Unit – IV	Foundations For Visualization			9				
Visualization	stages - Semiology of Graphical Symbols - The Eight Visual V	ariables – Historical Perspectiv	e - Taxo	onomies -				
Experimental S	Semiotics based on Perception Gibson's							
Affordance the	eory – A Model of Perceptual Processing.							
Unit – V	Visualization Techniques			9				
Spatial Data: C	Dne-Dimensional Data - Two-Dimensional Data – Three Dimension	nal Data - Dynamic Data - Comb	ining Te	chniques.				
Geospatial Dat	a : Visualizing Spatial Data - Visualization of Point Data - Visualiz	zation of Line Data - Visualizati	on of Ar	ea Data –				
Other Issues in	Geospatial Data Visualization Multivariate Data : Point-Based Teo	chniques – Line Based Techniqu	es - Regi	on-Based				
Techniques -	Combinations of Techniques – Trees Displaying Hierarchical S	structures – Graphics and Netv	vorks- D	visplaying				
Arbitrary Grap	hs/Networks.							
		Total Contact Hours	:	45				

Cou	urse Outcomes: Upon completion of the course students should be able to:
•	Analyse a given language and design an appropriate finite automaton
•	Formulate regular expressions for specific languages and prove the equivalence between finite automata and regular
	expressions.
•	classify grammars based on Chomsky's hierarchy, generate languages using context-free grammars
٠	Capable of designing effective visualizations and appreciating the historical development of visualization techniques.
•	Apply appropriate visualization techniques to represent different types of data effectively
• • •	Classify grammars based on Chomsky's hierarchy, generate languages using context-free grammars Capable of designing effective visualizations and appreciating the historical development of visualization techniques. Apply appropriate visualization techniques to represent different types of data effectively

S. No	Text Books:
1	Hopcroft J.E., Motwani R. & Ullman J.D., "Introduction to Automata Theory, Languages and Computations", 3rd
	Edition, Pearson Education, 2008.
2	John C Martin, "Introduction to Languages and the Theory of Computation", 4th Edition, Tata McGraw Hill, 2011.
S. No	Reference Books:
1	Harry R Lewis and Christos H Papadimitriou, "Elements of the Theory of Computation", 2nd Edition, Prentice Hall of
	India, 2015
2	Peter Linz, "An Introduction to Formal Language and Automata", 6th Edition, Jones & Bartlett, 2016.
3	Colin Ware, Information Visualization Perception for Design, 4th edition, Morgan Kaufmann Publishers, 2021.

COs	DO/DSO	POs										PSOs				
	P0/P80	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ME23A14.1		2	2	1	-	-	-	-	-	1	-	-	1	2	1	1
ME23A14.2		2	2	1	-	-	-	-	-	1	-	-	1	2	1	1
ME23A14.3		2	2	1	-	-	-	-	-	1	-	-	1	2	1	1
ME23A14.4		2	2	1	-	-	-	-	-	1	-	-	1	2	1	1
ME23A14.5		2	2	1	-	-	-	-	-	1	-	-	1	2	1	1

VERTICAL B - LOGISTICS AND SUPPLY CHAIN MANAGEMENT

ME23B11	RELIABILITY AND MAINTENANCE ENGINEERING	Category	L	Т	Р	С
		PE	3	0	0	3
Objectives:						
👌 To und	erstand the fundamentals of reliability engineering.					
👌 To app	ly reliability estimation techniques and design systems with improved reliability.					
& To desc	cribe basic maintenance concepts and practices.					
& To eval	uate different maintenance policies.					
& To exp	lore the root cause for maintenance problems.					
UNIT-I	RELIABILITY CONCEPTS					9
Fundamental	s of reliability engineering - Mortality curves concept of burn-in period, useful li	ife and wear ou	it phas	se of a	ı syste	- m
Failure data a	nalysis, mean failure rate, Mean Time To Failure (MTTF), Mean Time Between F	ailure (MTBF)), haza	rd rate	e – Fai	lure
density and c	onditional reliability – Maintainability and availability – Simple problems.					
UNIT-II	RELIABILITY ESTIMATION					9
System reliab	ility – Series, Parallel and Mixed configurations, Reliability improvement technic	ques, use of Pa	reto ar	nalysis	s – De	sign
for reliability	r – Redundancy unit and standby redundancy – Fault tree analysis – Optimizati	on in reliabili	ty – P	roduc	t desig	gn –
Product analy	vsis – Product development – Product life cycles.					
UNIT-III	MAINTENANCE CONCEPT					9
Maintenance	definition - Maintenance objectives and scope - Maintenance challenges	and functions	– Te	rotech	nolog	şу —
Maintenance	costs – General introduction to maintenance Types					
UNIT-IV	MAINTENANCE MODELS					9
Proactive and	l reactive maintenance – Maintenance policies – Imperfect maintenance – Preven	ntive and brea	kdowr	n mair	tenan	ce –
Optimal prev	rentive maintenance schedule – Product characteristics – Inspection decisions	 Maximizing 	profi	t - M	linimi	zing
downtime – H	Replacement decisions.					
UNIT-V	MAINTENANCE QUALITY					9
Total Produc	tive Maintenance fundamentals – Chronic and sporadic losses – TPM pillars – Fiv	ve zero concep	t – Fai	lure N	/lodes	and
Effects Anal	ysis (FMEA) - Failure Modes, Effects and Criticality Analysis (FMECA) -	Root cause ar	nalysis	– Re	epair	time
distribution -	Analysis of downtime - Maintainability prediction - Design for maintainability	 Reliability C 	entere	d Mai	ntenai	nce.
]	Cotal Contact	Hours	5	:	45

Cou	Course Outcomes: Upon completion of this course, the students will be able to:					
8	Calculate and interpret different reliability concepts for engineering systems.					
8	Develop and analyze reliability models for complex systems and implement reliability improvement techniques.					
8	Identify and classify different types of maintenance practices and their applications in industrial scenarios.					
8	Formulate optimal maintenance policies and apply decision-making techniques.					
8	Perform root cause analysis of maintenance problems.					

Text Book (s):

1	Andrew K.S. Jardine& Albert H.C. Tsang, "Maintenance, Replacement and Reliability", Taylor and Francis, Third Edition 2021.
2	Srinath. L.S., "Reliability Engineering", 4th edition Affiliated East west press, 2011

Reference Books(s) / Web links:

1	Balaguruswamy.E., "Reliability Engineering", McGraw Hill Education India, 2017
2	Bikas Badhury & S.K.Basu, "Terotechnology: Reliability Engineering and Maintenance Management", Asian Books, 2003.
3	Mishra R.C, "Reliability and Maintenance Engineering" New age International publisher, First Edition, 2006.
4	Venkataraman. K "Maintenance Engineering and Management", PHI Learning, Pvt. Ltd., Fourth Edition, 2010

PO-PSO							POs						PSOs				
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
ME23B11.1	2	3	1	-	2	2	2	-	2	-	-	2	-	-	1		
ME23B11.2	2	2	1	-	1	-	1	-	2	1	-	1	-	-	2		
ME23B11.3	3	1	1	-	2	3	1	1	2	1	2	1	-	-	1		
ME23B11.4	1	2	1	-	1	1	1	-	1	-	1	-	-	-	1		
ME23B11.5	2	1	1	-	1	1	1	1	1	1	-	1	-	-	2		

ME23B12	WAREHOUSING AUTOMATION	Category	L	Т	Р	С
		PE	3	0	0	3

Ob	jectives:
প্ত	To understand the concept of warehousing and its role in decision-making and operational strategies within the supply chain.
2	To explore the various stages involved in receiving goods in a warehouse, including the use of advanced shipment notices
04	(ASN) or invoice item lists for operational efficiency.
8	To examine the significance of warehouse activities, including receiving, sorting, loading, unloading, picking, packing, and
	dispatch, and their role in optimizing warehouse operations.
2	To introduce the principles of inventory management and the integration of inbound and outbound operations in warehouse
04	management.
10	To explain the importance of health, safety, and environmental practices, including the use of safety equipment and personal
8	protective equipment (PPE) in warehouse operations.

UNIT-I Introduction To Warehouse		9			
Introduction to Warehousing Concept, Decision making, Operations, Need for warehousing, Issues affect	ting warehousing	ng. Various			
warehousing facilities. Different types of ware houses. Characteristics of ideal ware houses - Broad	functions in a w	varehouse -			
warehouse layouts and layout related to functions Warehouse Organization Structure -Benefits of Warehouse	nousing.				
UNIT-II Warehouse Inbound and Outbound Operations		9			
Receiving and Dispatch of Goods in warehouse Various stages involved in receiving goods - Stages	involved receip	t of goods-			
Advanced shipment notice (ASN) or invoice items list-Procedure for Arranging of goods on dock for cou	nting and Visual	inspection			
of goods unloaded-Formats for recording of goods unloaded from carriers-Generation of goods receipt	note using com	puter put			
away of goods into storage locations -Storage location codes and its application- Automated Storage/	Retrieval System	n (AS/RS)-			
specialised equipment- Technical advancements.	-				
UNIT-III Warehouse Operations and Quality Control		9			
Receiving, sorting, loading, unloading, Picking Packing and dispatch, activities and their importance	e in a warehou	se -quality			
parameters -Quality check-need for quality check-importance of quality check. Procedure to develop P	acking list / Dis	patch note-			
Cross docking method -Situations suited for application of cross docking -Information required for c	oordinating cros	ss docking-			
Importance of proper packing-Packing materials -Packing machines -Reading labels.					
UNIT-IV Integrated Warehouse Management and Automation		9			
Warehouse Utilization Management -Study on emerging trends in warehousing sector -DG handling	-use of Materia	l Handling			
Equipment's in a warehouse - Inventory Management of a warehouse - Always Better Control (ABC) In	ventory system-	Inbound &			
Outbound operations of a warehouse and handling of Inbound & Outbound operations. Automa	tion Systems:	Over-view,			
Applications, Costs, Benefits. Receiving Automation: Pallet Inverter -Material Flow Automation: Co	nveyors -Lifts -	Automated			
Guided Vehicles -Monorail - Picking/Outbound Automation: Pick / Put To Light -A Frame -Automated	Order Selection	ı – Pick-N-			
Go - Outbound Sorters - Automatic Truck Loading.					
UNIT-V Warehouse Safety Regulations and Operational Performance		9			
The safety rules and 'Procedures to be observed in a Warehouse - Hazardous cargo - Procedure for I	dentification of	Hazardous			
Cargo -Safety data sheet-Instructions to handle hazardous cargo - Familiarization with the industry. Hea	lth, Safety & Er	avironment			
- Safety Equipment's and their uses -5S Concept on shop floor. Personal protective Equipment's (PPE) and their uses. The Principles					
and Performance Measures of Material Handling Systems Introduction. Vehicle travel path(time), Handli	ng time, vehicle	utilization,			
no of loads completed, congestion, Effective performance systems.					
Total Con	tact Hours	: 45			

Cou	urse Outcomes:
Ś	Illustrate the need for warehousing, identifying the various factors and issues that affect warehousing decisions.
Ś	Apply best practices in preparing and managing warehouse dispatches to maintain accurate and timely outbound logistics.
ଷ	Design efficient warehouse operations by integrating activities such as receiving, sorting, loading, unloading, picking, packing, and dispatch, ensuring each function contributes to the overall efficiency.
ଷ୍ଟ	Evaluate the effectiveness of warehouse utilization management strategies and assess their impact on operational efficiency in modern warehouses
8	Develop protocols for the use of safety equipment and personal protective equipment (PPE) in warehouse operations, ensuring worker safety.
Tex	xt Book (s):
1	Gwynne Richards, 'Warehouse Management: A Complete Guide to Improving Efficiency and Minimizing Costs in the Modern Warehouse', Kogan Page Publishers, 2017
2	Frazelle, Edward H, 'World-Class Warehousing and Material Handling', Second Edition. New York: McGraw-Hill Education, 2016.
3	J P Saxena, Warehouse Management and Inventory Control- Vikas Publication House Pvt Ltd, First Edition, 2003.
Ref	Cerence Books(s) / Web links:
1	Martin Christophar, 'Storas Management and Logistics' S. Chand and Co. 2003

1	Martin Christopher, 'Stores Management and Logistics', S. Chand and Co., 2003.
2	J.R. Tony Arnold, 'Stephen N. Chapman and M. Clive Introduction to Materials Management', Pearson, 2008

3

Raghuram G, ' Logistics and Supply Chain Management', Pearson Education, 2015 Nada R. Sanders, Big data driven supply chain management: A framework for implementing analytics and turning 4 information into intelligence, Pearson Education, 2014.

Michael Watson, Sara Lewis, Peter Cacioppi, Jay Jayaraman, Supply Chain Network Design: Applying Optimization and Analytics to the Global Supply Chain, Pearson Education, 2013. 5

PO-PSO	PPSO POs							PSOs							
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ME23B12.1	3	-	2	-	2	-	-	-	-	-	-	-	2	-	-
ME23B12.2	-	3	-	2	3	-	-	-	-	-	-	-	-	1	-
ME23B12.3	3	-	-	2	-	2	-	-	-	-	-	-	2	-	-
ME23B12.4	-	-	3	-	3	-	-	-	2	-	-	-	-	-	3
ME23B12.5	-	-	-	-	-	3	2	-	-	2	-	-	-	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

ME23B13	OPERATIONS MANAGEMENT	Category	L	Т	Р	С
		PE	3	0	0	3

Ob	jectives:
প্ত	To understand the basics of production and operations management and its role in product design and development.
ß	To analyze the various aspects of process planning and other controlling operations.
ß	To evaluate the different factors influencing plant location and layout.
ß	To apply the knowledge of materials and inventory management activities.
ß	To understand the concepts of quality and various quality control techniques.

UNIT-I	INTRODUCTION TO OPERATIONS MANAGEMENT		9			
Operations N	Ianagement - Introduction, nature, importance, historical development -	Understanding similarities and different	ference			
among Produ	ucts, Goods and Services and their interrelationships - Value Analysis	- Production & Operations Strat	egy for			
Competitive	Advantage, Types of Production System - Recent Trends in Production	on and Operations Management, I	Role of			
Operations i	n Strategic Management. Production and Operations strategy - Elemer	ts and Competitive Priorities, Na	ture of			
International	Operations Management - Product Design - New Product Development, N	lake or Buy Decisions.				
UNIT-II	PLANNING AND CONTROL OF OPERATIONS		9			
Process Plan	ning - Process Redesigning, Procedure for designing a process - Produ	action Planning and Control- Obj	ectives,			
Elements, St	ages of PPC - Demand Forecasting - Need, Types, Objectives and Steps.	Overview of Qualitative and Quan	titative			
methods. Cap	pacity Planning – Long range, Types, Rough cut plan, Capacity Requirement	nts Planning (CRP) - Aggregate Pla	nning –			
Approaches,	costs – Overview of MRP, MRP II and ERP					
UNIT-III	PLANT LOCATION AND LAYOUT		9			
Facility Loca	tion - Factors influencing Plant Location, Break even Analysis. Plant Layou	t - Classification of Layout, Layout	Design			
Procedures -	CRAFT, ALDEP, CORELAP. Line Balancing - Objectives of Assembly	Line Balancing, Ranked Positional	Weight			
Method, COI	MSOAL					
UNIT-IV	MATERIALS MANAGEMENT AND INVENTORY CONTROL		9			
Materials Ma	anagement - Objectives, Planning, Budgeting and Control. Overview of M	aterials Management Information S	ystems			
(MMIS). Pur	chasing - Objectives, Functions, Policies, Vendor rating and Value Analy	sis. Stores Management – Nature,	Layout,			
Classification	n and Coding - Overview of JIT. Inventory - Types of Inventory - Determi	nistic demand model – EOQ – Con	tinuous			
and Periodic	review Inventory models - Selective Inventory Control - ABC, VED, FSN	Techniques				
UNIT-V	QUALITY MANAGEMENT		9			
Definitions of	Definitions of quality, Quality revolution, quality gurus, TQM philosophies, Quality management tools - Quality Control -					
Objectives, importance, Quality Control Techniques - Control Charts - certification and awards. Lean Management - philosophy,						
elements of JIT manufacturing, continuous improvement. Six sigma - Human factors in job design - Ergonomics - Work						
Environment and workers Safety. Introduction to ERP and Optimisation software tools						
		Total Contact Hours :	45			

Co	urse Outcomes: Upon Completion of this course, students will be able to
2	Gain a foundational understanding the concept of production and operations management, including its critical role in
04	product design and development.
প্ত	Examine the various aspects of process planning and controlling operations.
8	Investigate and understand the different factors influencing plant location and layout to make decisions
প্ত	Understand and explain the various key activities involved in materials and inventory management
10	Formulate strategies to optimize production processes and enhance overall quality management using various quality control
04	techniques

Text Book (s): Jay Heizer, Barry Render (2020), "Operations Management", 13th Edition, Pearson Education Robert S.Russell, Bernard W.Taylor, (2019), "Operations and supply chain Management", 10th edition, Wiley.

Re	ference Books(s) / Web links:
1	Mahadevan B, Operations management: Theory and practice. Pearson Education India; 2015
2	E.S. Buffa, (2007), Modern Production / Operation Management, 8th edition, Wiley
3	R. B. Kanna, Production and Operations Management, PHI Learning Private Ltd, 2nd edition, 2015.
4	S. N. Chary, Production and Operations Management, Tata McGraw Hill Education Private Limited, 4th edition, 2009
5	R. Panneerselvam, (2013), Production and Operations Management, 3rd edition, PHI
6	Norman Gaither and Gregory Frazier, Operations Management, South Western Cengage Learning,9 th edition, 2015
	https://onlinecourses.nptel.ac.in/noc20_me30/preview_

PO-PSO Mapping

PO-PSO	POs									PSOs					
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ME23B13.1	3	3	2	1	1	1	-	-	-	-	1	2	3	2	3
ME23B13.2	3	3	2	1	1	1	1	-	-	-	1	2	3	2	3
ME23B13.3	3	3	2	1	1	1	1	-	-	-	1	2	3	2	3
ME23B13.4	3	3	2	1	1	1	-	-	-	-	1	2	3	2	3
ME23B13.5	3	3	2	1	1	1	-	-	-	-	1	2	3	2	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

ME23B14	MATERIAL HANDLING EQUIPMENT, REPAIR AND MAINTENANCE	Category	L	Т	Р	С
		PE	3	0	0	3

Ob	jectives:
8	To provide knowledge of the classification and functional categories of material handling equipment.
3n	To familiarize with the design, features, and functions of various hand trucks and power trucks, including their advantages
04	and limitations.
8	To analyse conveyor systems and their role in enhancing automation and efficiency in material handling processes.
8	To impart the knowledge on industrial applications and advancements Auxiliary Equipment and Hoisting Equipment.
8	To study operational functions of Bulk Handling Equipment and Systems.

			-		
UNIT-I	INTRODUCTION TO MATERIALS HANDLING		9		
Basic principle	es & objectives in material handling and its benefits - Classification of n	naterial handling equipment - select	tion of		
material handl	ing equipments - guidelines for effective utilization of material handling e	quipments -unit load concept			
UNIT-II	INDUSTRIAL VEHICLES		9		
Introduction a	nd types - Hand trucks - Two wheel Hand Trucks - Multiple wheel Hand T	rucks - Hand Lift Trucks - Power T	rucks -		
Fixed Platforn	n Truck - Platform Lift Truck - Pallet Lift Truck - Walkie Truck - Straddle	Carrier - Fork Lift Trucks - Specifi	cations		
of FLT - FLT	Attachments - Tractors – Industrial Tractor-Trailer-Self-propelled trucks ar	d fork trucks - Automated guided v	rehicles		
Theory		C C			
UNIT-III	CONVEYORS		9		
Classification	of conveyors- Definition - Description - General Characteristics - types and	uses of belt Conveyors - Roller con	iveyors		
- Haulage Cor	veyors - Screw Conveyors - Bucket Conveyors - Chain Conveyors - Cal	ole Conveyors - Pneumatic and Hy	draulic		
conveyors - V	ibrating and actuating conveyors. Computer controlled conveyor system.				
UNIT-IV	AUXILIARY EQUIPMENTAND HOISTING EQUIPMENT		9		
Hoppers - Ga	tes- Feeders- Chutes-positioners- Ball Table- Weighing and Control Eq	uipment- Pallet loaders and un lo	aders -		
applications a	nd advancements Hoisting Equipment - parts of hoisting equipment - D	escription and uses of hoists - Des	cription		
and uses of roj	bes - description and purpose of crane hooks - Elevators - Cranes - Derrick	s - and its types	-		
UNIT-V	BULK HANDLING EQUIPMENT AND SYSTEMS	• •	9		
Storage of bu	Storage of bulk solids - bulk handling equipment - Robotic handling - Materials handling at the workplace - Robots and their				
classification -	Major components of a robot - classification of Robotic manipulators - Ro	botic handling applications – Main	tenance		
and safety of r	naterial handling equipment.	C 11			
		Total Contact Hours :	45		

Cou	arse Outcomes: At the end of the course the students would be able to
8	Evaluate and select suitable material handling equipment considering operational, financial, and safety factors.
ଷ	Recognize and describe various types of hand trucks, power trucks, and forklifts, including their functional differences and industrial applications.
ß	Develop material handling strategies by selecting the appropriate type of conveyor system.
8	Elaborate the basic working principles of various Auxiliary Equipment and Hoisting Equipment.

Т	ext Books:
1	Allegri (Sr.), T.H., Material Handling, Principles and Practices, CBS Publishers and Distributors, Delhi, 2019.
2	Siddharta Ray, Introduction to Materials Handling, New Age International Publishers, 2017.
Re	ference Books(s) / Web links:
1	Bolz, H. A and Hagemann, G. E (ed.), "Materials Handling Handbook", Ronald Press 2011
2	8005:1976, Classification of Unit Loads, Bureau of Indian Standards.
3	Apple, J.A., "Material Handling System Design", John Wiley & Sons, 2021
4	Theodore H., Allegre Sr., Material Handling Principles and Practice, CBS Publishers and Distributors, 2019

PO / PSO	POs												PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ME23B14.1	2	1	1	1	1	-	-	-	-	-	-	1	-	1	2
ME23B14.2	2	1	1	1	1	-	-	-	-	-	-	1	-	1	2
ME23B14.3	2	1	1	1	1	-	-	-	-	-	-	1	-	1	2
ME23B14.4	2	1	1	1	1	-	-	-	-	-	-	1	-	1	2
ME23B14.5	2	1	1	1	1	-	-	-	-	-	-	1	-	1	2

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)
VERTICAL C – MECHANICAL AND INDUSTRIAL

AT23	3D11	ADVANCED AUTOMOTIVE MATERIALS	Category	L	Т	Р	С
			PE	3	0	0	3
Objective	s: objective o	f this course is to provide the students with the knowledge on propertie	of anginaaring	matari	als so	as to	
enab	le them to	select and apply for automotive applications	sorengineering	materr		as to	
UNIT-I	EN	GINEERING MATERIALS AND THEIR PROPERTIES					9
Classes of	engineerin	ng materials - the evolution of engineering materials, Definition of m	aterials properti	es, disp	olayin	g mat	erial
properties	using mate	erials selection charts, Forces for change in materials selection and d	esign, Materials	and th	e env	ironn	nent-
selection of	of materials	for automotive applications.					
UNIT-II Selection	BAX strategy A	SIS OF MATERIAL SELECTION	ura: Dasign pro	0000	TIPOC.	of day	9
design red	uirements	Function Material attributes Shape and Manufacturing processes	Systematic pro	cess se	lection	n En	erov
consumpti	on for proc	luction, Material costs, Availability, Recyclability, Environmental costs	ideration. Comp	uter ai	ded se	lectio	on si
UNIT-III	MA	TERIALS FOR ENGINES AND TRANSMISSION SYSTEMS	1				9
Materials	selection fo	or IC engines: Piston, piston rings, cylinder, Engine block, Connecting r	od, Crank shaft	Fly wl	neels,	Gear	box,
Gears, Spl	ines, Clutc	hes.					
UNIT-IV	MA	TERIALS FOR AUTOMOTIVE STRUCTURES		-1- 1	-11-	T	9
wheels di	fferentials	damping and antifriction fluids. Tires and tubes	and screens, par	iels, dra	ake sn	oes, I	Jisc,
UNIT-V	ELI	ECTRONIC MATERIALS FOR AUTOMOTIVE APPLICATION	S				9
Materials	for sensors	and electronic devices meant for Engine Speed and Crank Position, Thro	ottle position sen	sor, Ma	nifold	l Abso	olute
Pressure,	Temperatu	re Sensor, Oxygen Sensor, Piezoelectric Sensor, Ultrasonic Sensor and	nd Dew Sensor.	Senso	r Mat	erials	and
Technolog	gies					~~~~	
Course O			TOTAL :	45	PERI	ODS	
At the end	of the cou	rse the student will be able to					
1 Deve	elop knowle	edge on different class of materials and their applications					
2 Und	erstand the	Selection criteria for various components and importance.					
3 Com	prehend di	fferent materials used for automotive engines and transmission					
4 Sele	ct proper m	aterial for Automobile applications					
5 Ana	yze differe	nt materials used for sensors in a vehicle					
Trank David							
1 Gl	ss adius Lewig	"Selection of Engineering Materials" Prentice Hall Inc. New Jersey	USA 1995				
2 Hi	roshi Yama	gata." The Science and Technology of Materials in Automotive Engine	es". Woodhead I	Publish	ing.20	05	
Reference	Books		,				
1 AS	M Handbo	ok. "Materials Selection and Design", Vol. 20- ASM Metals Park Ohio	.USA, 1997.				
2 AS	M Handbo	ok, "Selection of Materials Vol. 1 and 2", ASM Metals Park, Ohio. US	A, 1991.				
3 Ca	ntor," Auto	motive Engineering: Lightweight, Functional, and Novel Materials", T	aylor & Francis	Group	, Lond	lon, 2	.006
4 Jai	nes A. Jaco	bs, Thomas F. Kilduff., "Engineering Materials Technology: Structure	, Processing, Pro	operties	& Se	lectio	'n",
5 M	F Ashby "	Materials Selection in Mechanical Design" third edition Butterworth	leineman New	York 2	005		
5 101	r risitoy,	internals percention in theoritanical Design ; and carton, Dater worthin		1 01R, 2			
MT23C1	1	TECHNOLOGY MANAGEMENT	PC L	T	P	(<u>C</u>
			3	0	0	ĺ.	5
Objectives	The cour	se shall.					
• Introd	uce the fun	damentals of technology management and its applications.					
Analy	ze the tech	nological environment and its impact on organizational strategies.					
• Explo	re the dyna	mics of innovation and diffusion in a competitive context.					
• Discu	ss strategie	s for technology intelligence and intellectual property management.					
• Devel	op skills fo	r leveraging technology for competitive advantage.					
UNIT I	INTDO	DUCTION TO TECHNOLOGY MANAGEMENT					0
Definition :	and charact	eristics of technology, Types of technology (Product, Process, and Ser	vice). Technolo	gy life	cvcle	(Inve	ntion
Innovation,	Diffusion	and Obsolescence), Management of technology – concept, scope	, and objective	s, Mar	ket an	d res	source
perspective	s in technol	ogy management, Key principles and importance of technology manage	ment, Role of te	chnolo	gy in o	comp	etitive
advantage,	Historical e	evolution and future trends					
in technolo	gy manager	nent.					00
UNII-II	IECH	NULUGICAL EN VIKUNNIEN I				(צו

Concept and definition of environment and technological environment, Dimensions of the technological environment (economic social, political, and technological), Actors in the technological environment - firms, governments, and society, Induced and autonomous changes in technological environment, Major trends in

technological environment - globalization, time compression, and technology integration, Analysis of technological opportunities and threats, Methods for scanning the technological environment.

UNIT-III INNOVATION AND DIFFUSION Innovation - definition, components, and types (incremental, radical, disruptive), Innovation dynamics at the firm level, Role of organizational culture and leadership in innovation, Technology evolution - S-curve model and theories of technological change Characteristics of innovative firms, Influence of environmental trends on innovation, Diffusion - definition, dynamics, and importance Factors driving diffusion (market, technology, and

adoption), Diffusion models (e.g., Bass Diffusion Model), Barriers to diffusion and strategies to overcome them.

UNIT-IV TECHNOLOGY AND COMPETITION

Introduction to competitive domains - cost leadership, differentiation, and focus, Competitive consequences of technological change Technological characteristics of competitive domains (speed, complexity, uncertainty), Dynamics of change in competitive domains Framework for analyzing technological emergence, Role of technology in building and sustaining competitive advantage, Case studies on the competitive impact of technology in global industries, Influence of environmental trends on competition, Strategies for leveraging

technology in competitive environments.

TECHNOLOGY INTELLIGENCE, STRATEGY, AND INTELLECTUAL PROPERTY UNIT-V

Concept and definition of technology intelligence, Signals of new technology - identifying early indicators, Levels of technology intelligence (operational, tactical, strategic), Methods for gathering and analyzing technology intelligence, Definition and importance of technology strategy, Types of technology strategies (offensive, defensive, follower, niche), Principles for formulating technology strategies, Concept of intellectual property (IP) and its types (patents, copyrights, trademarks, trade secrets), Generic mechanisms for IP protection, Overview of IP systems in the US and India, Challenges of globalization in IP management, Emerging trends in IP management and strategy.

> **Total Contact Hours** • 45

09

00

Course	Course Outcomes: After the successful completion of the course, the student will be able to:							
CO1	Explain the key concepts of technology management and their relevance in modern organizations.							
CO2	Analyze the technological environment and its influence on organizational strategies.							
CO3	Apply the principles of innovation and diffusion to foster technological advancements.							
CO4	Evaluate the impact of technology on competition and formulate strategies to address technological changes.							
CO5	Integrate technology intelligence and IP management into strategic decision-making processes.							

Textbook (s):

Narayanan, V.K., Managing Technology and Innovation for Competitive Advantage, Pearson Education, 2001. Phaal, R. et al., Technology Management: Activities and Tools, Palgrave Macmillan, 2010. 2

Reference Books(s) / Web links:

Rastogi, P.N., Management of Technology and Innovation: Competing Through Technological Excellence, SAGE Publications, 2009. 2

Ravikiran, U.A., Textbook of Technology Management, Laxmi Publications Pvt. Ltd., 2008.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	2	-	-	-	2	3	3	2	-
CO2	3	3	-	-	-	-	-	-	-	-	2	3	3	2	2
CO3	3	3	2	2	3	-	-	-	-	-	2	3	3	3	2
CO4	3	3	2	3	-	2	-	-	-	-	3	3	3	3	2
CO5	3	3	2	3	-	3	-	3	-	-	3	3	3	3	3
Avg	3.0	2.8	2.0	2.7	3.0	2.5	2.0	3.0	-	-	2.4	3.0	3.0	2.6	2.3

ME23611	ADDITIVE MANUFACTURING TECHNOLOGIES	Category	L	Т	P	С
		PE	3	0	0	3

Obje	ectives:
	To familiarize the development of Additive Manufacturing, various business opportunities and applications.
	To understand various software tools, techniques and file formats to create 3D models that helps in product
	development / prototyping requirements using AM.
	To identify the technical aspects of liquid and solid based AM processes and their post processing requirements.
	To interpret with the powder based process, manufacturing techniques, bio additive manufacturing processes and
	organ printing.
	To relate with the basic of hybrid additive processes and rapid tooling techniques.

UNIT-I	INTRODUCTION
--------	--------------

9

Need, Fundamentals of Additive and digital Manufacturing, Advantages and Applications- Comparison of Additive Manufacturing with traditional Manufacturing- Generalized Additive Manufacturing (AM) process chain- Classification of AM process and Materials used - Need for AM in product development

of AM proces	s and Materials used - Need for Alvi in product development								
UNIT-II	REVERSE ENGINEERING AND DESIGN FOR ADDITIVE MANUFACTURING (DFAM)	9							
Introduction to	o Reverse Engineering: Applications, Steps in reverse Engineering and software used. Design for								
additive manu	additive manufacturing: Digitization Techniques and Devices, Model Reconstruction, CAD model preparation, Part orientation and								
support gener	support generation and removal, Model slicing and software -Demo using open source software- Tool path generation - Unique								
Capabilities, Exploring Design Freedoms and Design Tools for AM- File formats in AM. Data Processing and Controllers.									
UNIT-III	LIQUID AND SOLID BASED ADDITIVE MANUFACTRING PROCESSES	9							
Liquid based	AM process - Stereolithography apparatus, Polyjet printing, Digital Light Processing, Solid Ground								
Curing (SGC)	; Solid Based AM process - Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LOM), Wax	model							
printing: Supp	oort Structure Removal – Surface Texture Improvement – Surface Treatments								
UNIT-IV	POWDER BASED AND BIO ADDITIVE MANUFACTURING PROCESSES	9							
Selective Lase	er Sintering (SLS), Selective Laser Melting (SLM) and Electron Beam Melting (EBM), Laser Engineered								
Net Shaping (LENS)-Cleaning & de-powdering - Machining - Surface Coating & Infiltration: Properties of metallic and non-metallic									
additive manu	additive manufactured surfaces, Stress induced in additive manufacturing (AM) processes-Surface roughness problem in rapid								
prototyping ,T	Fechnologies of metal powder production; Bio-Additive Manufacturing, Computer Aided Tissue Engineering (Ca	ATE) –							

 Processing Steps and Case Studies. Customized Implants and Prosthesis - Materials used in bio printing- Applications and limitations

 UNIT-V
 HYBRID ADDITIVE MANUFACTURING PROCESSES AND RAPID TOOLING
 9

 Hybrid Processes-Wire Arc additive Manufacturing Process, Hot Wire Deposition, Laser Metal Deposition, Multi 9

 Isoare metal deposition
 Superior to 4D and 5D printing. Superior to 4D and 5D printing. Superior to 4D and 5D printing.
 9

laser metal deposition- Sustainability in AM – Introduction to 4D and 5D printing, Smart materials used in AM Processes; Rapid Tooling- Direct tooling & Indirect Tooling methods, Applications of Rapid Tooling in Reaction Injection Molding, Vacuum Casting, RTV Silicone Rubber Molds, Spin-Casting, Cast Resin Tooling, Hydroforming and Thermoforming.

Total Contact Hours

Hours	:	45

Cot	Course Outcomes: At the end of the course the students would be able								
	To familiarize the development of Additive Manufacturing, various business opportunities and applications.								
	To Understand and evaluate various software tools, techniques and file formats to create 3D models that helps in								
	product development / prototyping requirements using AM.								
	To Interpret with Liquid and Solid based AM processes and its post processing requirements.								
	To characterize the Powder based process and stress induced in powder based processes and Bio additive								
	Manufacturing Processes.								
	To ascertain the hybrid additive processes and rapid tooling techniques and their applications.								

Tex	t Books:
1	Andreas Gebhardt and Jan-Steffen Hötter — Rapid Prototyping - 3d Printing And Additive Manufacturing:
	Principles And Applications - Fifth Edition Of Rapid Prototypingl, World Scientific Publishing Co Pvt Ltd, Singapore, 2019.
2	Ian Gibson, David W. Rosen and Brent Stucker — Additive Manufacturing Technologies: Rapid Prototyping to
	Direct Digital Manufacturing, 3rd edition, Springer., United States, 2021.
Ref	erence Books(s) / Web links:
1	Amit Bandyopadhyay and Susmita Bose, —Additive Manufacturing, 2nd Edition, CRC Press., United States,
	2021.
2	Andreas Gebhardt, —Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturingl, Hanser
	Gardner Publication, Cincinnati., Ohio, 2011
3	Kamrani A.K. and Nasr E.A., -Engineering Design and Rapid Prototypingl, Springer., United States, 2010.
4	Frank W. Liou — Rapid Prototyping and Engineering applications: A tool box for prototype development, CRC
	Press., United States, 2011.
5.	Milan Brandt, -Laser Additive Manufacturing: Materials, Design, Technologies, and Applicationsl, Woodhead
	Publishing, United Kingdom, 2016.

CO-PO Mapping:

PO-PSO		POs											PSOs				
со	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
ME23611.1	3	-	-	-	-	1	-	-	1	1	-	2	-	1	2		
ME23611.2	3	3	2	3	3	1	-	-	1	1	-	2	3	1	2		
ME23611.3	3	-	-	-	-	1	-	-	1	1	-	2	-	1	2		
ME23611.4	3	-	-	-	-	1	-	-	1	1	-	2	-	1	2		
ME23611.5	3	-	2	2	-	1	3	-	1	1	-	2	-	1	2		

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

MT23C12	WORK SYSTEM DESIGN AND ERGONOMICS	L	Т	Р	С

			3	0	0	3		
Obje	ctives:							
•	To introduce the principles of productivity, factors influencing it, and methods to measure and improve productivity.							
•	To impart knowledge of work and method study techniques, enabling process optimization and efficiency improvement.							
	To explore principles of motion economy and advanced techniques such as Therbligs, SIMO charts, and cycle graphs for							
•	motion analysis.							
•	To equip students with skills in time study, performance rating, and computation of standard time for effective work							
•	measurement.							
•	To introduce the fundamentals of ergonomics, focusing on human factors and their role in optimizing man- machine systems.							
UNI	Г – I	WORK SYSTEM DESIGN			9			
Introduction and Concept of Productivity, Measurement of Productivity, Productivity Measures, Productivity Measurement Models.								
Factors Influencing Productivity, Causes of Low Productivity, Productivity Measurement Models, Productivity Improvement								
Techi	Techniques, and Numerical Problems on productivity, Case study on productivity.							

UNIT – II WORK STUDY AND METHOD STUDY

Work Study - Basic Concept, Steps Involved in Work Study, Concept of Work Content, Techniques of Work Study, Human Aspects of Work Study. Method Study - Basic Concept, Steps Involved in Method Study, Recording Techniques, Operation Process Charts, Flow Process Charts, Two-Handed-Process Charts, Multiple Activity Charts, Flow Diagrams. String Diagrams.

UNIT – III MOTION ECONOMY

Principles of Motion Economy - Micro-Motion Study, Therbligs, SIMO Charts. Memo- Motion Study, Cycle graph and Chrono-Cycle Graph, Critical Examination Techniques, Development and Selection of New Method, Installation and Maintenance of Improved Methods.

UNIT – IV WORK MEASUREMENT

Basic Concept, Techniques of Work Measurement, Steps Involved in Time Study, Time Study Equipment, Performance Rating. Performance Rating: Examples, Allowances, Computation of Standard Time, Numerical on Computation of Standard Time. Work Sampling: Basics, Procedure of Work Sampling Study, Numerical Problems

on work sampling, Introduction to Synthetic Data and PMTS, Introduction to MTM and MOST, Job evaluation and incentive schemes: Starlight line, Tailor, Merrick and Gantt incentive plans.

UNIT – V ERGONOMICS

Basic Concept, Industrial Ergonomics, Human factor engineering: Definition and history of development of human factors engineering, Types &characteristics of man-machine- system, Relative capabilities of human being and

machines; development and use of human factor data; information input and processing, Introduction to information theory; factors effecting information reception and processing; coding and selecting of sensory inputs.

Total Contact Hours 45

9

0

9

9

Course	Outcomes:
CO1	Explain productivity concepts, identify influencing factors, and solve numerical problems to propose productivity
	improvement strategies.
CO2	Apply work and method study techniques to record, analyze, and improve operational processes.
CO3	Use principles of motion economy and motion study tools to analyze workflows and develop efficient work methods.
CO4	Conduct time studies, compute standard times, and evaluate the effectiveness of work measurement techniques.
CO5	Design ergonomic systems that enhance human-machine interaction and improve workplace safety and productivity.

Text	Book(s):
1	M. P. Goover, Work Systems and the Methods, Measurement and Management of Work, Pearson Prentice Hall
2	Industrial Engineering and Management, by Praveenkumar, Pearson

Refe	erence Books(s) / Web links:
1	Khan MI; Industrial Ergonomics; PHI Learning
2	B. Niebel and Freivalds, Methods standards and Work Design, McGraw-Hill, 2003
3	Manufacturing Organization and Management, Harold Amrine, John Ritchey, Moodie, Kmec, 6th ed, Pearson

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	1	-	-	-	-	-	-	3	2	1
CO2	3	2	1	1	-	1	-	-	-	-	-	-	3	1	1
CO3	3	2	1	1	-	1	-	-	-	-	-	-	3	2	1
CO4	3	2	1	1	-	1	-	-	-	-	-	-	3	1	1
CO5	3	2	1	1	-	1	-	-	-	-	-	-	3	2	1
AVERAGE	3	2	1.2	1.0	-	1.0	-	-	-	-	-	-	3	1.6	1.0

	MT23C13	THEORY OF METAL CUTTING	L	Т	Р	С
--	---------	-------------------------	---	---	---	---

Obje	ctives:
•	To make the students to familiar with the basic principles of metal cutting
•	To familiarise the students various cutting tool materials and its wear mechanisms during the machining operation.
•	Differentiate between single point and multi point cutting tools
•	To study the heat generation during machining and the necessity for cutting fluid
•	To study the effect of vibrations during machining

UNIT – I INTRODUCTION 9 Need for rational approach to the problem of cutting materials-observation made in the cutting of metals-basic mechanism of chip formation-thin and thick zone modes-types of chips-chip breaker-orthogonal Vs oblique cuttingforce velocity relationship for shear plane angle in orthogonal cutting-energy consideration in machining-review of Merchant, Lee and Shafter theories-critical comparison. SYSTEM OF TOOL NOMENCLATURE UNIT – II 9 Nomenclature of single point cutting tool and nomenclature of multi point cutting tools - Twist Drill - milling cutter - System of tool nomenclature and conversion of rake angles-nomenclature of multi point tools like drills, milling- conventional Vs climb milling, mean cross sectional area of chip in milling-specific cutting pressure. THERMAL ASPECTS OF MACHINING UNIT – III Heat distribution in machining-effects of various parameters on temperature-methods of temperature measurement in machining-hot machining- Cutting fluid - properties - types of cutting fluids - Selection of cutting fluids. TOOL MATERIALS, TOOL LIFE AND TOOL WEAR UNIT – IV Essential requirements of tool materials-development of tool materials-ISO specification for inserts and tool holders- Tool geometry

Mechanisms of tool wear – Abrasion – Adhesion – Diffusion – Types of tool wear – flank wear – crater wear – Tool life – Tool life equations - factors affecting tool life – Illustrative problems- conventional and accelerated tool life tests-concept of machinability index-economics of machining.

UNIT – V WEAR MECHANISMS AND CHATTER IN MACHINING

Processing and Machining – Measuring Techniques – Reasons for failure of cutting tools and forms of wearmechanisms of wear-chatter in machining-factors affecting chatter in machining-types of chatter-mechanism of chatter.

Total Contact Hours 45

9

Course	Outcomes: After the successful completion of the course, the student will be able to:
CO1	Explain the fundamental principles of metal cutting, chip formation mechanisms, and energy considerations in machining.
CO2	Apply tool nomenclature systems for single-point and multi-point cutting tools, including rake angle conversions and milling
	operations.
CO3	Evaluate the effects of machining parameters on heat generation and cutting fluid selection in machining processes.
CO4	Analyze tool materials, mechanisms of tool wear, and solve problems related to tool life and machining economics.
CO5	Identify wear mechanisms, reasons for tool failure, and factors influencing chatter in machining, and propose minimization
	strategies.

Text	Book(s):
1	David A. Stephenson and John S. Agapiou, Metal Cutting Theory and Practice, CRC Press, 2019
2	Boothroid D.G. & Knight W.A., Fundamentals of machining and machine tools, Marcel Dekker, Newyork, 2005.

Reference Books(s) / Web links: 1 Bhattacharya.A., Metal Cutting Theory and practice, Central Book Publishers, India,2012. 2 A. B. Chattopadhyay, Machining and Machine Tools, Wiley, 2017 3 Shaw.M.C.Metal cutting principles, Oxford Clare don press, 2012. 4 B L Juneja and G S Sekhon., Fundamentals of Metal Cutting and Machine Tools, 2017.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	-	1	2	1
CO2	3	3	1	1	-	-	-	-	-	-	-	-	1	1	1
CO3	3	3	1	1	-	-	-	-	-	-	-	-	1	2	1
CO4	3	3	1	1	-	-	-	-	-	-	-	-	1	1	1
CO5	3	3	1	1	-	-	-	-	-	-	-	-	1	2	1
AVERAGE	3	2.8	1.2	1.0	-	-	-	-	-	-	-	-	1.0	1.6	1.0

MT23C14	

THEORY OF METAL FORMING

L	Т	Р	С		
3	0	Ο	3		

9

9

9

Objectives:

• To study the basic concepts of metal forming teeningues and to develop force calculation in metal forming proces	to develop force calculation in metal forming process.
--	--

- To study the thermo mechanical regimes and its requirements of metal forming
- To learn the art of processing and making of powder metallurgy components
- To learn the effect of friction and lubrication in Metal forming
- To study the various surface treatment processes

UNIT – I THEORY OF PLASTICITY

Theory of plastic deformation – Yield criteria – Tresca and Von-Mises – Distortion energy – Stress-strain relation – Mohr's circle representation of a state of stress – cylindrical and spherical co-ordinate system –

upper and lower bound solution methods - Overview of FEM applications in Metal Forming analysis.

UNIT – II THEORY AND PRACTICE OF BULK FORMING PROCESSES

Analysis of plastic deformation in Forging, Rolling, Extrusion, rod/wire drawing and tube drawing – Effect of friction – calculation of forces, work done – Process parameters, equipment used – Defects – applications – Recent advances

in Forging, Rolling, Extrusion and Drawing processes – Design consideration in forming – Equal Chanel Angular Pressing-High Pressure Torsion- Repetitive Corrugation and Straightening- Accumulative Roll bonding.

UNIT – III SHEET METAL FORMING

Formability studies – Conventional processes – H E R F techniques – Superplastic forming techniques – Hydro forming – Stretch forming – Water hammer forming – Principles and process parameters –

Advantages, Limitations and applications.

UNIT – IV POWDER METALLURGY AND SPECIAL FORMING PROCESSES

Overview of P/M technique – Advantages – applications – Powder preform forging – powder rolling – Tooling, process parameters and applications. - Orbital forging – Isothermal forging – Hot and cold isostatic pressing – High speed extrusion - Rubber pad forming – Fine blanking – LASER beam forming.

UNIT – V SURFACE TREATMENT AND METAL FORMING APPLICATIONS

Experiment techniques of evaluation of friction in metal forming selection – influence of temperature and gliding velocity – Friction heat generation – Friction between metallic layers – Lubrication carrier layer –

Surface treatment for drawing, sheet metal forming, Extrusion, hot and cold forging. Processing of thin Al tapes – Cladding of Al alloys – Duplex and triplex steel rolling – Thermo mechanical regimes of Ti and Al alloys during

deformation - Formability of welded blank sheet - Laser structured steel sheet - Formability of laminated sheet.

Total Contact Hours 45

Course	Outcomes:
CO1	Apply the principles of plastic deformation and yield criteria to analyze metal forming problems.
CO2	Evaluate and optimize bulk forming processes by calculating forces, identifying defects, and integrating recent
	advancements.
CO3	Design and improve sheet metal forming processes using advanced techniques like superplastic forming and hydroforming.
CO4	Implement powder metallurgy and special forming techniques by selecting suitable tools and process parameters.
CO5	Analyze the impact of friction, lubrication, and surface treatments to enhance formability and optimize advanced material
	processing.

Text	Book(s):								
1	William F. Hosford, Robert M. Caddell, Forming: Mechanics and Metallurgy, Cambridge University Press, 2011								
2	Zainul Huda, Metal Forming Processes Fundamentals, Analysis, Calculations, Springer Cham, 2024								
Refer	Reference Books(s) / Web links:								
1	Altan T., Metal forming – Fundamentals and applications – American Society of Metals, Metals park, 2003								
2	ALTAN.T, SOO-IK-oh, GEGEL, HL – Metal forming, fundamentals and Applications, American Society of Metals, Metals								
	Park, Ohio, 1995								
3	Dieter G.E., Mechanical Metallurgy (Revised Edition II) McGraw Hill Co., 1988								
4	Marciniak,Z., Duncan J.L., Hu S.J., 'Mechanics of Sheet Metal Forming', Butterworth-Heinemann An Imprint of Elsevier,								
	2006								
5	Surender Kumar, Technology of Metal Forming Processes, Prentice Hall India Publishers, 2010								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	-	-	-	-	1	2	1
CO2	3	3	1	1	-	-	-	-	-	-	-	-	1	1	1
CO3	3	3	1	1	-	-	-	-	-	-	-	-	1	2	1
CO4	3	3	1	1	-	-	-	-	-	-	-	-	1	1	1
CO5	3	3	1	1	-	-	-	-	-	-	-	-	1	2	1
AVERAGE	3	2.8	1.0	1.0	-	-	-	-	-	-	-	-	1.0	1.6	1
MT23C15	3C15 LEAN MANUFACTURING AND SIX SIGMA								PE		LT	P C			

				3 0	0	3
Obj	ectives:	The course shall:				
•	Introdu	ce the principles of Lean Manufacturing and Six Sigma to improve productivity and qu	ality in indust	ial syste	ems.	
•	Equip s	tudents with the tools and techniques for identifying and eliminating process waste.				
•	Provide	an understanding of process mapping, value stream mapping, and the role of work cel	ls in Lean syst	ems.		
•	Develo	o skills in applying Six Sigma methodologies, including DMAIC and DFSS, to real-wo	orld problems.			
•	Enhanc	e the ability to integrate Lean and Six Sigma concepts for continuous improvement and	1 operational e	ccellenc	e.	
UNI	<u>IT-I</u>	LEAN MANUFACTURING, 5S, AND TPM		· 1		<u>09</u>
Glot	bal comp	etition, Need of customers and other stakeholders, Concept of change, Manufacturing	activities, Bas	ic elem	ents	of LM
Cust	tomer va	ue, Value stream, Value flow, Customer pull, Continuous improvement, 5S workplac	e organization	, Sort, S	et-ir	1-order
Shin	ie, Stand	rdize, Sustain, 55 implementation process, 1 otal productive maintenance – introduction	n and significa	nce, Pil	lars o	DI IPN
(Au		maintenance, Planned Maintenance), Basic conditions applicable for TPM success, T	PM implemen	ation pi	oces	SS.
UNI	<u>IT-II</u>	PROCESS MAPPING, VSM, AND WORK CELL	·	.		09
Intro	oduction	to mapping, Process mapping – definition, need, and advantages, Types of process	mapping, Step	s in co	nstru	icting a
proc	cess map	Value stream mapping concept, Steps followed in VSM, Bottleneck analysis, Introdu	uction to work	cell cor	icept	i, Worl
cell	formatio	n method – selecting part families, deciding process, deciding the machinery and equip	ment, selecting	; auxilia	ry to	ols and
mate	erial han	dling equipment, designing the layout, Line balancing, Manpower – calculation a	and selection,	Employ	ee ti	raining
Prev	ventive n	aintenance schedule, Quality standard formulation, Production control system and auto	omated testing.		— T	
UNI	[T-III	SECONDARY TOOLS AND LEAN PLANNING				09
Cau	se and e	fect diagram, Pareto chart, Spider/radar chart, Poka Yoke, Kanban, Autonomation,	Single Minute	Excha	nge (of Die
(SM	IED), Sta	ndardized fixtures, Design for Manufacturing and Assembly (DFMA), Just-in- Time	(JIT) concept	, Visual	wor	kplace
Lear	n metrics	(e.g., takt time, OEE), Customer focus, Hoshin planning – process, brainstorming v	ision, long-teri	n strate	gies,	annua
plan	ining, bra	instorming annual plan, tree diagram, project and project team choice, project plan pre	paration.		<u> </u>	
UN	IT-IV	SIX SIGMA FOUNDATION				09
Evo.	lution of	Six Sigma, Six Sigma definition, Defects Per Million Opportunities (DPMO) and Sigma	a level, Practica	l meani	ng of	Sigm
leve	l, Six Sig	ma as a business model, Stakeholders in Six Sigma, Six Sigma for business excellence	e, Six Sigma a	nd Lean	, Six	Sigm
and	Kaizen,	Six Sigma and quality certification, Six Sigma methodology (DMAIC, DMADV), Role	es in Six Sigma	(Green	Belt	, Black
Belt	, Master	Black Belt), Design for Six Sigma road map, Organizing Six Sigma in organizations.			— T	
UN	IT-V	PRODUCTIVITY IMPROVEMENT AND SIX SIGMA SETTING PRIORITI	ES			09
Ope	rator pro	ductivity improvement, Process improvement, Improving machinery and equipme	ent use, Work	place o	rgan	ization
Avo	oidance o	f excess production and inventory, Voice of the customer, Identifying opportunities ar	nd selecting pro	ojects, C	Cost	of Poo
Qua	lity (CO	Q), Guidelines for selecting and defining Six Sigma projects, Project prioritization matr	rix, Risk manag	ement i	n Six	Sigma
proj	ects.					
		Total C	Contact Hours		:	45
G	0					
Cou	irse Out	omes: After the successful completion of the course, the student will be able to:	. 11 50	100		
CO	I Ana Pro	lyze the principles of Lean Manufacturing and implement workplace organization pra- ductive Maintenance (TPM).	ctices like 5S a	nd Tota	ł	
CO	2 Co	struct and interpret process maps and value stream maps to identify opportunities for p	process optimiz	ation.		

Construct and interpret process maps and value stream maps to identify opportunities for process optimization. Apply Lean tools such as Kanban, SMED, and Just-In-Time (JIT) to enhance operational efficiency. Evaluate Six Sigma methodologies and utilize tools like DMAIC for quality improvement projects. CO3

CO4 CO5 Integrate Lean and Six Sigma techniques to prioritize and execute improvement projects in diverse industrial scenarios.

Tex	tbook (s):								
1	Gopalakrishnan, N., Simplified Lean Manufacture. India, Prentice-Hall of India Pvt. Limited, 2010.								
2	George, M. L., Lean Six Sigma: Combining Six Sigma Quality with Lean Production Speed, McGraw-Hill Education, 2002.								
Ref	Reference Books(s) / Web links:								
1	Liker, J. K., The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer, McGraw- Hill Education,								
	2004.								
2	Pyzdek, T., & Keller, P. A., The Six Sigma Handbook: A Complete Guide for Green Belts, Black Belts, and Managers at All								
	Levels, McGraw-Hill Education, 2021.								

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	-	2	-	1	-	2	2	3	2	2
CO2	3	3	2	3	2	-	-	-	-	2	-	2	3	3	2
CO3	3	3	3	3	3	-	-	-	-	-	3	3	3	3	3
CO4	3	3	2	3	2	-	-	-	-	-	3	3	3	3	3
CO5	3	3	3	3	3	2	-	-	-	2	3	3	3	3	3
Avg	3.0	3.0	2.6	2.8	2.4	2.0	2.0	-	1.0	2.0	2.8	2.6	3.0	2.8	2.6

MT23C16	ADVANCED WELDING TECHNOLOGIES	PE	L	Т	Р	С
			3	0	0	3

Objectives: The course shall: • To introduce the fundamental principles and applications of welding processes, focusing on automation and robotic welding systems. • To provide an understanding of solid-state and advanced welding techniques relevant to Mechatronics-based industries. • To explore welding metallurgy and material properties, focusing on their relevance to Mechatronics systems.

• To impart knowledge on the design of weldments and residual stress management in automated and robotic welding systems.

To introduce defect analysis, quality control, and advanced inspection techniques used in welding processes.

UNIT-I FUNDAMENTALS OF WELDING AND AUTOMATION IN WELDING

Introduction to welding processes – Overview of gas welding: Oxyacetylene Welding – Overview of arc welding: Shielded Metal Arc Welding (SMAW), TIG Welding, MIG Welding – Advantages, limitations, and applications – Introduction to automated welding systems – Robotic welding: Integration with industrial Mechatronics systems – Applications of robotic welding in precision manufacturing.

UNIT-II SOLID STATE WELDING AND ADVANCED WELDING PROCESSES

Overview of solid-state welding: Friction Welding, Friction Stir Welding, and Ultrasonic Welding – Principles, advantages, and applications in Mechatronics-based systems – Laser Beam Welding and Electron Beam Welding: Automation and control in advanced welding – Applications of advanced welding techniques in robotics, aerospace, and automotive industries.

UNIT-III WELDING METALLURGY AND MATERIALS IN MECHATRONICS

Heat flow and temperature distribution during welding – Influence of welding parameters on joint properties – Overview of weldability of materials commonly used in Mechatronics: Low alloy steels, aluminum alloys, and stainless steels – Welding of thin materials for sensors and actuators – Common defects in welded components used in Mechatronics and their remedies.

UNIT-IV WELDING DESIGN AND RESIDUAL STRESS CONTROL

Types of joints and joint efficiency – Basic weld design considerations for Mechatronics structures – Residual stresses: Causes, effects, and control techniques in robotic and automated welding systems – Importance of jigs, fixtures, and positioners for precision welding in automation – Distortion control methods for Mechatronics-based applications.

UNIT-V INSPECTION TECHNIQUES AND QUALITY CONTROL

Classification and sources of welding defects – Common defects in automated welding processes – Inspection techniques: Visual inspection, Liquid Penetrant Inspection, Magnetic Particle Inspection, Ultrasonic Testing (UT), and

Radiographic Testing (RT) – Introduction to advanced techniques: Thermography and Acoustic Emission Testing – Quality assurance in robotic and automated welding systems for Mechatronics applications.

Total Contact Hours:45

9

9

9

0

Course	Outcomes: After the successful completion of the course, the student will be able to:
CO1	Apply the principles of welding processes and automation to understand robotic welding systems.
CO2	Analyze and implement advanced welding processes, including friction and laser welding, in Mechatronics applications.
CO3	Evaluate the influence of heat flow, material properties, and welding parameters to optimize welding processes for
	Mechatronics components.
CO4	Design weldments for automated systems, considering residual stresses, distortion control, and Mechatronics- specific
	applications.
CO5	Identify and rectify welding defects using advanced inspection techniques and ensure quality control in automated welding
	systems

Tex	tbook (s):
1	Himanshu Vashishtha, Deepak Kumar, Ravindra V. Taiwade, Advanced Welding Techniques Current Trends and Future
	Perspectives, CRC Press, 2024
2	R.S. Parmar, Welding Engineering and Technology, Khanna Publishers, 2013
3	Tzyh-Jong Tarn, Shan-Ben Chen, and Changjiu Zhou, Robotic Welding, Intelligence and Automation, Springer, 2004
Ref	erence Books(s) / Web links:
1	Islam Nawaz Islam Nawaz, Advanced Welding Technology, Scitech Publications, 2018
2	Joao Pedro Oliveira, Zhi Zeng, Advanced Welding Technology in Metals, Mdpi, 2022
3	Howard Currant, Welding: Advanced Principles and Applications, Larsen and Keller Education, 2023

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	-	-	-	-	3	2	1
CO2	3	3	2	1	-	-	-	-	-	-	-	-	3	3	1
CO3	3	3	2	2	-	-	-	-	-	-	-	-	2	3	2
CO4	3	3	3	2	-	-	-	-	-	-	-	-	3	3	2
CO5	3	2	1	2	-	-	-	-	-	-	-	-	3	2	1
Avg	3	2.6	1.8	1.6	-	-	-	-	-	-	-	-	2.8	2.6	1.4

VERTICAL D – ELECTRICAL AND ELECTRONICS

EE	23D11	ANALYSIS OF ELECTRICAL MACHINES	Category	L	Т	P	C			
Ob	lactives.		PE	3	0	0	3			
•	To mod	el and simulate different types of DC machines								
•	To deve	lop reference frame equations for various elements like R. L and C								
•	To mod	el an induction (three phase and 'n' phase) and synchronous machine								
•	To deriv	re reference frame equations for induction and synchronous machines								
•	To stud	y the need and working of multiphase induction and synchronous machines				-				
UNI	T-I	MODELING AND SIMULATION OF BRUSHED-DC ELECTRIC MACI	HINERY			9				
Fun	damentals	of Operation – Introduction – Governing equations and modeling of Brus	hed DC-Motor	- Sh	unt, S	Series	and			
Cor	npound –	State model derivation – Construction of Model for a DC Machine using state nditions Simulation of soft starting for DC motor	equations- Sim	ulatio	n und	er no-	load			
	T-II	REFERENCE FRAME THEORY				9				
His	torical bac	kground – Three phase to two phase transformation – transformation of variable	les from station	ary to	arbitra	ary				
reference frame, Dynamic modeling-stator reference model, rotor reference model, Flux linkage equations, PU model										
UNIT-III INDUCTION MACHINES 9										
Thr	ee phase i	nduction machine - dq equivalent circuit- Ghani model - free acceleration	characteristics	– vol	age a	nd to	rque			
equ	ations in r	nachine variables and arbitrary reference frame variables – Simulation under n	o-load and load	l cond	itions	- Mac	chine			
Vari	able form,	arbitrary reference variable form				0				
Thr	ee phase s	vnchronous machine –Blondel's model, voltage and torque equations in machin	e variables and	rotor	refere	nce fi	rame			
vari	ables (Par	k's equations) – Simulation under no-load and load conditions- Machine varia	ble form, arbitr	ary re	ferenc	e vari	iable			
form	n	• • • • • • • • • •								
UNI	T-V	MULTIPHASE (MORE THAN THREE-PHASE) MACHINE CONCEPT	8			9				
Pre	liminary R	emarks - Necessity of Multiphase Machines - Evolution of Multiphase Machines	- Advantages of	Multi	phase	Mach	nines			
- W	Orking Pi	unciple - Multiphase Induction Machine, Multiphase Synchronous Machine	-Modeling of	•n′p	hase 1	machi	ne -			
Ар		Total Contact Ho	urs ·		45					
Cor	irse Outco	mes: On completion of the course, the students will be able to								
	Formula	te the model for brushed DC-Motors (Shunt, Series, Compound and separate	ly excited moto	r) and	unde	rstand	1			
•	about si	mulation of DC motors using state model	5	·						
•	Apply r	eference frame theory for resistive and reactive elements (three phase)								
•	Comput	e the torque of three phase induction motor and synchronous motor in machine	variable arbitra	ry refe	erence	fram	e			
	Variable Find the	need and advantages of multiphase machines								
•	Demons	strate the working of multiphase induction and synchronous machine								
Tex	t Book (s)									
1	Paul	C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven D. Peka	urek, "Ana	alysis	of	Ele	ctric			
1	Machi	nery and Drive Systems", 3rd Edition, Wiley-IEEE Press, 2013.								
2	Anderso	on and Foud, "Power system stability and control"IEEE Press, 2003								
3	R. Ram	anujam, Modeling and Analysis of Electrical Machines, I. k. International Publ	ishing House P	vt.Ltd	,2018					
Ref	Stopho	OKS(S): n.D. Umang, "Eitzgarald & Kingglay's Electric Machinery" Tota McGray Hill	7th Edition 2	020						
1	Bogda	n M. Wilamowski, I. David Irwin, The Industrial Electronics Handbook, Secon	d Edition Pow	<u>020.</u> Jer Ele	ctroni	ics an	d			
2	Motor I	Drives, CRC Press, 2011	a Zanton, 10w		- u om	un all	-			
2	R. Kı	ishnan, Electric Motor & Drives: Modeling, Analysis and C	Control, Pears	on	Educa	tion,	1 st			
3	Imprin	t, 2015.								
4	Chee M	un Ong ,Dynamic Simulation of Electric Machinery using MATLAB, , Prentice	e Hall, 1997		a •					
5	Atif Iqb	al, Shaikh Moinoddin, Bhimireddy Prathap Reddy, Electrical Machine Fundame	ntals with Num	erical	Sımul	ation				
6	DS Rim	ATLAB/SIMULINK, Wiley,2021								
We	h links :	onra Generalizea meory of Electrical Machines, Manna I ablications,2011								
1	https://a	rchive.nptel.ac.in/courses/108/106/108106023/								
	r, .	•								
2	https://w	www.intechopen.com/chapters/71794								
• Sug	gested act	ivities:								
•	To le	arn Magnet software								
•	To le	arn Matlab simulink software								
Sug	gested Ev	aluation methods:								
•	To ev	valuate students based on Magnet assignments								
•	To ev	aluate students based on Matlab assignments								

COs/POs&PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	3	3	3	3	-	2	1	-	3	-	2	3	3	3
CO 2	3	3	3	3	3	-	2	1	-	3	-	2	3	3	3
CO 3	3	3	3	3	3	-	2	1	-	3	-	2	3	3	3
CO 4	3	-	-	-	-	-	2	1	-	3	-	2	3	3	3
CO 5	3	-	-	-	-	-	2	1	-	3	-	2	3	3	3
Average	3	3	3	3	3	-	2	1	-	3	-	2	3	3	3

MT23D11	NEURAL NETWORKS AND FUZZY SYSTEMS	PE	L	Т	P	С
			3	0	0	3

Obj	ectives: The course shall:						
•	Explain with applications the basic concepts, models, and characteristics of artificial neural networks.						
•	Analyze artificial neuron models, activation functions, and learning strategies for different ANN architectures.						
•	Design and implement supervised learning networks, including perceptron, ADALINE, MADALINE, and backpropagatic networks.	m					
•	Apply associative memory networks like Hopfield and BAM to solve pattern recognition problems.						
•	Distinguish between classical and fuzzy sets, understand fuzzy operations, and apply membership functions to handle uncertainty in real-world problems.						
TIN	IT I A DTIFICIAL NEUDAL NETWODKS	0					

UNII-I	ARTIFICIAL NEURAL NETWORKS	9
Introduction,	Biological Neuron, Artificial Neuron, Basic concepts of Neural Networks, Basic Models of ANN Connections,	
McCulloch-Pi	tts Model, Characteristics of ANN, Applications of ANN	
UNIT-II	ESSENTIALS OF ARTIFICIAL NEURAL NETWORKS	9
Artificial Neu	ron Model, Operations of Artificial Neuron, Types of Neuron Activation Function, ANN Architectures,	
Classification	Taxonomy of ANN Connectivity, Learning Strategies (Supervised, Unsupervised, Reinforcement), Learning Ru	les,
Numerical pro	oblems, Types of Application	
UNIT-III	SUPERVISED LEARNING NETWORKS	9
Perceptron Ne	etwork, Perceptron Learning Rule, Architecture, Perceptron Training Algorithm, ADALINE,	
MADALINE,	Back Propagation Network, BP Learning Rule, Input Layer Computation, Hidden Layer Computation, Output L	Layer
Computation,	Radial Basis Function Demonstration through MATLAB	-
UNIT-IV	ASSOCIATIVE MEMORY NETWORK	9
Training Algo	rithms for Pattern Association, Auto Associative Memory Network, Hetero Associative Memory Network, BAM	4,
Hopfield Netv	vorks, Applications	
UNIT-V	CLASSICAL & FUZZY SETS	9
Introduction to	o classical sets- properties, Operations and relations; Fuzzy sets, Membership, Uncertainty, Operations, propertie	es,
fuzzy relation	s, cardinalities, membership functions.	
	Total Contact Hours :	45
	· · · ·	

Course	Outcomes: After the successful completion of the course, the student will be able to:
CO1	Describe the basic concepts, models, and features of ANNs and their practical applications.
CO2	Analyze different neuron models, activation functions, and learning strategies to assess ANN architectures.
CO3	Design and implement supervised learning networks (perceptron, ADALINE, MADALINE, backpropagation) using
	MATLAB for numerical problem-solving.
CO4	Use associative memory networks to solve pattern recognition and associative learning tasks.
CO5	Differentiate classical and fuzzy sets, perform fuzzy operations, and apply membership functions to manage uncertainty in
	decision-making.

Tex	Textbook (s):					
1	Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig, 2020.					
2	Pattern Recognition and Machine Learning" by Christopher M. Bishop, 2006.					

Ref	erence Books(s) / Web links:
1	Neural Networks and Deep Learning" by Michael Nielsen, 2015.
2	Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville, 2016.
3	Fuzzy Logic with Engineering Applications" by Timothy J. Ross, 2010.
4	Neural Networks for Pattern Recognition" by Christopher M. Bishop, 1995.
5	Fuzzy Systems Engineering: Theory and Practice" by Kazuo Tanaka, Hua O. Wang, 2005.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	2	-	-	-	-	-	-	2	3	2	-
CO2	3	3	3	2	3	-	-	-	-	-	-	3	3	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3	3
CO4	3	3	3	3	3	2	-	-	-	-	-	3	3	3	3
CO5	3	3	3	3	3	-	-	-	-	-	2	3	3	3	3
Avg	3.0	2.8	3.0	2.8	2.8	2.0	-	-	-	-	2.0	2.8	3.0	2.8	3.0

MT23D12	VIRTUAL INSTRUMENTATION	PE	L	Т	Р	С
			3	0	0	3

Objectives: The course shall:

•	Understand the fundamentals of virtual instrumentation—its architecture, data flow, and advantages over conventional
	programming.
•	Develop VI programs with loops, arrays, clusters, graphs, and file I/O, including advanced features like sub-VIs and formula
	nodes.
•	Learn data acquisition basics, covering PC hardware, timing, counters, and timers.

٠

Explore common interfaces (RS232C/RS485, GPIB, USB), basic networking, and motion control. Apply Fourier transforms, power spectra, and filtering techniques to virtual instrumentation applications. •

UNIT-I	REVIEW OF VIRTUAL INSTRUMENTATION	10			
Historical per	spectives, advantages, block diagram and architecture of a virtual instrument, data-flow techniques, graphical				
programming	in the data flow, and comparison with conventional programming.				
UNIT-II	VI PROGRAMMING TECHNIQUES	9			
VIS and sub-	VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global				
variables, stri	ng and file I/O.				
UNIT-III	DATA ACQUISTION BASICS	9			
AOC.OAC.0	10. Counters & timers. PC Hardware structure, timing. Interrupts OMA, software and hardware installation.				
UNIT-IV	COMMON INSTRUMENT INTERFACES	9			
Current loop,	RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, networking basics for	or office			
&. Industrial	applications, Visa and IVI, image acquisition and processing, Motion control.				
UNIT-V	USE OF ANALYSIS TOOLS	8			
Fourier transf	Fourier transforms, power spectrum correlation methods, windowing & filtering, VI application in various fields.				
	Total Contact Hours :	45			

Course	Outcomes: After the successful completion of the course, the student will be able to:
CO1	Explain the advantages and architecture of virtual instrumentation, comparing it with conventional programming methods.
CO2	Develop virtual instruments using graphical programming elements like loops, charts, arrays, and sequence structures.
CO3	Analyze and implement data acquisition systems employing counters, timers, and PC hardware.
CO4	Integrate and interface protocols (RS-232C, USB, GPIB) within virtual instrumentation applications.
CO5	Utilize analysis tools, including Fourier transforms and correlation methods, for signal processing in virtual instrumentation.

Textbook (s):

1	Gupta,"	Virtual Instrumenta	tion Using Lab	view" 2ndEdition	, Tata McGraw-Hill	Education, 201	10.
---	---------	---------------------	----------------	------------------	--------------------	----------------	-----

LabVIEW: A Developer's Guide to Real-World Integration" by Jason W. H. M. 2017. Virtual Instrumentation and LabVIEW" by Sanjay Gupta, Joseph John, 2012. 2

3

Ref	cerence Books(s) / Web links:
1	R. H. Bishop, "Learning with LabVIEW", 1st edition, Pearson Publishing, 2014.
2	B. Mihura, "LabVIEW for Data Acquisition", Prentice Hall of India, 2013.
3	Gary Jonson, "Labview Graphical Programming", Second Edition, McGraw Hill, New York, 1997.
4	Gupta.S., Gupta.J.P., "PC interfacing for Data Acquisition & Process Control", Second Edition, Instrument Society of America,
	1994.
5	Sokoloff; "Basic concepts of Labview 4", Prentice Hall Inc., New Jersey 1998.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	2	-	-	-	-	-	-	2	3	2	-
CO2	3	3	3	2	3	-	-	-	-	-	-	3	3	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3	3
CO4	3	3	3	3	3	2	-	-	-	-	-	3	3	3	3
CO5	3	3	3	3	3	-	-	-	-	-	2	3	3	3	3
Avg	3.0	2.8	3.0	2.8	2.8	2.0	-	-	-	-	2.0	2.8	3.0	2.8	3.0

EE23C11		Categor	L	Т	Р	С
	HIGH VOLTAGE DIRECT CURRENT TRANSMISSION	У				
		PE	3	0	0	3

Ob	jectives:
٠	To understand the concept, planning of DC power transmission and comparison with AC Power transmission.
٠	To provide knowledge on the analysis of HVDC converters.
٠	To study about the HVDC system control.
٠	To impart knowledge on harmonics and design of filters.
٠	To learn the model and analysis the DC system under study state.

UNIT-I INTRODUCTION

UNIT-I INTRODUCTION							
DC Power transmission technology - Comparison of AC and DC transmission	- Planning and Application	of	9				
DC transmission – Description of HVDC transmission system – Modern trends in HVDC technology – DC breakers –							
Types and applications of HVDC links and MTDC systems. Case study on HVDC systems in India.							
UNIT-II ANALYSIS OF HVDC CONVERTERS							
Voltage Source Converters (VSC) – Analysis of Graetz circuit with and without overlap – Pulse number – Choice of							
converter configuration - Converter bridge characteristics - Analysis of a 12 pul	se converters – Analysis of VS	SC					
topologies and firing schemes.	-						
UNIT- CONVERTER AND HVDC SYSTEM CONTROL							
III							
Principles of DC link control and converter control characteristics – System control hierarchy – Firing angle control –							
Current and extinction angle control - Starting and stopping of DC link - Power co	ontrol – Higher level controllers	s —					
Control of VSC based HVDC link - Converter malfunctioning.							
UNIT-IV REACTIVE POWER AND HARMONICS CONTROL							
Reactive power requirements in steady state - Sources of reactive power - SVC and	STATCOM Harmonics in HVD	C	9				
- characteristics and uncharacteristic harmonics, Calculation of voltage and current ha	rmonics -harmonic filters - acti	ve					
and passive filters - Ratings of filter components and protection of							
Filters.							
UNIT-V POWER FLOW ANALYSIS IN AC/DC SYSTEMS							
Per unit system for DC quantities - DC system model - Inclusion of constraints - J	Power flow analysis – Solution	of	9				
AC/DC power flow-Simultaneous method- Sequential methodProtection Syster	ms in HVDC Substation-HVD	C					
Simulator.							
	Total Contact Hours	:	45				

		Total Contact Hours	:	45
Co	urse Outcomes:			
•	Realize the concept, planning of DC power transmission and comparison with	Power transmission.		
•	Formulate and Solve mathematical related to HVDC converters.			
•	Develop models and concept of HVDC system control			
•	Analyze the harmonics and design of filters.			
•	Understand DC system under steady state			

Sug	Suggested Activities						
•	Group discussion on applications						
•	Exposure through industrial visit						
Sug	gested Evaluation Methods						
٠	Seminars						
•	Group Assignments						

Te	xt Book(s):
1	K.R. Padiyar, "HVDC Power Transmission System", New Age Intl, third edition, 2015.
2	Edward Wilson Kimbark, "Direct Current Transmission", Vol. I, Wiley interscience, New York, London, Sydney, 1971.
3	Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", NewAge International (P) Ltd., New Delhi, 1990

Ref	ference Books(s):
1	Dragan Jovcic, Khaled Ahmed, "High Voltage Direct Current Transmission: Converters, Systems and DC Grids", Wiley
1	Publishers, first edition, 2015.
2	Colin Adamson and Hingorani N G, "High Voltage Direct Current Power Transmission", Garraway Limited, London, 1960
3	S. Kamkshaiah, V Kamraju, "HVDC transmission", Tata McGraw Hill, second edition, 2021.
4	S.Rao, "EHV-AC, HVDC Transmission and Distribution Engineering", Khanna Publishers, 3rd Edition, 2012
5	NPTEL: https://nptel.ac.in/courses/108106160.
We	b links:

https://nptel.ac.in/courses/108104013

COs/POs&PSO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	3	3	3	2	-	3	1	-	-	-	2	2	3	3	1
CO 2	3	3	3	2	-	3	1	-	-	-	2	2	3	3	1
CO 3	3	3	3	2	-	3	1	-	-	-	2	2	3	3	1
CO 4	3	3	3	2	-	3	1	-	-	-	2	2	3	3	1
CO 5	3	3	3	2	-	3	1	-	-	-	2	2	3	3	1
Average	3	3	3	2	-	3	1	-	-	-	2	2	3	3	1

MT23D13	INTELLIGENT CONTROL SYSTEMS	PE	L	Т	P	С
			3	0	0	3

Objectives: The course shall:

• Understand the basics of dynamic systems, robotic control, and System of Systems (SoS).

• To learn state-space methods and observer design for practical applications like the inverted pendulum.

• To explore fuzzy systems and neural networks for system identification and function approximation.

• To study simulation frameworks for SoS with real-world examples.

• To understand advanced control methods, such as hierarchical and decentralized control, for managing SoS.

UNIT-I	INTRODUCTION		09
Introduction –	Model of Dynamic System – Control of Robot Manipulators – Stability – S	ystem of Systems – Challenging Pro	oblems
in SoS - Theore	etical Problems.		
UNIT-II	OBSERVER DESIGN AND KALMAN FILTERING		09
State Space Me	thods – Observing and Filtering based – Derivation – Inverted Pendulum.		
UNIT-III	FUZZY SYSTEMS AND NEURAL NETWORK		09
Introduction - S	Sets – Classical Set Operations – Properties of Classical Set – Predicate Log	gic – Introduction to Function	
Approximation	- NN-Based Identification - Structure of NNs - Generating Training Data	for an NN.	
UNIT-IV	SYSTEM OF SYSTEMS SIMULATION		09
Introduction - S	SoS in a Nutshell – SoS Simulation Framework – Case Studies.		
UNIT-V	CONTROL OF SYSTEM OF SYSTEMS		09
Introduction –	Hierarchical Control of SoS - Decentralized Control of SoS - Other Control	l Approaches.	
		Total Contact Hours :	45

Course	Outcomes: After the successful completion of the course, the student will be able to:
CO1	Explain dynamic systems, robotic control, and the basics of SoS.
CO2	Use state-space methods and design observers for applications like the inverted pendulum.
CO3	Apply fuzzy logic and neural networks for system identification and problem-solving.
CO4	Simulate System of Systems and analyze case studies.
CO5	Explain the advanced control methods for SoS.

Textbook (s):

 Thrishantha Nanayakkara, Ferat Sahin, Mo Jamshidi, "Intelligent Control Systems with an Introduction to System of Systems Engineering", CRC Press, 2018.
 Ogata, K, "Modern Control Engineering", 5th Edition, Pearson Education Inc, New Delhi, 2015.
 Jamshidi, M. (Ed), "System of Systems Engineering, CRC Press, Boca Raton, FL, 2008.

Reference Books(s) / Web links: 1 Laurene Fauseett, "Fundamentals of Neural Networks", Prentice Hall India, New Delhi, 2012. 2 Erdal Kayacan, Mojtaba Ahmadieh Khaneswar, "Fuzzy neural networks for Real time control applications", Elsevier, 2015. 3 J.S. R. Jang, C.T. Sun, and E. Mizutani, "Neuro-Fuzzy and Soft Computing - A computational approach to learning and machine intelligence", Prentice Hall, 2011.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	-	-	-	-	-	-	-	2	3	2	-
CO2	3	3	3	3	3	-	-	-	-	-	-	3	3	3	3
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3	3
CO4	3	3	3	3	3	-	-	-	-	-	2	3	3	3	3
CO5	3	3	2	3	3	2	-	-	-	-	3	3	3	3	3

Avg	3.0	3.0	2.8	3.0	3.0	2.0	-	-	-	-	2.5	2.8	3.0	2.8	3.0	
-----	-----	-----	-----	-----	-----	-----	---	---	---	---	-----	-----	-----	-----	-----	--

MT23D14	BATTERY MANAGEMENT SYSTEM	PE	L	Т	P	С
			3	0	0	3

Objectives: The course shall:

•	Introduce the fundamentals of battery management systems (BMS) and their significance in modern energy storage solutions.
•	Explain the requirements and functionalities of BMS, including sensing, control, and communication
	interfaces.
•	Provide an understanding of battery health and charge estimation methods.
•	Familiarize students with modeling and simulation techniques for battery systems.

Develop skills to design efficient and reliable battery management systems for various applications. •

UNIT-I **INTRODUCTION TO BMS**

Introduction to Battery Management System, Cells & Batteries, Nominal voltage and capacity, C rate, Energy and power, Cells connected in series, Cells connected in parallel, Electrochemical and lithium-ion cells,

Rechargeable cell, Charging and Discharging Process, Overcharge and Undercharge, Modes of Charging **BMS REQUIREMENT** UNIT-II

10 Introduction and BMS functionality, Battery pack topology, Voltage Sensing, Temperature Sensing, Current Sensing, BMS Functionality, High-voltage contactor control, Thermal control, Protection, Communication Interface, Range estimation, State-ofcharge estimation, Cell total energy and cell total power,

UNIT-III BATTERY SOC, SOH ESTIMATION AND CELL BALANCING

Battery state of charge estimation (SOC), voltage-based methods to estimate SOC, Model-based state estimation, Battery Health Estimation, Lithium-ion aging: Negative electrode, Lithium ion aging: Positive electrode, Cell Balancing, Causes of imbalance, Circuits for balancing. 00

MODELING AND SIMULATION UNIT-IV

Equivalent-circuit models (ECMs), Physics-based models (PBMs), Empirical modeling approach, Physics-based modeling approach, Simulating an electric vehicle, Vehicle range calculations, Simulating constant power and voltage, Simulating battery packs,

UNIT-V DESIGN OF BMS

07 Design principles of battery management systems, Effect of load, distance, and force on battery life and BMS performance, Energy balancing in multi-battery systems, Strategies for BMS optimization, Design considerations for safety and reliability.

Total Contact Hours 45

09

Course	Outcomes: After the successful completion of the course, the student will be able to:
CO1	Understand the fundamental principles of battery systems and charging processes.
CO2	Identify the requirements and functionalities of battery management systems.
CO3	Apply techniques for SOC and SOH estimation and cell balancing.
CO4	Develop battery models and simulate their performance for various applications.
CO5	Design and optimize battery management systems for energy efficiency and safety.

Textbook (s).

ICA	
1	Plett, Gregory L. Battery management systems, Volume I: Battery modeling. Artech House, 2015.
2	Plett, Gregory L. Battery management systems, Volume II: Equivalent-circuit methods. Artech House, 2015.
3	Bergveld, H.J., Kruijt, W.S., Notten, P.H.L "Battery Management Systems -Design by Modelling" Philips Research Book
	Series 2002.

Reference Books(s) / Web links:

Davide Andrea," Battery Management Systems for Large Lithium-ion Battery Packs" Artech House, 2010 1

Pop, Valer, et al. Battery management systems: Accurate state-of-charge indication for battery-powered applications. Vol. 9. 2 Springer Science & Business Media, 2008.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	2	3	2	-
CO2	3	3	-	2	-	-	-	-	-	-	-	2	3	3	2
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	3	3
CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	3	3
CO5	3	3	3	3	3	3	2	2	-	-	2	3	3	3	3
Avg	3.0	2.8	3.0	2.8	3.0	3.0	2.0	2.0	-	-	2.0	2.6	3.0	2.8	2.8

EE	23A14	ENERGY STORAGE SYSTEMS	Category	L	Т	P	С
			PE	3	0	0	3
Ob	jectives:						
•	To unde	rstand the different types of energy storage technologies					
•	To analy	ze Battery energy storage system					
•	To analy	ze the Renewable energy storage system					
•	To com	brehend the principle of Fuel Cell energy storage system					
•	To study	the various applications of energy storage systems				0	
	III-I D	INTRODUCTION	£	- 4		<u>9</u>	:1
ch	currenty - R	ore of energy storage systems and applications. Necessity of energy storage – t	ypes of energy	storag	e – m	echan	Ical
-ci		BATTERV ENERGY STORAGE SVSTEM	ge technologies	•		0	
Fur	ndamental c	oncept of hatteries – measuring of hattery performance, charging and dischargin	g nower densit	v ene	rov de	nsity	and
safe	etv issues.	Types of batteries – Lead Acid. Nickel -Cadmium. Zinc Manganese dioxid	de. Li-ion batt	eries.	Batter	v cri	tical
par	ameters sel	ection (voltage of cell –Specific energy–Charge (C-rate)–dis-Charge (C-rate).	Cvcle life–curr	ent de	ensity	–The	rmal
run	away –Bat	ery series parallel connection and String size–Battery mounting arrangement a	nd installation.	Safet	y of li	thium	-ion
bat	teries. Type	s of lithium ion battery. Batteries for Electric Vehicles.					
UN	IT-III	RENEWABLE ENERGY STORAGE SYSTEM				9	
Sol	ar energy, '	Wind energy, Pumped hydro energy, fuel cells. Energy storage in Micro-grid an	d Smart grid. E	Inergy	Mana	igeme	nt
wit	h storage s	stems, Increase of energy conversion efficiencies by introducing energy storag	ge.				
UN	IT-IV	FUEL CELL ENERGY STORAGE SYSTEM				9	
Wo	orking Princ	iple and Application of fuel cells: working principle of fuel cell, performance c	haracteristics o	f fuel	cells,	efficie	ency
of f	uel cell, fu	el cell stack, description of some commercially available fuel cell stacks Types	s Fuel Cell – Hy	droge	n oxy	gen ce	ells–
Hy	drogen air	cell–Hydrocarbon air cell–alkaline fuel cell–detailed analysis – advantages an	id disadvantage	es –Fu	el Ce	ll Ele	ctric
Ve	hicles.					0	
UN	11-V	ALTERNATE ENERGY STORAGE TECHNOLOGIES		-:	T- J	9 1 E	
Sup	rage System	rs – Principles & Melhous – Applications–Compressed air Energy storage–Batt	ery-Super capa	storn		i Enei	gy
(SN	AFS)Flywh	eel energy storage (EES). Electrochemical storage systems. Secondary batteries	Flow batteries	y stora	ge	onora	v
stor	rage Hydro	oren (H2) Synthetic natural gas (SNG)	, 110w batteries	s, ene	inicai	energ	y
5101	(ugo, 11) ur (Total Contact Ho	urs :		45		
Co	urse Outco	mes: On completion of the course, the students will					
٠	Gain kn	owledge on different energy storage technologies					
•	Able to	nodel the battery energy storage system					
•	Able to	analyze a renewable energy storage system.					
٠	Able to	analyze the thermodynamics of fuel cell energy storage system					
٠	Gain Kno	wledge on various applications of energy storage technologies and perform the	selection				
Te	xt Book (s)						
1	Energy	Storage -Fundamentals, Materials and Applications, Robert Huggins, Springer, 2	2016				
2	Energy	Storage in Power Systems ,Francisco Díaz-González, Andreas Sumper, Oriol Go	omis-Bellmunt				
_	2016						
3	Handbo	ok on Battery Energy Storage System, Asian Development Bank					
4	Handbo	ok of lithium-ion battery pack design chemistry, components, types and termino	logy by Warne	r, Johi	<u>п Т, Е</u>	lsevie	r.
5	Fundam	entais and Application of Lithium-ion Battery Management in Electric Drive Ve	enicles by San I	Ping Ji	ang, V	wiley	<u> </u>
Re	Ierence Bo	Discover and Mark A. Boson "Thormal Energy Storage Systems and Application	" John Wil	P. C.	<u></u>	2	
1	Ioranim	Differ and whatk A. Kosen, Therman Energy Storage Systems and Application	$\frac{15}{2003}$, John Whey	a 301	iis 200	12	
4	Dames L	a minic and Andrew Dicks, Fuel cen systems explained, whey publications,	2005.	" W/:1	ov1	licati	one
3	2012.	a, Leizhang and Auenang sun, Electrochennical technologies for energy storage		, will			ons,
4	A.G.Ter (IET) Pu	-Gazarian, "Energy Storage for Power Systems", Second Edition, The Institut blication, UK, (ISBN – 978-1-84919-219-4), 2011.	tion of Enginee	ering a	ind Te	echno	logy
5	Pistoia, Safety 2	Gianfranco, and Boryann Liaw. Behaviour of Lithium-Ion Batteries in Electric Vo nd Cost. Springer International Publishing AG, 2018	ehicles: Battery	Healt	h, Per	forma	nce,
6	Lithium	Ion Batteries Basics and Applications by Reiner Korthauer. Springer.					
~							
<i></i>				- ~ ~		_	

COs/POs&PSO s	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	3	3	3	2	-	-	-	-	-	3	-	3	3	3	3
CO 2	3	3	3	2	3	-	-	-	-	3	-	3	3	3	3
CO 3	3	3	3	2	3	-	-	-	-	3	-	3	3	3	3
CO 4	3	3	3	2	3	-	-	-	-	3	-	3	3	3	3

CO 5		3	3	3	2	-	-	-	-	-	3	-	3	3		3		3
Avera	ge	3	3	3	2	3	-	-	-	-	3	-	3	3		3		3
	8-						l											
M	23D15					VI	LSI and	I FPGA	1				Cate	egory	L	Т	Р	С
														PE	3	0	0	3
Object	ives:																	
•	To introdu	ce the f	eatures	of prog	gramma	able log	ic devi	ces										
•	To learn th	e featu	res of v	arious	FPGAs	and FF	PAA											
•	To underst	and the	concep	ots of sy	ynchror	nous an	d async	hronou	s FSMs	5								
•	To provide	e the sys	stem de	sign ex	perienc	e with	FSMs u	ising Pl	LDs									
•	To introdu	ce puls	e mode	approa	ch to as	synchro	nous F	SM									-	
UNIT-	I PR	OGRA	MMA	BLE L	OGIC	DEVIC	CES										9	
Logic i	mplementat	tion opt	tions - 1	Fechnol	logy tre	nds - D	esign v	vith Fie	ld Prog	ramma	ble devi	ces - RO	M, PLA	, PAL -	CPLI) - J	XC9:	500
family	- Erasable I	Program	nmable	Logic I	Devices	s - MA2	x5000,	MAX'/	000 far	nilies.								
UNIT	- II FP	GA AN	ND FPA					C C D	11(D		11 55		1	MOO	000	NO	9	
Program	mming leci	nnology	y, Logic	d EDC	s, routir	ig archi	tecture	S OI SK	AM-Pr	ogramr	hable FF	GA Arc	nitecture	es - XC2	000, iootii	XC.	3000	,
AC400	t EDGA Toc	se Prog	rannee rios El	и гро <i>г</i> 24 л	45 - KO	uung A	renneed	ure or	the Act	el FPG.	AS - PTO	ASIC pi	us - Des	ign Appi	icatio	JIIS ·	-	
archite	cture and its	reconf	figurati	n AA														
LINIT.		NCHR	ONOL	IS FSM	IDESI	GN											9	
Choice	vice of Components to be Considered - Architecture Centered around Nonregistered PLDs - State Machine Designs - Centered																	
around	a Shift Reg	ister, C	Centered	aroun	d a Para	allel Lo	adable	Up/Dov	wn Cou	inter - C	One hot o	lesign m	ethod -	Use of A	lgori	thm	ic St	ate
Machin	ne, Applicat	ion of o	one hot	design	to seria	al 2's co	mplem	enter, p	arallel	to seria	l adder/s	subtracto	or contro	ller- Sys	tem-l	evel	des	ign:
control	ler, data pat	h, and	function	nal part	ition.			1										U
UNIT-	IV AS	YNCH	RONO	US ST	ATE N	AACH	INE DE	ESIGN									9	
Feature	es and need	for Asy	nchron	ous FS	Ms - Li	umped	path de	lay mo	dels for	asynch	ronous	FSMs - I	Excitatio	n table,	state	diag	grams	s,
K-map	s, and state	tables -	Design	n of the	basic c	ells by	using t	he LPD) model	- desig	n examp	oles - Ha	zards in	Asynchi	onou	s FS	SMs	-
One-ho	ot design of	asynch	ronous	state m	achines	s - Desi	gn of fu	indame	ntal mo	ode FSN	As by us	ing PLD)s.					
UNIT-	V PU	LSE M	IODE A	APPR(DACH	TO AS	YNCH	RONC	DUS FS	M DES	SIGN	<u> </u>					9	
Pulse N	Mode Mode	ls and S	System	Require	ements	- Choic	e of M	emory I	Elemen	ts - Oth	er Chara	acteristic	s of Pul	se Mode	FSM	ls - 1	Desig	gn
Examp	les - Analys	sis of P	ulse Mo	bde FSI	Ms - Or	ne-Hot I	Progran	nmable	Asyncl	hronous	s Sequen	icers.				1	47	
C	0.4	0	1.4	6		1 4	.11.1	11.4				Total C	ontact I	lours		:	45	
Course	e Outcomes	s: On co	ompleti	on of c	ourse si	udents	will be	able to)									
CO 1	Implement	the dig	gital des	signs w	ith prog	gramma	ble log	ic devic	ces									
	Analyze th	e archi		ieature	· ·	GA and	u FPAA	<u> </u>		FOM								
CO 3	Make the s	system	level de	signs u	ising sy	nchron	ous and	asynch	nronous	s FSMs								
CO 4	Design the	fundar	nental i	node F	SMs us	ing PL	Ds											
CO 5	Apply puls	se mode	e approa	ach to F	SM De	esign												
Text B	ooks:						11.0					<i>a</i> :			· •		201	
1	Stephen M	. Trimt	berger, l	Edr.,"F	ield Pro	ogramm	hable G	ate Arra	ay Tech	inology	",Spring	ger Scien	ice Busii	ness med	lia, L	LC,	2012	2.
2 D.f	Richard F.	Tinder	, "Engi	neering	; Digita	I Desig	n, Revi	sed Sec	cond Ed	lition",	Academ	ic Press,	,2000.					
Kefere	nce Books	/ web	unks:	11:	C 1	: - h (1	J., 1	V:. 1	7: 600	CA 1								
1	Koger Woo	Jas, Joh	In McA	unster,		Jgnt bo	ody and	r_{10}	(1, "FP(JA-bas	ea imple	ementatio	on of Sig	gnai Proc	essir	ıg		
2	John W. Ol	A JONN	Diaham	$\frac{100}{100}$	ns, Lta.	., rudii(auon, a	$\frac{2017}{1000}$			onfigure	L1. 1:						
2	John V. Ol	uneia.			п. гте	iu rtog	rammat	THE CTATE	A 4440	a 1.a -		FR 1/2 1	ton more	d mentet	uni		-	
	implement	ation	f digital	Levetan	ne" Ich	n Wila	v & So	ne Dan	e Array	s - Rec	onngura	ble logic	c for rapi	d protot	yping	; and	1	
3	implement	ation of	f digital	l systen	ns", Joh	in Wile	y & Son	ns, Rep	e Array orint, 20	s - Rec 08	Array" 1	Prentice	Hall 10	d protot	yping	; and	1	
3	implement P. K.Chan Thomas I	ation of & S. M	f digital lourad, "Electric	l systen "Digita	ns", Joh al Desig	n Wile gn Usin	y & Son g Field	ns, Rep Progra	e Array orint, 20 mmable td 8th	s - Rec 08 e Gate A	Array", I	Prentice	e for rapi Hall, 19	d protot 94	yping	g and	1	

COs/POs&PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1		3	2						2	3	2	
CO2	3	3	1		3							3	3	3	2
CO3	3	3	3		3							3	3	3	3
CO4	3	2	3		3							3	3	3	3
CO5	3	3	3		3							3	3	3	3
Average	3	2.6	2.2		3.0	2.0						2.8	3	2.8	2.8

VERTICAL E – ROBOTICS AND AUTOMATION

RO2	3C14	COLLABORATIVE ROBOTICS	PE	L	Т	Р	С			
1101				3	0	0	3			
Obj	ectives:		•							
•	To know the	e fundamentals of Collaborative Robotics								
•	To introduce Swarm robot and trajectory planning for Swarm									
•	To introduc	e Modular Robotics and its Mechanics								
•	To learn abo	out various Natural models of robot collaboration								
•	To introduc	e the concept of Reconfigurable robot								

UNIT-I INTRODUCTION TO COBOTICS

Collaborative Robotics- Properties - Introduction to Modern Mobile Robots: Swarm Robots, Cooperative and Collaborative Robots, Mobile Robot Manipulators-Current Challenges.

9 UNIT-II SWARM ROBOTICS Introduction, mapping, kinematics and trajectory error compensation, state transitions, collective decision making and methodologies, swarm robot scenarios-aggregation, clustering dispersion, pattern formation, sorting, flocking and collective motion, shepherding, heterogeneous swarms, Error Detection and Security.

UNIT-III MODULAR ROBOTICS 9 Module Designs - Modular Robot Representation - Modular Serial Robot Kinematics - Kinematic Calibration for Modular Serial Robots - Modular Serial Robot Dynamics - Modular Parallel Robot Kinematics.

NATURALLY INSPIRED COLLABORATION UNIT-IV

Collective Decision-Making. Group Decision Making in Animals, Collective Motion as Decision Process, Models for Collective Decision-Making Processes, Urn Models, Voter Model, Majority Rule, Hegselmann and Krause, Kuramoto Model, Axelrod Model, Ising Model, Fiber Bundle Model, Sznajd Model, Bass Diffusion Model, Sociophysics and Contrarians. 9

RECONFIGURABLE ROBOTS UNIT-V

V-Shaped Formation Control for Robotic Swarms Constrained by Field of View - formation of Reconfigurable virtual linkage - Reconfigurable Formation Control of Multi-Agents - Self-Assembly Modular Robot Platform Based on Sambot - Swarm Dynamics Emerging from Asymmetry.

- **Total Contact Hours**
- : 45

9

9

Cours	e Outcomes:
On con	mpletion of the course students will be able to
CO1	Recognize the fundamentals of Collaborative Robotics
CO2	Apply Swarm robot technology in real time applications
CO3	Analyze and select the suitable concept of Modular Robotics and its Mechanics formodelling a collaborative robot
CO4	Create various Natural models for robot collaboration
CO5	Develop collaborative robots for various requirement in industrial tasks.

Tex	t Books:
1	Guilin Yang, I-Ming Chen, Modular Robots: Theory and Practice, Springer, 2022.
2	Bruno Siciliano and Oussama Khatib, Handbook of Robotics, 2nd Edition, Springer, 2016.

Refe	erence Books / Web links:
1	Dmitry Tsetserukou, Toshio Fukuda, Collaborative and Modular Robotics, Springer, 2019.
2	Choset H., Lynch K., Hutchinson S., Principles of Robot Motion: Theory, Algorithms, and
	Implementation, MIT Press, 2005.
3	S. Kernbach, Handbook of Collective Robotics: Fundamentals and Challenges, CRC Press, 2011.
4	Gerhard Neumann, Katja Mombaur, Modular Robotics: Mechanics and Control, Springer, 2019.
5	Marco Dorigo, Mauro Birattari, Swarm Robotics: State-of-the-Art Survey, Springer, 2013.

CO/PO-PSO															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
RO23C14.1	3	2	2	-	2	-	-	-	1	2	-	2	2	1	-
RO23C14.2	3	3	3	2	3	-	-	-	2	2	-	2	3	3	2
RO23C14.3	3	3	3	3	3	2	-	-	2	3	-	3	3	3	3
RO23C14.4	3	3	3	3	3	2	-	-	2	3	-	3	3	3	3
RO23C14.5	3	3	3	3	3	2	-	-	3	3	2	2	3	3	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

ME23	ME23C11 DRONE TECHNOLOGIES Category L T P													P C		
												PE		3	0	0 3
Object	tives:	•										•				
•	To learn	and unde	rstand th	e fundar	nents of	design,	fabricati	on and p	rogramr	ning of c	lrone					
•	To learn	and unde	rstand th	e fundar	nents of	design,	fabricati	on and p	rogram	ning of c	lrone					
•	To impa	rt the kno	wledge o	on flving	and ope	ration of	f drone		0	0						
•	To know	about the	e Drone	Design N	Aechanis	m For V	arious a	pplicatio	ons							
•	To unde	rstand the	safety ri	sks and	guidelin	es of fly	safely	TT								
-	Italia	NTROD	UCTION	N TO DI	RONE 1	ECHN	OLOGY	7								9
History	v of Dron	e - Drone	Concept	- Vocah	ulary Te	rminolo	gy- Clas	sificatio	ns of the	UAV -	UAV Ma	terials.	Launchi	ng sy	vster	
attachr	nent of U	AV. Dron	e techno	logy im	pact on t	he busin	esses- D	rone bus	iness th	rough en	trepreneu	rship-	Luunem	ng 5j	5001	,
Opport	unities/ar	nlication	s for entr	enreneu	rshin and	l employ	ability			ougn en	aopionee	nomp				
UNIT.	II I	RONE I	DESIGN	FARR)N AND	PROG	RAMM	ING							9
Compo	nents of	$I \Delta V = R$	attery of	$\frac{1}{1}$	Function	of the c	omnonei	nt narts -	Aerody	mamic fo	rces Vis	cosity	Stall sne	ed		-
Compr	essihility	Farth's a	utter y Or	re - Asse	mbling	drone-	Pavload	- The er	ergy so	urces- Le	evel of au	tonomy,	Juli spe	s con	fior	irations
- Dron	- Drone Programming and Simulation – Multi rotor stabilization.															
UNIT.	UNIT-III DRONE FLYING AND OPERATION 9															9
Flight modes- Flight control system Drone Controls Flight operations Management tool - Operate a small drone in a controlled													ollad			
anviro	light modes- Flight control system Drone Controls Flight operations Management tool - Operate a small drone in a controlled													orage		
corposit	ironment – Sensors- Lidar, sonar, IMU, Optical flow and other sensors – Auto pilot -Sense and avoid technique Onboard storage															
Eirst n	vacity - Removable storage devices Linked mobile devices and applications – Radio Communication – Ground control system –													- 111		
TINT	st person view – Data Fusion.													0		
Cituati		DESIGN	UF DRU	INE MI					IAL AP	PLICA	110NS	Composi	n Cha		d	9
based	onal awar	liestion	Dronos i	ration –	Decision	i making	g – anary	deliveri		monoolo	eather ini	ormatic	Dronos i	osing	, a u	Iture
Dased (on the app	- Due	Drones 1	n the ins	Durance s	ector- D	rones in	denvern	ng man,	parcels a	and other	cargo-	Drones 1	n agi	1CUI	ture-
Drones	s in delen	se – Dron	es in Hea	uthcare ·	- Drones	in inspe	ction of	transmis	ssion lin	es and po	ower dist	noution	-Drones	5 IN II	Imn	ng and
panora	mic pictu	ring	DRONU		C + EE	X 7										0
UNIT-		UTURE	DRONI	<u>LS AND</u>	SAFEI	<u>Y</u>		0 . 1 1.		6.1	<u>a</u> .c		1			9
Drones	s - Safety	risks- Ma	intenanc	e -Risk a	inalysis a	and prev	ention	Guidelir	ies to fly	safely -	Specific	aviation	i regulati	ion a	nd	
standa	rdization ·	Drone I	cense- M	iniaturiz	ation of	drones-	Increasi	ng auton	lomy of	drones -	The use of	f drone	s in swai	rms.	<u> </u>	
~											Fotal Co	ntact H	ours			45
Cours	e Outcon	es: At th	e end of	the cou	rse the s	tudents	would b	be able t	0							
CO1	Know at	out a var	ious type	of dron	e techno	logy										
CO2	Drone fa	brication	and prog	grammin	g and ex	ecute the	e suitabl	e operati	ng proc	edures fo	or function	ning a c	Irone			
CO3	Select ap	propriate	sensors	and actu	ators for	Drones										
CO4	Develop	a drone r	nechanis	m for sp	ecific ap	plication	ıs									
CO5	Create th	ne prograi	ns for va	rious dro	ones											
Text B	looks:															
1	Daniel T	al and Jo	hn Altscl	nuld, —l	Drone Te	echnolog	gy in Arc	hitecture	e, Engin	eering ar	nd Constr	ucti A S	Strategic	Guio	le to)
	Unmann	ed Aerial	Vehicle	Operatio	on and Ir	nplemen	itation], 2	2021 Joł	nn Wile	Sons, Inc	с.					
2	Terry Ki	lby and E	Belinda K	ilby, —	Make: G	etting St	tarted wi	th Drone	es —, M	aker Me	dia, Inc, 2	2016.				
Refere	nce Bool	s(s) / We	b links:													
1	John Ba	chtal, —l	Building	Your Ov	vn Dron	es: A Be	ginners'	Guide to	Drones	s, UAVs	, and RO	Vs∥, Puł	olishing,	2016	5	
2	Ales Zav	rsnik, —	Drones a	nd Unm	anned A	erial Sys	stems: L	egal and	Social I	mplicati	ons for S	ecu and				
	Surveilla	ncel, Spr	inger, 20	18.		•		0								
		/ 1	<u> </u>													
CO/PO) PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC)2	PSO3
CO1	1	2	2	1	3	2	-	-	-	-	-	1	2	1		3
CO2	1	2	2	1	3	2	-	-	-	-	_	1	2	1		3
CO3	1	2	2	1	3	2	_	_	_	-	_	1	2	1	\neg	3
CO4	1	2	2	1	3	2	_	_	_			1	2	1		3
C05	1	2	2	1	3	2				-		1	2	1	\neg	3
Immaa	1 4 1	2	2	1	2	2	-	-	-	+-	-	1	2	1	\dashv	2
	L L	4	4	1	5	4	-		-		-	1	4	1		5

MT	23E11	MEDICAL ROBOTICS	PE	L	Т	Р	С								
Obje	ectives:														
	Identify and describe different types of medical robots and their potential applications.														
	Know basic concepts in kinematics, Dynamics, and control relevant to Medical Robotics.														
	Develop the Analytical and Experimental skills necessary to Design and Implement robotic assistance for both minimally														
	invasive sur	gery and Image guided interventions													
	Be familiar	with the state of the art in applied medical robotics and medical robotics research													
	Understand	the various roles that robotics can play in healthcare.													

UNIT-I	INTRODUCTION		9
Types of med	ical robots - Navigation - Motion Replication - Imaging - Rehabilitation and	Prosthetics – State	
of art of robot	ics in the field of healthcare-DICOM		
UNIT-II	LOCALIZATION AND TRACKING		9
Position sense	ors requirements - Tracking - Mechanical linkages - Optical - Sound based -	Electromagnetic -	
Impedance-ba	sed - In-bore MRI tracking-Video matching - Fiber optic tracking systems -	Hybrid systems.	
UNIT-III	DESIGN OF MEDICAL ROBOTS		9
Characterizati	on of gestures to the design of robots - Design methodologies - Technologica	al choices -	
Security			
UNIT-IV	SURGICAL ROBOTICS		9
Minimally inv	vasive surgery and robotic integration -surgical robotic sub systems - synergis	stic control -	
Control Mode	es - Radiosurgery - Orthopedic Surgery - Urologic Surgery and Robotic Imag	ing -Cardiac Surgery – Neurosurg	ery -
case studies			
UNIT-V	ROBOTS I REHABILITATION AND MEDICAL CARE		9
Rehabilitation	for Limbs - Brain-Machine Interfaces - Steerable Needles - Assistive robots	- Robotsin	
Physiotherapy	<i>v</i> - case studies.		
		Total Contact Hours :	45

Cours	e Outcomes:
On con	mpletion of the course students will be able to
CO 1	Identify various medical robots and their potential applications.
CO 2	Recognize the position tracking and hybrid systems
CO 3	Apply Robotics and its concepts in medical field
CO 4	Simulate a MIS procedure and be aware of the state of art in surgical and oncology robotics
CO 5	Design a medical robotic system given the specific requirements for Rehabilitation and Medical care

Text	t Books:
1	Achim Ernst Floris Schweikard, Medical Robotics, Springer, 2016.
2	Paula Gomes, Medical robotics Minimally invasive surgery, Woodhead, 2013.
Refe	erence Books / Web links:
1	Jaydev P Desai, Rajni V Patel, Antoine Ferreira; Sunil Kumar Agrawal, The Encyclopedia of Medical Robotics, World
	Scientific Publishing Co. Pvt. Ltd, 2019
2	Jocelyne Troccaz, Medical Robotics, John Wiley & Sons Incorporated, 2013.
3	Vanja Bonzovic, Medical Robotics, I-tech Education publishing, Austria, 2008.
4	Farid Gharagozloo Robotic Surgery, Springer, 2022

CO/PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
RO23C18.1	3	2	2	-	2	-	-	-	1	2	-	2	2	1	-
RO23C18.2	3	3	3	2	3	-	-	-	2	2	-	2	3	3	2
RO23C18.3	3	3	3	3	3	2	-	-	2	3	-	3	3	3	3
RO23C18.4	3	3	3	3	3	2	-	-	2	3	-	3	3	3	3
RO23C18.5	3	3	3	3	3	2	-	-	3	3	2	2	3	3	3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

MT23E12	MECHATRONICS SYSTEM DESIGN	PE	L	Т	Р	С
			3	0	0	3

Obj	ectives:				
•	• To understand the principles and interdisciplinary nature of Mechatronic systems, integrating mechanical, electrical, and				
	computa	tional elements			
•	To learn	systematic approaches for modeling, simulation, and analysis of dynamic systems in Mechatronics.			
•	To gain	knowledge of sensors, actuators, and control strategies for designing efficient Mechatronic systems.			
•	To explo	pre embedded systems, communication protocols, and their integration into Mechatronic applications.			
•	To deve	lop the ability to design, optimize, and evaluate innovative Mechatronic systems for industrial and research			
	applicati	ions.			
T T B T B	TT T		<u>^</u>		
UN	11-1	Fundamentals of Mechatronic Systems	9		
UN Defi	inition, Sc	prope, and Evolution of Mechatronics - Components of Mechatronic Systems: Mechanical, Electrical, Control, and	9 d		
UN Defi Soft	inition, Sc ware Inte	Pundamentals of Mechatronic Systems pope, and Evolution of Mechatronics - Components of Mechatronic Systems: Mechanical, Electrical, Control, and gration - Modeling and Simulation of Mechatronic Systems - Systematic Design Approach:	9 d		
UNI Defi Soft V-M	inition, Sc tware Inte Model and	Pundamentals of Mechatronic Systems sope, and Evolution of Mechatronics - Components of Mechatronic Systems: Mechanical, Electrical, Control, and gration - Modeling and Simulation of Mechatronic Systems - Systematic Design Approach: its Applications - Case Studies: Examples of Mechatronic Systems in Automotive and Consumer Electronics	9 d		
UNI Defi Soft V-M	inition, Sc tware Inte Model and IT-II	Fundamentals of Mechatronic Systems cope, and Evolution of Mechatronics - Components of Mechatronic Systems: Mechanical, Electrical, Control, and gration - Modeling and Simulation of Mechatronic Systems - Systematic Design Approach: its Applications - Case Studies: Examples of Mechatronic Systems in Automotive and Consumer Electronics Mechatronic System Modeling and Analysis	9 d 9		
UNI Defi Soft V-M UNI Phys	inition, Sc tware Inte Aodel and IT-II sical Mod	Fundamentals of Mechatronic Systems sope, and Evolution of Mechatronics - Components of Mechatronic Systems: Mechanical, Electrical, Control, and gration - Modeling and Simulation of Mechatronic Systems - Systematic Design Approach: its Applications - Case Studies: Examples of Mechatronic Systems in Automotive and Consumer Electronics Mechatronic System Modeling and Analysis eling: Mechanical, Electrical, and Thermal Systems - System Dynamics and Differential Equations	9 d 9		
UNI Defi Soft V-M UNI Phys Bon	inition, Sc tware Integ Aodel and IT-II sical Mod d Graphs	Fundamentals of Mechatronic Systems sope, and Evolution of Mechatronics - Components of Mechatronic Systems: Mechanical, Electrical, Control, and gration - Modeling and Simulation of Mechatronic Systems - Systematic Design Approach: its Applications - Case Studies: Examples of Mechatronic Systems in Automotive and Consumer Electronics Mechatronic System Modeling and Analysis eling: Mechanical, Electrical, and Thermal Systems - System Dynamics and Differential Equations and State-Space Representation - Linearization of Nonlinear Systems - Tools for Mechatronic System Modeling	9 d 9 (e.g.,		

UNIT-III Sensors and Actuators in Mechatronics	9				
Overview of Mechatronic Sensors: Position, Velocity, Force, Pressure, and Temperature Sensors - Sensor Signal Conditioning and					
Interfacing Techniques - Actuators: DC Motors, Stepper Motors, Servo Motors, Hydraulic and					
Pneumatic Actuators - Actuator Selection and Sizing Criteria - Mechatronic Systems Control: PID Controllers and Feedback (Control				
Design - Case Study: Sensor and Actuator Integration in Robotics					
UNIT-IV Embedded Systems in Mechatronics	9				
Embedded Systems: Microcontrollers and DSPs in Mechatronics - Communication Protocols: CAN, LIN, and I2C Rea	l- Time				
Operating Systems (RTOS) in Mechatronics - Integration of Embedded Systems with Sensors and Actuators - System-on-Chi	p (SoC)				
for Mechatronics Applications - Hands-on Example: Embedded Control of a DC Motor.					
UNIT-V Design and Optimization of Mechatronic Systems	9				
Concurrent Engineering and Design Optimization - Reliability and Fault Diagnosis in Mechatronic Systems Virtual Prototypin	ng and				
Digital Twins - Application of Artificial Intelligence in Mechatronics Design - Case Study: Design of					
a Mechatronic System (e.g., Automated Guided Vehicle) - Future Trends and Emerging Applications in Mechatronics					
Total Contact Hours :	45				

Course Outcomes:

On completion of course students will be able to

• Demonstrate a thorough understanding of Mechatronic system fundamentals and interdisciplinary integration.

• Apply modeling and simulation techniques to analyze the dynamics and performance of complex systems.

• Select and integrate suitable sensors and actuators for effective Mechatronic system functionality.

• Implement embedded systems and communication protocols for real-time Mechatronic applications.

• Design and optimize reliable and innovative Mechatronic systems for industrial and research applications.

Text Books:

1 Klaus Janschek, Mechatronic Systems Design: Methods, Models, Concepts, Springer, 2012.

2 W. Bolton, Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, Pearson, 2018.

Reference Books / Web links:

1 Robert H. Bishop (Ed.), The Mechatronics Handbook, CRC Press, 2018.

David G. Alciatore and Michael B. Histand, Introduction to Mechatronics and Measurement Systems, McGraw Hill, 2020.
 Davida Shatta and Pickard A. Kalk. Masketangia System Design Concerns Logming, 2017.

3 Devdas Shetty and Richard A. Kolk, Mechatronics System Design, Cengage Learning, 2017.

PQ/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
co													PSO1	PSO2	PSO3
CO 1 🔨	3	2	1	1	-	-	-	-	1	1	-	-	2	-	-
CO 2	3	2	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 3	3	2	1	-	-	-	-	-	-	1	-	-	-	-	-
CO 4	3	2	1	1	1	-	-	-	1	1	-	-	2	1	1
CO 5	3	2	1	1	2	-	-	-	1	1	1	-	2	1	1
Average	3	2	1	1	1.5	-	-	-	1	1	1	-	2	1	1

MT23E14	WIRELESS NETWORKS FOR INDUSTRIAL AUTOMATION	PE	L	Т	Р	С
			3	0	0	3

Objectives:							
•	To understand the technologies used in wireless networks						
•	To study	the standards of wireless networks					
•	To under	rstand the application of wireless networks in Automation					
•	To study	the usage of radio waves in wireless communication					
•	To study	the hacking methods of Industrial Networks					
UN	IT-I	Wireless Network Technology		9			
Star	ndards – Pi	roprietary or Non-Standard Wireless Networks – Wireless Versus Wired Net	works – Antenna Technology – W	ireless			
Net	work topo	logies					
UN	IT-II	Wireless Network Standards		9			
Wir	eless Loca	l Area Networks - Wireless Personal Area Networks - WMAN, WiMAX -	Wireless Telephony – Convergence	e of			
Voi	ce and Dat	ta Networks					
UN	IT-III	Application of Wireless Networks for Industrial Automation		9			
Indu	ustrial Aut	omation Requirements - Politics of Wireless - WiFi - Bluetooth - Zigbee -	Wireless HART – 4G for Automa	ion			
UN	IT-IV	Radio Frequency Tagging		9			
Тур	es of Tags	- Tag Encoding - Alternative RFID Standards- RF Database Tag - RF Tag	Recommendations				
UN	IT-V	Hacking Industrial Network		9			
Cyb	Cyber Security and Safety - Common Industrial Targets - Common Attack Methods - Weaponized Industrial Cyber						
Thr	Threats – Attack Trends – Dealing with Infection						
			Total Contact Hours :	45			

Cou	Course Outcomes:				
On	On completion of course students will be able to				
•	Explain the standards of the Wireless Networks				
•	Predict the technologies used for Wireless Networks				
•	Select suitable wireless network for Industrial Automation				
•	Predict the working of Radio waves in Industrial Networks				

• Identify the different types of hacking in Wireless Networks

Text Books:

1	Dick Caro, "Wireless Networks for Industrial Automation", International Society of Automation, 2012
---	---

2 Eric D Knapp, Joel Thomas Langill "Industrial Network Security: Securing Critical Infrastructure Networks for Smart Grid, SCADA, and Other Industrial Control Systems", Syngress, 2010

Reference Books / Web links:

1 Sudip K. Mazumder, "Wireless Networking Based Control", Springer, 2012

2 Danny Briere, Pat Hurley, "Wireless Network Hacks and Mods" John Wiley & Sons, 2014

PQ/PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO 1 \	3	2	1	-	-	-	-	-	-		-	-	1	1	-
CO 2	3	2	1	-	-	-	-	-	-	-	-	-	1	1	-
CO 3	3	2	1	-	-	-	-	-	-	-	-	-	1	1	-
CO 4	3	2	1	-	-	-	-	-	-	-	-	-	1	1	-
CO 5	3	2	1	-	-	-	-	-	-	-	-	-	1	1	-
Average	3	2	1	-	-	-	-	-	-	-	-	-	1	1	-

MT23E16	CNC TECHNOLOGY	PE	L	Т	P	С
			3	0	0	3

Objectives: The course shall:

• To introduce students to the fundamental concepts of CNC (Computer Numerical Control) machines and their evolution.

To provide knowledge on the construction, working, and types of CNC machines.

• To teach CNC programming for machine tool operations.

• To explore applications of CNC machines in manufacturing and industry.

• To introduce the latest advancements in CNC technologies and their integration with Mechatronics systems.

UNIT-I INTRODUCTION TO CNC MACHINES

Evolution of CNC machines – Conventional vs. CNC systems – Basics of Numerical Control (NC) and Computer Numerical Control (CNC) – Advantages, disadvantages, and challenges of CNC systems – Structure and working principles of CNC machines – Coordinate systems: Cartesian and polar motion control –Types of CNC machines: Lathe,

0

0

9

9

milling, turning, grinding, and drilling – Case study on CNC adoption in industries UNIT-II CONSTRUCTION AND WORKING OF CNC MACHINES

Structural elements of CNC machines: Base, column, spindle, and tool turret – Open-loop and closed-loop CNC control systems – CNC drive mechanisms: Servo motors, stepper motors, and hydraulic drives – Feedback mechanisms: Linear and rotary encoders – Auxiliary components: Tool changers, tool magazines, and Automatic Tool Changers (ATC) – Coolant systems and chip management in CNC operations – Overview of machine tool types used

in CNC systems. UNIT-III CNC PROGRAMMING

Introduction to CNC programming – G-codes and M-codes: Functions and applications – Types of CNC programming: Manual (G-code) and CAM-based programming – Tool paths and cutting strategies: Facing, turning, drilling, milling, and contouring – Interpolation methods: Linear, circular, and helical – Practical examples of CNC program development for lathes and milling machines – Simulation and verification of CNC programs using software

tools - Troubleshooting and debugging of CNC programs.

UNIT-IV APPLICATIONS OF CNC MACHINES

Industrial applications: Automotive, aerospace, electronics, and medical sectors – CNC machining centers and Flexible Manufacturing Systems (FMS) – Multi-axis CNC machines: 3-axis, 4-axis, and 5-axis systems – CNC- integrated robotic systems for automation – Case studies on successful CNC implementations in industries – Cost-

benefit analysis of CNC machine adoption - Predictive and preventive maintenance strategies for CNC machines.

UNIT-V LATEST DEVELOPMENTS IN CNC TECHNOLOGIES

CNC integration with Industry 4.0 and IoT-enabled systems – Smart CNC systems: AI and machine learning applications – Adaptive control systems for real-time optimization – Hybrid machining processes: Laser-assisted and ultrasonic machining – CNC and additive manufacturing (3D printing) integration – Cloud-based CNC programming and data management – Virtual commissioning and simulation techniques for CNC systems – Future trends: CNC and

Mechatronics integration in manufacturing	
	: 45
Course Outcomes: After the successful completion of the course, the student will be able	to:

Course	Outcomes. Then the successful completion of the course, the student will be able to.
CO1	Comprehend the fundamentals of CNC machines, including their benefits and challenges.
CO2	Analyze and explain the construction, working, and classification of CNC machines.
CO3	Develop CNC programs for various machining operations.
CO4	Assess and propose applications of CNC machines in modern manufacturing systems.
CO5	Demonstrate awareness of emerging trends in CNC technologies, including Industry 4.0 integration.

Textbook (s):1Michael Fitzpatrick , Machining and CNC Technology, 5th edition, McGraw Hill, 20242Peter Smid, CNC Programming Handbook, Industrial Press Inc.,U.S., 2003

Ref	erence Books(s) / Web links:
1	Alan Overby, CNC Machining Handbook: Building, Programming, and Implementation, McGraw-Hill, 2010
2	Hans Bernhard Kief and Helmut A. Roschiwal, The CNC Handbook: Digital Manufacturing and Automation from CNC to
	Industry 4.0, Industrial Press Inc, 2021
3	Khushdeep Goyal, CNC Machines and Automation, S.K. Kataria & Sons, 2014
4	Samer Najia, A Tinkerer's Guide to CNC Basics: Master the fundamentals of CNC machining, G-Code, 2D Laser machining
	and fabrication techniques, Packt Publishing, 2024

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	1	-	-	-	-	-	-	1	2	1
CO2	3	2	1	1	-	1	-	-	-	-	-	-	1	1	1
CO3	3	2	1	1	3	1	-	-	-	-	-	-	1	2	1
CO4	3	2	1	1	-	1	-	-	-	-	-	-	1	1	1
CO5	3	2	1	1	-	1	-	-	-	-	-	-	1	2	1
Avg	3	2	1	1	3	1	-	-	-	-	-	-	1	1.6	1

MT23E17	MT23E17 AUTOMOTIVE MECHATRONICS PE L T J											
			3	0	0 3							
												
Objectives: T	he course shall:											
To study	about the basic Architecture and different systems in Automotive system											
To observe the characteristics of the sensors used in Automotive Applications												
To study	about the working of different Control System in Automobiles											
To find the fault occurrences and safety measures in Automobiles												
To study	about Hybrid Vehicles											
UNIT-I	INTRODUCTION				9							
Vehicle System	m Architecture - Electronic Control Unit: Operation, Design, Control Unit Software M	otronic Engine M	lanag	geme	ent							
System – Elec	tronic Diesel Control.											
UNIT-II	SENSORS AND ACTUATORS IN AUTOMOTIVE SYSTEMS				9							
Measuring Va	riables - Crank Shaft Sensor - Air Flow Rate Sensor - Throttle Angle Sensor - Cooland	Sensor - Exhaus	st									
Gas Oxygen S	ensor – Knock Sensor – Flex Fuel Sensor – Automotive Engine Control Actuators – E	khaust Gas Recire	culat	ion								
Actuator – Ele	ectric Motor Actuators.											
UNIT-III	CONTROL AND COMMUNICATION SYSTEM				9							
Digital Engine	Control and Features - Control Modes for Fuel Control - Discrete Time Idle Speed Co	ntrol – EGR Con	trol -	- Ele	ectronic							
Ignition Contr	ol – Digital Cruise Control – Antilock Braking System – Digital Braking System – Elect	ronic Suspension	Con	trol	System							
- Overview of	automotive communication protocols, CAN, LIN, Flex Ray -											
TCP/IP for au	tomotive - 802.11x communication protocols.											
UNIT-IV	DIAGNOSTICS AND SAFETY IN AUTOMOTIVE SYSTEMS				9							
ISO 26262- Fi	Inctional safety standard - Electronic Engine Control Diagnostics – Service Bay Diagno	ostic Tool – Onbo	bard	Diag	nostics							
 Model Base 	d Sensor Failure Detection – Misfire Detection – Expert systems in Automotive Diag	gnostics – Airbag	g Saf	ety	 Blind 							
Spot Detection	n – Automatic Collision Avoidance System – Tire Pressure											
Monitoring Sy	stem – Enhanced Vehicle Stability - AUTOSAR- standardized automotive software de	sign.										
UNIT-V	HYBRID DRIVES AND E-VEHICLES				9							
Drive Concep	ts: Introduction to Electric Motors, Power Electronics, Electric Drives, and Motor C	ontrol- Operatin	g St	rateg	gies for							
Electric Hybri	d Vehicle – Recuperative Brake System – Electrical Energy Accumulators – Tesla Road	ster – Toyota Mir	ai - \	/olk	swagen							
Golf GTE - A	utomotive energy storage systems: Batteries, ultracapacitors, flywheels and											
hydraulic accu	imulators - System design, integration and energy management.											
	Total Co	ntact Hours		:	45							

Course	Course Outcomes: After the successful completion of the course, the student will be able to:									
CO1	Recognize the different system architecture of Automotive systems									
CO2	Compare the sensor characteristics and Determine its suitability in Real time Environment									
CO3	Determine the control system characteristics in Automotive Systems									
CO4	Analyze the Fault Occurrences and Recognize the safety measures in Automobiles									
CO5	Compare the system of the Hybrid Vehicles with other Vehicles									

Textbook (s):

1	Konrad Reif, "Automotive Mechatronics", Springer, 2016
---	--

Robert Bosch GmbH, "Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and 2

Hybrid Drive, Springer, 2016. Tom Denton, "Electric and Hybrid Vehicles", IMI, 2016. 3

Reference Books(s) / Web links:

Mandy Concepcion, Automotive Electronic Diagnostics, Automotive Diagnostics and Publishing, 2009.

2 William Ribbens, "Understanding Automotive Electronics: An Engineering Perspective" Elsevier, 2017.

AK Babu, "Automotive Electrical and Electronics", Khanna Book Publishing; 2nd edition (1 January 2017) 3

4 Ronald. K. Jurgon, "Automotive Electronics Handbook", McGraw-Hill, 1999.

Barry Hollembeak, "Automotive Electricity, Electronics & Computer Controls", Delmar Publishers, 2001. 5

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	-	2	-	-	-	-	-	-	2	3	-	3
CO2	3	2	2	2	3	3	2	-	-	-	-	3	2	2	2
CO3	3	1	1	2	-	1	-	-	-	-	-	1	-	3	2
CO4	3	3	3	3	3	3	3	-	-	-	-	2	2	3	2
CO5	3	-	2	-	-	-	-	-	-	-	-	2	2	2	1
Avg	3	2	2	2.3	2.6	2.3	2.5	-	-	-	-	2	2.2	2.5	2

VERTICAL F - DIVERSIFIED

CS23A31	BUSINESS ANALYTICS	Category	L	Т	Р	С								
		PE	2	0	2	3								
Objectives:														
 Underst 	and the Fundamentals of Business Analytics.													
 Develop 	Spreadsheet Proficiency for Analytics.													
Master Data Visualization Techniques.														
Learn Descriptive Statistical Analysis.														
 Explore 	• Explore Probability Distributions and Data Modeling.													
UNIT-I	Introduction to Business Analytics					6								
What Is Busines	s Analytics? Evolution of Business Analytics, Scope of Business Analytics,	Data for Busir	ness An	alytic	s, Mo	odels								
in Business Anal	ytics, Problem Solving with Analytics.													
UNIT-II	Analytics on Spreadsheets					6								
Basic Excel Ski	lls, Excel Functions, Using Excel Lookup Functions for Database Queries	s, Spreadsheet	Add-In	ns for	r Busi	iness								
Analytics.														
UNIT-III	Visualizing and Exploring Data					6								
Data Visualizatio	on, Creating Charts in Microsoft Excel, Other Excel Data Visualization Tools	s, Data Queries	: Table	s, Soi	rting,	and								
Filtering, Statisti	cal Methods for Summarizing Data, Exploring Data Using PivotTables.													
UNIT-IV	Descriptive Statistical Measures					6								
Populations and	Samples, Measures of Location, Measures of Dispersion, Measures of Shape	, Excel Descrip	ptive St	atistic	es Too	ols,								
Descriptive Stati	stics for Grouped Data, Descriptive Statistics for Categorical Data: The Prop	ortion, Statistic	cs in Pi	votTa	bles.									
Measures of Ass	ociation, Outliers, Statistical Thinking in Business Decisions													
UNIT-V	Probability Distributions and Data Modeling					6								
Basic Concepts of	of Probability, Random Variables and Probability Distributions, Continuous I	Probability Dis	tributio	ns, R	andor	n								
Sampling from F	robability Distributions, Data Modeling and Distribution Fitting.													
		Conta	act Hou	irs:		30								

Contact Hours: 30

	List of Experiments
1.	Excel essentials:
	Introduction to the Interface an Source Data
	Formatting
	Navigation Shortcuts
	Format Painter
	Insert Delete Rows and Columns
	Autofill Data
	Sorting
	Filtering
	Custom Lists
2	Excel Formulas
	Logical Formulas
	IF & IFS Formulas
	Statistical Formulas
	Lookup Formulas
	Index and Match
	Switch
	Text Formulas
	Date and Time Formulas
3	Excel Data Visualization
	Inserting a Chart in Excel
	Changing Elements in a Chart
	Select Data Method
	Format Chart Elements
	Line Chart, Area Chart, Pie Chart, Donut Chart, Histogram & Pareto Chart, Waterfall Chart, Heat Maps, Combo Chart,
	Sparkline
	Dynamic Charts
	Funnel Chart, Slope Chart, Dumbbell Chart
	Highlight Points in Time
	Highlight Min and Max
	Actual vs Target
4	Excel Pivot Table
	Introduction to the Source Data
	Inserting a Pivot Table
	Understanding the Field List
	Clear, Select and Move Functions

	Refreshing Pivot Table	
	Number Formatting in Pivot Table	
	Conditional Formatting in Pivot Table	
	Sorting in Pivot Table	
	Filtering in Pivot Table	
	Grouping in Pivot Table	
	Pivot Table Layouts	
	Table Styles and Other Important Options	
	Summarize Values By	
	Calculated Fields	
	Pivot Charts	
	Slicers	
5	Mini Project	
	Contact Hours:	30
	Total Contact Hours:	60

Cours	se Outcomes: On completion of the course, the students will be able to
•	Apply Business Analytics Techniques.
•	Utilize Advanced Excel Functions.
•	Create and Interpret Data Visualizations.
•	Perform Descriptive Statistical Analysis.
•	Model Business Scenarios Using Probability.

Te	xt Book(s):										
1	R. Evans James, Business Analytics, 2nd Edition, Pearson, 2017.										
2	R N Prasad, Seema Acharya, Fundamentals of Business Analytics, 2 nd Edition, Wiley, 2016.										
Re	Reference Book(s) / Web link(s):										
1	Philip Kotler and Kevin Keller, Marketing Management, 15 th edition, PHI, 2016.										
2	VSP Rao, Human Resource Management, 3 rd Edition, Excel Books, 2010.										
3	Mahadevan B, "Operations Management - Theory and Practice", 3rd Edition, Pearson Education, 2018.										

PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CS23A31.1	2	2	3	1	1	-	-	-	1	2	1	1	3	2	1
CS23A31.2	3	3	3	2	3	-	-	-	1	2	2	2	3	1	2
CS23A31.3	2	2	3	3	2	-	-	-	3	1	1	3	3	1	2
CS23A31.4	2	1	1	2	2	-	-	-	3	3	2	1	1	3	1
CS23A31.5	2	3	2	3	2	-	-	-	3	3	1	3	3	1	1
Average	2.2	2.2	2.4	2.2	2	-	-	-	2.2	2.2	1.4	2	2.8	1.6	1.4

CD23C22	DATA VISUALIZATION	Category	L	Т	Р	С
		PE	0	0	6	3

Obje	Objectives:							
•	To introduce students to Excel's basic and advanced data visualization techniques.							
•	To familiarize students with Tableau.							
•	To develop skills in using Power BI.							
•	To enable students to design comprehensive visual dashboards.							
•	To apply knowledge through a capstone project.							

	List of Experiments										
Excel for Data Visualization											
	Data Manipulation and Cleaning										
1	Using Functions and formulae for Data Cleaning.										
	Sorting, Filtering and Data Validation techniques.										
	Excel Charts and Tools										
2	• Getting started with charts (Bar, Line, Pie).										
	• Advanced charts (Histograms, Box plots, Area Chart, Bubble chart).										
	Excel Advanced Features										
3	• Using PivotTables for data analysis.										
	• Dynamic Dashboards with Slicers and Timeline.										
	Data Visualization with Tableau										

	Getting Started with Tableau										
4	• Connecting to data and basic visualizations.										
4	• Interactive Dashboards and Storytelling.										
	• Filters, Pages, Hierarchies, Sorting and Dates.										
	Advanced Data Manipulation Techniques										
	• Calculated fields and parameters.										
5	 Calculations and Expressions -Total and Aggregations, Automatic and Custom split. 										
	• Organizing Data and Visual Analytics – Reference lines and bands, Clusters, Forecasting, Trend lines,	Organizing Data and Visual Analytics – Reference lines and bands, Clusters, Forecasting, Trend lines,									
	Summary Card.										
Data Visualization with Power BI											
	Introduction to Power BI										
	• Getting started with Data importing and transforming with Power Query.										
6	• Report designing with basic visualizations and using the visualization pane.										
	• Measures, Filters.										
	• Features of Power BI- Drill through, Hierarchies.										
	Advanced Power BI										
7	• DAX.										
	• Creating complex reports and dashboards.	Creating complex reports and dashboards.									
8	Capstone Project - Students will select a real-world dataset and use any tools (Excel, Tableau, and Power BI) to create comprehensive dashboards.	to									
	Total Contact Hours										
	9	0									

Course	Course Outcomes: On completion of course, you will be able to									
CO1	Create basic and advanced visualizations in Excel for data analysis.									
CO2	Develop interactive dashboards and perform data manipulations in Tableau.									
CO3	Design reports and apply DAX for advanced reporting in Power BI.									
CO4	Integrate and organize data to create comprehensive dashboards using various visualization tools.									
CO5	Apply their learning to solve real-world data visualization problems using Excel, Tableau, and Power BI.									

Textb	ooks:
1	Kieran Healy, "Data Visualization: A Practical Introduction", Princeton University Press, 1st Edition, 2022.
2	Claus Wilke, "Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures", O'Reilly
	Media, 2 nd Edition, 2023.
3	Jon Schwabish, Better Data Visualizations: A Guide for Scholars, Researchers, and Wonks", Columbia University Press,
	1 st Edition, 2023.
4	Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare, "Fundamentals of Data Science", CRC Press, 2 nd , 2022.

Refere	Reference Books (s):								
1.	Excel Visualizations Power BI Documentation								
2.	https://learn.microsoft.com/en-us/training/browse/?products=power-bi https://www.tableau.com/learn/training								
3.	Online Course: Coursera — Data Visualization with Tableau Excel Visualizations								
4.	Power BI Documentation								

	PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CD23C22.1	3	2	2	1	2	-	-	-	-	-	-	-	3	2	1
ſ	CD23C22.2	3	3	2	2	3	1	-	-	-	-	-	-	3	3	2
ſ	CD23C22.3	3	2	3	2	3	-	1	-	-	-	-	-	3	3	2
	CD23C22.4	3	3	3	2	3	-	1	1	-	-	-	-	3	3	3
	CD23C22.5	3	3	3	3	3	2	2	1	1	1	2	1	3	3	3
	Average	3	2.6	2.6	2	2.8	1.5	2	0.5	1	1	2	1	3	3	2.2

MT23F11	ENTERPRISE RESOURCE PLANNING	PE	L	Т	Р	С
			3	0	0	3

Obj	jectives: The course shall:						
•	Introduce the fundamentals of ERP systems and their role in organizations.						
•	Provide an understanding of the implementation lifecycle of ERP solutions.						
•	Explore the integration of business processes through ERP systems.						
•	Analyze critical success factors for ERP implementation and management.						
•	Examine the role of emerging technologies such as cloud computing and AI in ERP systems.						
UN	IT-I INTRODUCTION TO ERP SYSTEMS 09						
Defi	inition and concept of ERP systems, Evolution of ERP from MRP and MRP II, Benefits and limitations of ERP, Components a	and					
arch	hitecture of ERP systems, ERP vendors and market trends, ERP modules overview – Finance, Manufacturing, HR, Supply Cha	.in,					
CRM	M, ERP for small and medium enterprises (SMEs).						
UN	IT-II ERP AND BUSINESS PROCESSES 09						
Inte	egration of business processes using ERP, Business process reengineering (BPR) for ERP adoption, Role of ERP in automating	;					
busi	iness processes, ERP workflow and process automation, Examples of ERP-enabled processes in finance, sales, procurement, and	nd					
	antony FDD analytics and decision making						

UNIT-III ERP IMPLEMENTATION LIFECYCLE

Phases of ERP implementation: Pre-implementation, Implementation, and Post-implementation. Steps in selecting an ERP package Requirements analysis and gap analysis, ERP customization and configuration, Data migration and integration challenges, Training and change management, Critical success factors for ERP implementation, ERP failure case studies and lessons learned. 09

ERP AND EMERGING TECHNOLOGIES UNIT-IV

Cloud-based ERP systems, Advantages and challenges of SaaS ERP, Role of IoT in ERP integration, AI and machine learning for ERP analytics, Blockchain for secure transactions in ERP systems, Mobile ERP applications, Big data and ERP integration for advanced insights, Case studies on technology-driven ERP transformations. 09

MANAGING ERP SYSTEMS UNIT-V

Post-implementation challenges and maintenance, ERP performance monitoring and optimization, Upgrading and scaling ERF systems, ERP security and data protection, Managing ERP systems in a multi-vendor environment, Cost-benefit analysis of ERP investments, Future trends in ERP systems, Case studies on ERP system management in enterprises. : 45

Total Contact Hours

09

Course	Course Outcomes: After the successful completion of the course, the student will be able to:								
CO1	Understand the fundamentals and architecture of ERP systems and their business applications.								
CO2	Analyze business processes and identify integration opportunities through ERP systems.								
CO3	Demonstrate knowledge of the ERP implementation lifecycle and associated challenges.								
CO4	Evaluate the role of emerging technologies in enhancing ERP functionalities.								
CO5	Develop strategies for managing, maintaining, and optimizing ERP systems in organizations.								

Textbook (s):

Leon, A., Enterprise Resource Planning, McGraw-Hill Education, 2019. 1

2 Monk, E., & Wagner, B., Concepts in Enterprise Resource Planning, Cengage Learning, 2013.

Reference Books(s) / Web links:

Sumner, M., Enterprise Resource Planning, Pearson Education, 2014.

Bradford, M., Modern ERP: Select, Implement, and Use Today's Advanced Business Systems, Lulu.com, 2020. 2

3 Dumas, M., et al., Fundamentals of Business Process Management, Springer, 2018.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	2	-	-	-	-	-	-	2	2	2	2
CO2	3	3	2	3	3	-	-	-	-	-	2	3	3	3	3
CO3	3	3	-	2	3	-	-	-	-	-	2	3	2	3	2
CO4	3	2	2	3	3	2	-	-	-	-	-	3	3	3	3
CO5	3	3	2	3	3	2	-	-	-	-	3	3	3	3	3
Avg	3.0	2.6	2.0	2.8	2.8	2.0	-	-	-	-	2.3	2.8	2.6	2.8	2.6

ME23F14	HYBRID AND ELECTRIC VEHICLES	Category	L	Т	Р	С
		PE	3	0	0	3

Ob	Objectives:						
•	To understand upcoming technology of electric and hybrid electric vehicles						
٠	Analyse different aspects of drive train topologies						
•	Learn different energy management strategies						
٠	To understand different communication systems used in electric and Hybrid electric vehicles						
•	Explain the concept of vehicle to grid configurations						
-							

UNIT – I INTRODUCTION OF HEV'S

Social and environmental importance of hybrid and electric vehicles, Impact of modern drivetrains on energy supplies, Basics of vehicle performance, vehicle power source characterization, Transmission characteristics, Mathematical models to describe vehicle performance 9

UNIT – II BASIC CONCEPT OF HYBRID TRACTION

Introduction to various hybrid drive-train topologies, Power flow control in hybrid drive-train topologies, Fuel efficiency analysis, braking fundamentals and regenerative braking in EVs

UNIT – III INTRODUCTION TO ELECTRIC COMPONENTS

Configuration and control of DC Motor drives, Configuration and control of Introduction Motor drives, configuration and control of Permanent Magnet Motor Drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

UNIT – IV | MATCHING THE ELECTRIC MACHINE AND THE INTERNAL COMBUSTION ENGINE (ICE)

Sizing the propulsion motor, sizing the power electronics Selecting the energy storage technology, Communications, supporting subsystems

UNIT – V INTRODUCTION TO ENERGY MANAGEMENT AND THEIR STRATEGIES

Classification of different energy management strategies Comparison of different energy management strategies Implementation issues of energy strategies. Plug-in electric vehicles, Vehicle to grid (V2G) and G2V fundamentals, battery thermal management for electric vehicle.

Total Contact Hours

45

9

9

0

0

Course	Outcomes:
CO1	Understand the Impact of conventional vehicles on the society and different types of drive train topologies.
CO2	Apply the load modelling based on the road profile and braking concepts.
CO3	Analyse the different types of motors used in electric and hybrid electric vehicles.
CO4	Analyse the different types of energy storage systems.
CO5	The concept vehicle to grid (V2G) and grid to vehicle (G2V).

Text Books:

Mehrdad Ehsani, Yimin Gao, Ali Emadi, --Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: 1.

Fundamentalsl, CRC Press, 2010.

- James Larminie, -Electric Vehicle Technology Explainedl, John Wiley & Sons, 2003
- 3. Iqbal Hussain, -Electric & Hybrid Vehicles - Design Fundamentals, Second Edition, CRC Press, 2011.

Reference Books:

Hybrid Vehicles and the future of personal transportation, Allen Fuhs, CRC Press, 2011. 1.

2. Xi Zhang, Chris Mi, Vehicle Power Management: Modeling, Control and Optimization, Springer London Ltd; 2011th edition, 2013.

С								POs							PSOs	
Os PO/PSO		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ME23F14.1		2	2	2	-	-	-	-	-	-	-	2	-	1	2	2
ME23F14.2		2	2	2	-	-	-	-	-	-	-	2	-	1	2	-
ME23F14.3		2	2	2	-	-	-	-	-	-	-	2	-	-	2	2
ME23F14.4		2	2	2	-	-	-	-	-	-	-	2	-	-	2	
ME23F14.5		2	2	2	-	-	-	-	-	-	-	2	-	-	2	2

MT23F12	SMART HOSPITALITY MANAGEMENT	PE	L	Т	Р	С
			3	0	0	3

Ohi		as The course shalls	
Obje	Late	s: The course shall:	
•	Der	source the integration of Mechatronics technologies in core hospitality management operations.	
•	De	erop an understanding of automation in food production and service processes.	
•	Dro	p students with the knowledge to utilize for, robotics, and Ar in the front office and housekeeping tasks.	
•	PI0	The insigns into predictive mandematicance and energy-enticent systems for sustainability in the hospitality industry.	
•	FOS	er skills to design and implement smart solutions for enhancing guest experience and operational	
TINIT	em	Incore in the second production in the second secon	00
UNI	1-1	SMART FOOD PRODUCTION	09 hatiaa
Intro	auc	on to automated food production systems, 101-enabled smart kitchen equipment, Mechatronics in food preparation: fo	botics
and a	auto	tacked cooking systems, Frinciples of automated menu planning, Sensor-based quanty control in 1000 production, Adv	anced
pack	agin	techniques with fooducs, Data-uriven inventory	
TINI		SMADT FOOD AND DEVEDACE SEDVICE	00
Auto	. I - I	d food delivery systems: robots and conveyor systems. Smart ordering systems (e.g., touch screen kiesks. Al no	09 worod
Auto	tont	a lood derivery systems, robots and conveyor systems, small ordering systems (e.g., touch-screen klosks, Al-po	tomor
inter	actio	, to re-character involves and supply chain systems, Automated beverage dispensing and preparation machines, cus	stomer
dem	and	a win service robots, in for predictive analytics in orecasting. Energy-efficient systems in food and beverage service. Role of Mechatronics in waste management	nt and
susta	ainal	lity practices.	it und
UNI	T-II	SMART FRONT OFFICE MANAGEMENT	09
Integ	grati	n of Mechatronics systems in smart front desks (e.g., self-check-in kiosks). Biometric and facial recognition systems for	r guest
iden	tifica	ion, IoT-enabled guest monitoring and feedback systems, Data management systems and CRM platforms in hospi	itality,
Robe	otics	in concierge services, Cybersecurity in automated guest handling, Revenue management using AI-based tools, Pred	dictive
mair	ntena	nce of front office	
syste	ems	sing IoT.	
UNI	T-I	SMART HOUSEKEEPING (09
Auto	omat	on in housekeeping operations: robotic cleaners and laundry systems, Sensor-based monitoring systems for	room
main	ntena	nce, IoT-enabled inventory control for housekeeping supplies, Energy-efficient lighting and HVAC systems controll	led by
smar	rt sei	sors, AI-driven scheduling for housekeeping tasks, Employee training for managing Mechatronics systems, Sustaina	ability
throu	ugh	mart water and energy	
mana	agen	ent.	
UNI	T-V	SMART MAINTENANCE IN THE HOTEL INDUSTRY	09
Intro	oduc	on to predictive and preventive maintenance using Mechatronics, IoT-based condition monitoring systems, Integrat	ion of
Buile	ding	Management Systems (BMS) in hotels, Smart HVAC and lighting systems for energy conservation, Mechatronics in	waste
mana	agen	ent: automated sorting and recycling systems, Al and	
sense	ors I	r fault detection and diagnostics, Compliance and safety management inrough automation, Future trends in smart mainte	enance
syste	ems.	Total Contact Hours	45
			45
Cou	rea	uteomes: After the successful completion of the course, the student will be able to:	
COI		Apply Mechatronics-based automation systems in food production and quality control	
$\frac{cor}{cor}$	2	Design and implement smart technologies for efficient food and beverage service	
<u>CO</u> ?	,	Integrate IoT and AI tools into front office operations for guest management.	
	, ,	с	
CO4	, 1	Utilize robotic and sensor-based systems to improve housekeeping operations.	
CO4 CO5	, 1 5	Utilize robotic and sensor-based systems to improve housekeeping operations. Develop and implement predictive maintenance strategies using Mechatronics systems.	
CO4 CO5	, 1 5	Utilize robotic and sensor-based systems to improve housekeeping operations. Develop and implement predictive maintenance strategies using Mechatronics systems.	
CO4 CO5	, 1 5 tboo	Utilize robotic and sensor-based systems to improve housekeeping operations. Develop and implement predictive maintenance strategies using Mechatronics systems.	

- 2 Kasavana, M. L., Managing Front Office Operations, AHLEI, 2012.
- **3** Raghubalan, G., Hotel Housekeeping: Operations and Management, Oxford University Press, 2011.

Reference Books(s) / Web links:

- 1 Groover, M. P., Automation, Production Systems, and Computer-Integrated Manufacturing, Pearson, 2015.
- 2 Jones, P., Handbook of Hospitality Operations and IT, Routledge, 2008.
- 3 Bahga, A., & Madisetti, V., Internet of Things: A Hands-On Approach, Universities Press, 2014.

4 Pethuru Raj, R., & Anupama, C. R., Internet of Things: Architectures, Protocols, and Standards, CRC Press, 2017.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	-	2	-	-	-	-	3	3	3	2
CO2	3	2	3	3	3	-	-	-	-	-	-	3	3	3	3
CO3	3	3	2	2	3	2	-	-	-	-	-	3	3	3	3
CO4	3	3	3	3	3	-	2	-	-	-	-	3	3	3	3

CO5	3	3	3	3	3	-	2	-	-	-	3	3	3	3	3
Avg	3.0	2.8	2.8	2.6	2.8	2.0	2.0	-	-	-	3.0	3.0	3.0	3.0	2.8

MT23F13	INTRODUCTION TO LARGE LANGUAGE MODELS	PE	L	Т	Р	С
			3	0	0	3

Obj	ectives: The course shall:
•	Provide an understanding of the foundational concepts of Natural Language Processing (NLP) and Deep Learning.
•	Explore statistical and neural language models for solving text processing tasks.
•	Introduce sequence models, attention mechanisms, and transformers with hands-on implementation.

Familiarize students with transfer learning techniques and advanced NLP tasks using pre-trained language models.

Highlight ethical considerations in NLP and retrieval-augmented generation for real-world applications. •

FOUNDATIONS OF NATURAL LANGUAGE PROCESSING AND DEEP LEARNING UNIT-I

Introduction to NLP: NLP pipeline and applications in Mechatronics (e.g., voice-controlled robots, natural language interfaces) Distributional semantics and its role in language understanding. Introduction to Deep Learning: Perceptron, Artificial Neural Networks (ANN), and backpropagation. Convolutional Neural Networks (CNN) and their applications.

00

Word Vectors: Word2Vec, GloVe, and fast Text - Representation of words in vector space

UNIT-II	STATISTICAL AND NEURAL LANGUAGE MODELS	09
Statistical Lar	nguage Models: N-gram models, perplexity, and smoothing techniques. Neural Language Models: Language mo	deling
using CNNs a	nd RNNs. Introduction to PyTorch for deep learning. Implementation of RNNs and LSTMs using PyTorch.	
UNIT-III	SEOUENCE MODELS, ATTENTION MECHANISMS, AND TRANSFORMERS	09

SEQUENCE MODELS, ATTENTION MECHANISMS, AND TRANSFORMERS UNIT-III

Sequence-to-Sequence Models: Sequence-to-sequence modeling and beam search. Attention and self-attention mechanisms. Transformers: Introduction to Transformers, positional embeddings, and tokenization strategies. Implementation of Transformers using PyTorch. 09

TRANSFER LEARNING AND ADAPTATION IN NLP UNIT-IV

Transfer Learning: Encoder-only models (ELMo, BERT), Decoder-only models (GPT), Encoder-decoder models (T5). Prompting and Fine-tuning: Hard and soft prompting, instruction fine-tuning (FLAN). Advanced Prompting Techniques: Chain of Thoughts, Prompt Chaining, etc. Introduction to the Hugging Face library for NLP tasks. 09

UNIT-V ADVANCED TOPICS AND ETHICAL CONSIDERATIONS

Knowledge Graphs (KGs): Representation, completion, and alignment tasks. Differences between graph neural networks and neural KG inference. Retrieval-Augmented Generation: Techniques for retrieving information from structured and unstructured sources Retrieval-augmented models: REALM, RAG, KGQA (Embed KGQA, Grail QA). Recent Trends and Ethical NLP: Overview of popular models (GPT-4, Llama 3, Claude 3, Mistral, Gemini). Ethical considerations in NLP: Bias, toxicity, and responsible AI. **Total Contact Hours** : 45

Course	Course Outcomes: After the successful completion of the course, the student will be able to:						
CO1	Understand the foundational concepts of NLP and its relevance to Mechatronics systems.						
CO2	Implement statistical and neural language models for text processing tasks.						
CO3	Develop and fine-tune sequence models, attention mechanisms, and transformers.						
CO4	Explore transfer learning techniques for large language models and their applications.						
CO5	Analyze ethical considerations in NLP and utilize retrieval-augmented generation for advanced tasks						

Textbook (s): Tanmoy Chakraborty, Introduction to Large Language Models, Wiley India, 1st Edition, 2025. ISBN: 9789363864740. 2 Dan Jurafsky and James H. Martin, Speech and Language Processing, 2nd Edition, Pearson Press, 2008.

Jacob Eisenstein, Natural Language Processing, First Edition, The MIT Press, 2019. 3

Reference Books(s) / Web links:

- Christopher D. Manning et al., Foundations of Statistical NLP, MIT Press.
- 2 Ian Goodfellow et al., Deep Learning, MIT Press.
- 3 PyTorch Documentation: https://pytorch.org/docs/.
- 4 Hugging Face Tutorials: https://huggingface.co/
- 5 Recent Trends in NLP: Papers and resources from arXiv.

CO\ PO	PO1	PO2	PO	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
			3												
CO1	3	2	-	-	-	-	2	-	-	-	2	3	3	2	-
CO2	3	3	-	-	-	-	-	-	-	-	2	3	3	2	2
CO3	3	3	2	2	3	-	-	-	-	-	2	3	3	3	2
CO4	3	3	2	3	-	2	-	-	-	-	3	3	3	3	2
CO5	3	3	2	3	-	2	-	-	-	-	3	3	3	3	2
Avg	3.0	2.8	2.0	2.7	3.0	2.5	2.0	3.0	-	-	2.4	3.0	3.0	2.6	2.3

MT23F14	COMPUTER VISION AND DEEP LEARNING	PC	L	Т	Р	С
			3	0	0	3

Objectives: The course shall:		
Introduce the fundamentals of computer vision and its relevance to Mechatronics systems.		
• Develop an understanding of deep learning concepts and their application in image processing.		
• Explore advanced computer vision techniques for object detection, recognition, and segmentation.		
Integrate RNNs and attention models for video analysis and intelligent systems.		
• Examine generative models and recent trends in vision for innovative solutions.		
UNIT-I FUNDAMENTALS OF COMPUTER VISION		09
Introduction and Overview: Course motivation and relevance to Mechatronics. Image formation, capture, and represent	ntation.	Basics
of linear filtering, correlation, and convolution. Visual Features and Representations: Edge, blob,		
and corner detection. Scale space and scale selection. Feature descriptors: SIFT, SURF, HoG, LBP. Practical Applicat	ions: O	bject
detection in mechanical systems. Edge detection for robotic vision.		-
UNIT-II DEEP LEARNING BASICS AND CONVOLUTIONAL NEURAL NETWORKS		09
Deep Learning Review: Overview of deep learning.Multi-layer perceptrons and backpropagation.Introduction to C	NNs: B	asics of
convolutional neural networks. Evolution of architectures: AlexNet, VGG, ResNet. Visualization and Understanding	g CNNs	: Kernel
visualization. Neural style transfer, Grad-CAM. Practical Applications: Feature extraction		
for robotic components. Real-time image processing for automation.		
UNIT-III ADVANCED COMPUTER VISION TECHNIQUES		09
Visual Matching: Bag-of-words, VLAD. RANSAC, Hough transform. Optical flow for motion analysis. CNNs f	or Reco	gnition,
Detection, and Segmentation: Recognition and verification (Siamese networks, triplet loss). Object detection (R-CNN	, YOLC), SSD).
Image segmentation (U-Net, Mask-RCNN). Practical Applications: Object detection for assembly line automation. Mo	otion tra	cking in
robotic arms.		-
UNIT-IV RECURRENT NEURAL NETWORKS AND ATTENTION MODELS		09
Recurrent Neural Networks (RNNs): Basics of RNNs. CNN + RNN for video understanding and activity recogn	ition. A	ttention
Models: Introduction to attention mechanisms. Applications in vision and language (image captioning, visual QA). Spat	ial trans	formers
and transformer networks. Practical Applications: Action recognition for robotic behavior		
analysis. Visual QA for intelligent inspection systems.		-
UNIT-V GENERATIVE MODELS AND RECENT TRENDS		09
Deep Generative Models: GANs, VAEs, and other generative models (PixelRNNs, Normalizing Flows). Applications	: Image	editing,
inpainting, super-resolution. Variants and Applications: CycleGANs, Progressive GANs, Pix2Pix. Applications in 3D o	bject ge	neration
and security. Recent Trends in Vision: Few-shot and self-supervised learning.		
Reinforcement learning in vision. Practical Applications: Generating synthetic datasets for Mechatronics. Predictive ma	intenan	ce using
vision systems.		
Total Contact Hours	:	45

Course	Outcomes: After the successful completion of the course, the student will be able to:
CO1	Understand the fundamentals of computer vision concepts, including image formation, visual features, and their practical
	applications in Mechatronics systems.
CO2	Design and implement convolutional neural networks (CNNs) for real-time image processing and feature extraction in
	automation systems.
CO3	Apply advanced computer vision techniques such as object detection, recognition, segmentation, and motion analysis to
	solve Mechatronics-related challenges.
CO4	Integrate Recurrent Neural Networks (RNNs) and attention mechanisms for video understanding, action
	recognition, and intelligent inspection systems.
CO5	Explore and utilize deep generative models and recent trends in computer vision to innovate solutions for predictive
	maintenance, 3D object generation, and other Mechatronics applications.

Tex	Textbook (s):									
1	Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press, 2016. ISBN: 978-0262035613.									
2	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2nd Edition, 2022. ISBN: 978-3030343714.									
3	Simon Haykin, Neural Networks and Learning Machines, Pearson, 3rd Edition, 2008. ISBN: 978-0131471399.									

Ref	erence Books(s) / Web links:
1	Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006. ISBN: 978-0387310732.
2	David A. Forsyth and Jean Ponce, Computer Vision: A Modern Approach, Pearson, 2nd Edition, 2012. ISBN: 978-
	0136085928.
3	Sebastian Raschka and Vahid Mirjalili, <i>Python Machine Learning</i> , Packt Publishing, 3rd Edition, 2019. ISBN: 978-1789955750.
4	Francois Chollet, <i>Deep Learning with Python</i> , Manning Publications, 2nd Edition, 2021. ISBN: 978-1617296864.
5	John C. Russ and J. Christian Russ, <i>The Image Processing Handbook</i> , CRC Press, 7th Edition, 2016. ISBN: 978-1498740265.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	-	-	-	-	-	2	3	3	2	-
CO2	3	3	3	2	3	-	-	-	-	-	2	3	3	3	2
CO3	3	3	3	3	3	-	-	-	-	-	3	3	3	3	3
CO4	3	3	3	3	3	2	-	-	-	-	3	3	3	3	3
CO5	3	3	3	3	3	2	2	-	-	-	3	3	3	3	3
Avg	3.0	3.0	2.8	2.6	2.8	2.0	2.0	-	-	-	2.6	3.0	3.0	2.8	2.6

MT23F15	INTERNET TOOLS AND JAVA PROGRAMMING	PE	L	Т	Р	С
			3	0	0	3

Objectives: The course shall:

- Understand the fundamental concepts of Java programming and its application in solving real-world problems. •
- Develop object-oriented programming skills to design robust and reusable software solutions.
- Build graphical user interfaces (GUI) and implement event-driven programming for interactive applications. •
- Explore advanced Java programming techniques, including multithreading, exception handling, and file I/O, to manage • complex systems.
- Apply Java-based networking and Internet tools for communication and control in mechatronic and robotic systems. •

UNIT-I CORE JAVA FUNDAMENTALS AND PROGRAMMING BASICS

Introduction to Java: History and evolution of Java-Java environment setup-Installation and usage of Java Development Kit (JDK). Basic Programming Constructs: Data types and variables-Operators: Arithmetic, relational, and logical-Type conversion and casting. Control Statements: Conditional statements: if-else, switch-Looping statements: for, while, do-

while. Arrays and Array Manipulation: Single and multi-dimensional arrays-Array operations and basic algorithms.

OBJECT-ORIENTED PROGRAMMING CONCEPTS UNIT-II

Classes and Objects: Class definition, object creation-Constructors and method overloading. Inheritance: Concept of inheritance-Types of inheritance (single, multilevel, hierarchical)-Superclass and subclass relationships. Packages and

Access Modifiers: Package creation and usage-Access specifiers: public, private, protected. Interfaces and Abstract Classes: Interface definition and implementation-Abstract class concepts and applications 09

UNIT-III ADVANCED JAVA PROGRAMMING TECHNIQUES

Exception Handling: try-catch blocks- Throwing and handling exceptions- Custom exception creation. Multithreading Programming: Thread lifecycle and management- Synchronization and inter-thread communication-String Handling-String manipulation methods-StringBuilder and String Buffer usage. File I/O Operations: File reading and writing-Handling text and binary file formats.

JAVA GUI DEVELOPMENT AND EVENT HANDLING UNIT-IV

Introduction to AWT: Basic GUI components-Window and frame creation. Event Handling: Event listeners- Handling mouse and keyboard events. Layout Managers: Flow, border, and grid layouts-Creating responsive interfaces. Java Swing Introduction: Advanced GUI components-Building interactive user interfaces.

INTERNET TOOLS AND NETWORKING IN JAVA UNIT-V

Java Networking: Socket programming basics-Client-server communication. Java Applets: Applet lifecycle- Simple applet-based programs. Introduction to Internet Tools: Overview of web technologies-Basic communication protocols (HTTP, FTP, etc.) Networking in Mechatronics Systems: Remote control of robotic systems-Data exchange between mechanical systems

Total Contact Hours

09

09

00

09

: 45

Course	Outcomes: After the successful completion of the course, the student will be able to:
CO1	Understand and apply fundamental Java programming concepts, including data types, control structures, and object-oriented
	programming.
CO2	Design and implement object-oriented solutions for mechatronic system components and simulations.
CO3	Develop graphical user interfaces (GUI) and event-driven applications for robotic and mechanical system control.
CO4	Utilize multithreading and exception handling to manage complex processes in mechatronic systems.
CO5	Implement networking and Internet tools for remote control and data communication in mechatronic applications.

Tex	tbook (s):						
1	Herbert Schildt, Java: The Complete Reference, McGraw Hill.						
2	Kathy Sierra and Bert Bates, Head First Java, O'Reilly Media.						
3	Paul Deitel and Harvey Deitel, Java How to Program, Pearson.						
Ref	erence Books(s) / Web links:						
1	Bruce Eckel, <i>Thinking in Java</i> , Prentice Hall.						
0							

2	John Hubbard, Schaum's	Outline of	Programming wi	ith Java, McGraw	Hill.
---	------------------------	------------	----------------	------------------	-------

- E. Balagurusamy, Programming with Java: A Primer, McGraw Hill.
- 4 David Flanagan, Java in a Nutshell, O'Reilly Media.

Mechatronics-specific Java programming resources (e.g., research articles, online documentation).

		1								r	1		1	1	1
CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	-	-	-	-	-	2	3	3	2	-
CO2	3	3	3	2	3	-	-	-	-	-	2	3	3	3	2
CO3	3	3	3	3	3	-	-	-	-	-	3	3	3	3	3
CO4	3	3	3	3	3	2	-	-	-	-	3	3	3	3	3
CO5	3	3	3	3	3	2	2	-	-	-	3	3	3	3	3
Avg	3.0	3.0	2.8	2.6	2.8	2.0	2.0	-	-	-	2.6	3.0	3.0	2.8	2.6

MT23F16	INTRODUCTION TO DATABASE SYSTEMS	PE	L	Т	Р	С
			3	0	0	3

Objectives: The course shall:

- Introduce students to the fundamentals of database systems and their applications in Mechatronics. •
- Enable students to model real-world problems using Entity-Relationship (ER) diagrams. •
- Provide a strong foundation in relational algebra, Structured Query Language (SQL), and query optimization.
- Equip students with skills to design normalized databases for efficient storage and retrieval. •
- Familiarize students with advanced topics like distributed databases and NoSQL for IoT-based Mechatronics applications.

INTRODUCTION TO DATABASE SYSTEMS AND ER MODEL UNIT-I

Introduction to Databases: Importance of databases in Mechatronics systems -Database applications in real-world automation and control-Database architecture and components. Entity-Relationship (ER) Model: Basics of ER modeling- Entities, attributes relationships, and cardinality- ER diagrams for mechanical and robotic systems. Practical Applications: Designing ER diagrams for sensor data management in Mechatronics.

RELATIONAL MODEL AND QUERY LANGUAGES UNIT-II

Relational Model: Introduction to the relational model- Keys: Primary, foreign, and candidate keys- Relational algebra operations. Tuple Relational Calculus (TRC): Introduction to TRC- Expressing queries in TRC. Structured Ouery

Language (SQL): Basics of SQL: Data definition and manipulation- Simple queries, aggregate functions, and joins. Practical Applications: Writing SQL queries for data acquisition and analysis in Mechatronics systems.

INDEXING AND QUERY PROCESSING UNIT-III

Indexes: Introduction to indexing- Types of indexes: B-trees and hash-based indexes- Role of indexes in improving query performance. Query Processing: Query optimization techniques- Cost-based query evaluation. Practical Applications: Optimizing queries for real-time robotic system data.

NORMALIZATION AND DATABASE DESIGN UNIT-IV

Normalization: Functional dependencies-Normal forms: 1NF, 2NF, 3NF, BCNF-Decomposition and lossless join. Database Design: Principles of good database design-Designing databases for Mechatronics applications. Practical Applications: Normalizing data for efficient storage in Mechatronics systems. 09

TRANSACTION PROCESSING AND ADVANCED TOPICS UNIT-V

Transaction Processing: ACID properties-Concurrency control: Locking, deadlocks, and timestamp ordering-Recovery mechanisms. Advanced Topics: Distributed databases- Introduction to NoSQL databases for IoT-based Mechatronics systems. Practical Applications: Managing concurrent operations in automated systems. : 45

Total Contact Hours

09

09

09

09

Course	Course Outcomes: After the successful completion of the course, the student will be able to:				
CO1	Understand the basics of database systems and their role in Mechatronics applications.				
CO2	Apply ER modeling and relational algebra to represent and manipulate real-world data.				
CO3	Develop and optimize SQL queries for data management in Mechatronics systems.				
CO4	Design normalized databases and implement efficient storage solutions for Mechatronics applications.				
CO5	Analyze advanced database concepts like transaction processing and NoSQL for IoT-based systems.				

Tex	fextbook (s):				
1	Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, Pearson Education.				
2	Silberschatz, Korth, and Sudarshan, Database System Concepts, McGraw-Hill.				
3	Raghu Ramakrishnan and Johannes Gehrke, <i>Database Management Systems</i> , McGraw-Hill.				
Dof	Defenence Decks(g) / Web links				

Itte	Terenee Dooks(b) / Web miks.
1	C.J. Date, An Introduction to Database Systems, Pearson Education.
2	Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom, Database Systems: The Complete Book, Pearson Education.
3	SQL for Data Science, John Wiley & Sons.
4	Online Resources: TutorialsPoint, GeeksforGeeks, W3Schools.
5	Research Papers on NoSOL and IoT in Mechatronics.

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	2	2	2	-	-	-	-	-	2	2	3	2	-
CO2	3	3	3	2	2	-	-	-	-	-	2	3	3	3	2
CO3	3	3	3	3	3	-	-	-	-	-	3	3	3	3	3
CO4	3	3	3	3	3	2	-	-	-	-	3	3	3	3	3
CO5	3	3	3	3	3	3	2	-	-	-	3	3	3	3	3
Avg	3.0	2.8	2.8	2.6	2.6	2.0	2.0	-	-	-	2.6	2.8	3.0	2.8	2.6

AI23632	NATURAL LANGUAGE PROCESSING	Categor y	L	Т	Р	С
		PE	2	0	2	3

Oł	ojectives:
٠	To introduce the fundamental concepts of Natural Language Processing (NLP for analysing words based on statistical measures and CORPUS.
•	To understand the principles of morphological analysis and language modelling using finite state machines and n-gram models.
•	To explore vector semantics and learn how to represent words and their relationships through embeddings and similarity measures.
٠	To analyse and implement Hidden Markov Models (HMMs) and their applications in Part-Of-Speech (POS) tagging
•	To study the architecture of transformers and large language models, including pre-training and evaluation techniques.

UNIT-I INTRODUCTION TO NATURAL LANGUAGE PROCESSING	6
Introduction to NLP - Various stages of NLP -NLP Pipeline, The Ambiguity of Language: Parts of Speech, Phrase Str	ucture.
Statistics Essential Information Theory: Entropy, perplexity, The relation to language: Cross entropy, Text Prepossessing: Ch	aracter
Encoding, Word Segmentation, Sentence Segmentation, Introduction to Corpora, Corpora Analysis	
UNIT-II MORPHOLOGY AND LANGUAGE MODELLING	6
Inflectional and Derivation Morphology, Morphological analysis and generation using Finite State Automata and Finit	e State
transducer. Bag of words, skip-gram, Continuous Bag-Of-Words, N gram model, n -gram Models over Sparse Data: Bins: F	orming
Equivalence Classes Statistical Estimators- Combining Estimators	-
UNIT-III VECTOR SEMANTICS AND EMBEDDINGS	6
Lexical Semantics-Vector Semantics-Words and Vectors-Cosine for measuring similarity- TF-IDF: Weighing terms in the	vector-
Pointwise Mutual Information (PMI) - Applications of the TF-IDF or PPMI vector models- Word2vec - Visualizing Embed	ldings-
Semantic properties of embeddings-Bias and Embeddings-Evaluating Vector Models	
UNIT-IV MARKOV MODEL AND POS TAGGING	6
Markov Model: Hidden Markov model, Three Fundamental questions of HMM, Implementation properties, and Variants of H	IMMs,
Multiple input observation. POS: The Information Sources in Tagging: Markov model taggers, Viterbi algorithm, Applying	HMMs
to POS tagging, Applications of Tagging.	
UNIT-V TRANSFORMERS AND LARGE LANGUAGE MODELS	6
The Transformer - Attention-Transformer Blocks- Parallelizing computation using a single matrix X, The input: embeddi	ngs for
token and position-The Language Modelling Head - Large Language Models : Large Language Models with Transfor	mers -
Sampling for LLM Generation -Pretraining Large Language Models -Evaluating Large Language Models	
Contact Hours :	30

	List of Experiments
1.	Develop a morphological analyser to process and analyse various sentence structures, including interrogative,
	declarative, and complex sentences with conjunctions. Perform word segmentation and sentence segmentation as part of
	the analysis.
	Suggested Dataset/Corpus: Universal Dependencies (UD) English Treebank
	Design a basic NLP pipeline to preprocess raw text data by performing tokenization, sentence segmentation, and part-
2.	of-speech (POS) tagging. Automate the pipeline to process large-scale text efficiently.
	Suggested Dataset/Corpus: Universal Dependencies (UD) English Treebank
	Implement a Named Entity Recognition (NER) system using Python libraries such as spaCy or NLTK. Utilize a pre-
3.	trained model to extract named entities, including people, organizations, and locations, from a text corpus.
	Suggested Dataset/Corpus: CoNLL-2003 NER Dataset
	Construct unigram, bigram, and trigram models to analyze their performance on sparse data. Compare the language
4.	models based on perplexity and their effectiveness in predicting word sequences.
	Suggested Dataset/Corpus: The Brown Corpus
5.	Implement n-gram language models (unigram, bigram, trigram, etc.) and apply smoothing techniques like Laplace
	smoothing to address data sparsity. Evaluate the models on a large text corpus for accuracy and perplexity.
	Suggested Dataset/Corpus: Google Ngram Dataset

6.	Design a spelling correction model using a combination of morphological ru on a dataset containing deliberately misspelled words and compare Suggested Dataset/Corpus: Birkbeck Spelling Error Corpus	les and n-gram probabilities. Tes e it to established spell-checl	t the i	model stems.				
7.	Implement the Term Frequency-Inverse Document Frequency (TF-IDF) model and use cosine similarity to compare the similarity between documents in a given corpus. Visualize the similarity matrix for better insight. Suggested Dataset/Corpus: 20 Newsgroups Dataset							
8.	Train a Word2Vec model on a given text corpus and visualize the result reduction techniques like t-SNE or PCA. Analyze the semantic relationship Suggested Dataset/Corpus: Text8 Dataset	ing word embeddings using dim s between words in the embeddin	ensio gs.	nality				
9.	Build a Hidden Markov Model (HMM) for part-of-speech (POS) tagging. Train the model on a tagged corpus and evaluate its accuracy on a test dataset. Suggested Dataset/Corpus: Universal Dependencies (UD) Treebank							
10.	Use a pre-trained Transformer model (e.g., BERT) to build a sentiment analysis model. Fine-tune the model on a dataset of tweets, classify sentiment (positive, neutral, negative), and evaluate its performance using accuracy and F1-score. Suggested Dataset/Corpus: Sentiment140 Dataset							
11	Use a pre-trained language model to perform sentiment analysis or keyword extraction on a dataset of WhatsApp chat data. Analyze the conversational patterns, emotions, and key topics discussed in the chats.							
12	Implement a question-answering system using a pre-trained BERT model. Input a passage and a question, and use the model to extract the correct answer from the passage. Evaluate the system on accuracy and relevance of the answers. Suggested Dataset/Corpus: SQuAD (Stanford Question Answering Dataset)							
13	 Mini Project Choose a Topic: Identify a deep learning problem of interest, such anomaly detection. Research related works using platforms like Google Scholar. Dataset Selection: Find or collect a suitable dataset from sources like sized, and consider preprocessing requirements. Develop Methodology: Start with baseline models, then experimen Transformers). Use frameworks like TensorFlow or PyTorch. Implementation & Evaluation: Train models and evaluate performance F1-score). Document findings systematically. Discuss & Present: Analyze results, highlight challenges, and presendirections. 	as image classification, text ger Kaggle or UCI. Ensure it is rele t with advanced architectures (e ce using appropriate metrics (e.g. nt your work with clear insights	vant, .g., C , acci and	on, or well- CNNs, uracy, future				
		Contact Hours Total Contact Hours	:	<u> </u>				
ı		i otar Contact Hours	•	00				

Cour	Course Outcomes: On completion of the course, the students will be able to				
•	Analyse the different stages in the NLP pipeline and perform statistical analysis on the data.				
•	Apply morphological analysis techniques and construct n-gram models for language processing.				
•	Evaluate the effectiveness of word embeddings and semantic vector models				
	Implement and analyse Hidden Markov Models (HMMs) for Part-Of-Speech (POS) tagging and compare their				
•	effectiveness.				
•	Design and evaluate transformer-based large language models for text generation and other NLP applications				

Те	xtbooks:
1	Daniel Jurafsky and James H. Martin "Speech and Language Processing", 3rd edition, Prentice Hall, 2024
2	T V Geetha," Understanding Natural Language Processing" (Machine Learning and Deep Learning Perspectives),1st edition, Pearson,2024

Reference Books:															
1	Christopher D. Manning and HinrichSchutze, "Foundations of Natural Language Processing", 6th Edition, The MIT Press														
	Cambridge, Massachusetts London, England, 2003 2009.														
2	NitinIndurkhya, Fred J. Damerau "Handbook of Natural Language Processing", Second Edition, CRC Press, 2010.														
3	James Allen "Natural Language Understanding", Pearson Publication, 8th Edition. 2012														
4	Hobson lane, Cole Howard, Hannes Hapke, "Natural language processing in action" MANNING Publications, 2 nd edition,														
	2019.														
5	Alexander Clark, Chris Fox, Shalom Lappin, "The Handbook of Computational Linguistics and Natural Language Processing",														
	Wiley-Blackwell, 2016														
6	Rajesh Arumugam, Rajalingappa Shanmugamani "Hands-on natural language processing with python: A practical guide to														
	applying deep learning architectures to your NLP application". PACKT publisher, 2018.														
PO/PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
--------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------
AI23632.1	3	3	2	2	3	2	1	2	2	2	2	3	3	2	2
AI23632.2	3	3	2	2	3	2	1	1	2	2	2	3	3	2	3
AI23632.3	3	3	3	2	3	2	1	2	2	2	2	3	3	3	3
AI23632.4	3	3	3	2	3	2	1	2	2	2	2	3	3	3	2
AI23632.5	3	3	3	3	3	2	1	2	3	3	3	3	3	3	3
Average	3	3	2.6	2	2.2	1	1	1.8	1	1	-	1	3	3	2

VERTICAL G DIVERSIFIED

]	MT23G11	SOCIAL INNOVATION IN INDUSTRY 4.0	PE	L	Т	Р	С			
				3	0	0	3			
Obje	ectives: The c	ourse shall:								
•	To introduce	the concept of social innovation and its relevance to modern society.								
•	To provide a	comprehensive understanding of Industry 4.0 technologies and their integration	with social in	novat	ion.					
•	To equip stud	lents with tools and techniques for designing, prototyping, and implementing in	novative soluti	ons.						
•	To explore ca agriculture.	ase studies demonstrating the societal impact of innovation in various sectors, in	cluding medic	al dev	vices	and				
•	To assess the	environmental, economic, and social implications of social innovation and Ind	ustry 4.0 initiat	ives.						
UNI	T-I IN	NTRODUCTION TO SOCIAL INNOVATION AND INDUSTRY 4.0				0	19			
Defi	nition and sig	nificance of social innovation - Evolution of Industry 4.0 - Technologies driv	ing Industry 4.	0: Io	Г, АІ,	Rob	otics,			
Big Data, and Additive Manufacturing - Interplay between social innovation and Industry 4.0 - Opportunities and challenges in										
impl	ementing socia	al innovation – Importance of sustainability and societal impact in innovation								
UNI	T-II T	YPES OF SOCIAL INNOVATION AND VALUE CREATION				0	19			
Over	Overview of social innovation types – Incremental vs. radical innovations – Process, product, and system innovations – Value									
creat	ion models – I	Role of entrepreneurship in driving social innovation – Economic, societal, and	environmental	valu	e crea	tion	-			
Susta	ainable entrep	reneurship and innovation strategies.								
UNI	T-III D	ESIGN AND PROTOTYPING FOR SOCIAL INNOVATION AND INDU	STRY 4.0			0	19			
Intro	duction to des	ign thinking for Industry 4.0 – Methods and tools for innovation design – Protot	yping techniqu	es: 3I) prin	ting,	rapid			
proto	otyping, and it	erative design – Prototyping for medical devices and agricultural implements –	Design princip	ples fo	or cre	ating	user-			
centr	ric solutions –	Importance of feedback loops in innovation design.								
UNI	T-IV C	OSTING, IPR, AND INNOVATION MANAGEMENT				0	19			
Cost	ing methodolo	gies for innovative solutions – Financial planning for social innovation project	s – Introduction	1 to Ir	itelleo	ctual				
Prop	erty Rights (II	PR): Patents, trademarks, and copyrights – Importance of IPR in fostering innov	vation – Types	of inr	lovati	on ai	ıd			
their	relevance to I	ndustry 4.0 – Managing innovation in collaborative environments.								
UNI	T-V C	ASE STUDIES AND SOCIETAL IMPACT ANALYSIS				0	19			
Case	studies on so	cial innovation in healthcare, agriculture, and education – Prototyping and deple	byment of med	ical d	evice	s – D	esign			
and o	levelopment o	of agricultural implements – Societal impact analysis methods – Measuring the	success of socia	al inn	ovatio	on pr	ojects			
– Lo	ng-term sustai	nability and scalability of innovative solutions – Ethical considerations in socia	l innovation.							
		Total	Contact Hour	S	:	4	5			
Соц	rse Outcomes	After the successful completion of the course, the student will be able to:								
CO1	Understa	nd and explain the principles of social innovation and Industry 4.0.								
CO2	l Identify a	ind categorize various types of social innovations and their applications.								
001	Design and parcetoring innovative solutions for societal challenges using Industry 4.0 technologies									

CO3	Design and prototype innovative solutions for societal challenges using Industry 4.0 technologies.
CO4	Evaluate the economic and environmental feasibility of innovative solutions, including IPR and costing considerations.
CO5	Analyze real-world case studies to measure the societal impact of social innovations.

Tex	tbook (s):
1	Murray, R., Caulier-Grice, J., and Mulgan, G., The Open Book of Social Innovation, London: National Endowment for Science,
	Technology, and the Arts, 2010.
2	Hopkinson, N., Hague, R., and Dickens, P. (Eds.), Rapid Manufacturing: An Industrial Revolution for the Digital Age, John
	Wiley & Sons, 2006.
3	Nicolopoulou, K., Karataş-Özkan, M., Janssen, F., and Jermier, J. (Eds.), Sustainable Entrepreneurship and Social Innovation,
	Taylor & Francis, 2016.

Re	ference Bo	oks(s) /	' Web li	inks:												
1	Brown,	Г., Desi	gn Thin	king fo	r Social	Innova	ation, H	arvard I	Busines	s Revie	w Press,	2009.				
2	2 Schwab, K., The Fourth Industrial Revolution, World Economic Forum, 2016															
CC	D\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CC)1	2	2	3	2	-	2	-	3	1	-	-	-	2	3	1
CC)2	2	2	3	2	-	-	-	2	2	3	-	3	-	3	1
CC)3	2	2	3	2	-	-	-	-	3	3	-	2	-	2	1
CC)4	2	2	3	2	-	-	-	-	1	2	3	3	-	2	3
CC)5	2	2	3	2	-	2	3	3	1	-	2	3	3	3	2
											1	1				1

2.6

2

2 2 2

Avg

3

2

2.0

-

3.0

2.5

2.7

2.5

2.6

1.6

2.6

1.6

MT23G12	NEW SPINNING TECHNOLOGIES	PE	L	Т	P	С
			3	0	0	3

Obj	ectives: The course shall:
•	Introduce advanced spinning technologies and their principles.
•	Analyze the limitations of conventional spinning systems and explore innovative alternatives.
•	Explain the working mechanisms and design aspects of modern spinning machines.

Evaluate the properties of yarns produced by various new spinning technologies. •

Investigate process parameters and their influence on spinning efficiency and yarn quality. •

UNIT-I	OVERVIEW OF SPINNING TECHNOLOGIES		09					
Introduction to	spinning systems, Limitations of ring spinning, Principle of open-end spin	ning, Comparison of ring spinning	and					
open-end spinn	ing systems, General description of the open-end spinning machine, Parts a	nd						
their functions,	Working mechanism of open-end spinning, Sliver feed, fibre separation, and	nd transport mechanisms.						
UNIT-II	ROTOR SPINNING		09					
Principle of rote	or spinning, Rotor design and groove geometry, Role of the navel in yarn tw	visting, Mechanics of twisting and	yarn					
formation, Proc	ess parameters and their significance in rotor spinning, Rotor yarn structure	e and properties, Technological ini	novations					
in rotor spinnin	g, Comparison of rotor-spun yarns with ring-spun yarns, Applications of ro	tor spinning in industry.						
UNIT-III AIR-JET AND VORTEX-SPINNING								
Principle of air-	Principle of air-jet spinning, Sliver feed: high draft and high speed, Twin-jet design and twisting principle, Air-jet yarn structure and							
properties, App	lications of air-jet spinning, Principle of vortex spinning, Mechanism of ya	arn formation in vortex spinning, S	Structural					
characteristics of	of vortex-spun yarns, Comparison of air-jet and vortex spinning technologi	es.						
UNIT-IV	FRICTION SPINNING		09					
Principle of yar	n formation in friction spinning, Operational stages in friction spinning and	their significance, Friction drum	design					
aspects, Mecha	nics of yarn formation in friction spinning, Structural characteristics of frict	ion-spun yarns, Applications of fr	iction					
spinning in tech	nical textiles, Comparison of friction spinning with other spinning technol	ogies, Innovations in friction spinn	ing					
systems, Challe	nges and limitations of friction spinning systems.							
UNIT-V	WRAP SPINNING AND COMPARATIVE ANALYSIS OF SPINNING	NG SYSTEMS	09					
Principle of wra	p spinning, Mechanics of yarn formation in wrap spinning, Yarn structure a	nd properties in wrap spinning, App	olications					
and limitations	and limitations of wrap spinning systems, Comparative analysis of spinning systems (ring, rotor, air-jet, vortex, friction, and wrap),							
Process optimiz	Process optimization in modern spinning technologies, Future trends in spinning systems.							
	· · · · · · · · · · · · · · · · · · ·	Total Contact Hours :	45					

Course Outcomes: After the successful completion of the course, the student will be able to:							
Identify the limitations of conventional spinning systems and evaluate alternatives.							
Explain the principles and mechanisms of advanced spinning technologies.							
Analyze the process parameters influencing yarn formation and properties.							
Compare yarn structures and properties across various spinning systems.							
Investigate the applications, innovations, and future trends in spinning technologies.							

Textbook (s):

Kothari, C. R., Research Methodology: Methods and Techniques, New Age International Publishers, 2004. Day, R. A., How to Write and Publish a Scientific Paper, Cambridge University Press, 2011. 1

2

Reference Books(s) / Web links:

1

Highman, N., Handbook of Writing for the Mathematical Sciences, SIAM, 1998. Singh, A., Research Methodology: Techniques and Trends, Gyan Publishing House, 2018. 2

CO\ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	2	2	-	-	-	-	-	-	2	3	3	2
CO2	3	3	-	3	-	-	-	-	-	-	-	2	3	3	-
CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3	2
CO4	3	3	2	3	-	-	-	-	-	-	-	2	3	3	2
CO5	3	3	I	3	-	-	2	2	-	-	3	3	3	3	3
Avg	3.0	3.0	2.5	2.8	2.0	-	2.0	2.0	-	-	3.0	2.4	3.0	3.0	2.3

	AT23D18	VEHICLE CONTROL SYSTEMS	Category	L	Т	P	С				
			PE	3	0	0	3				
Obj	jectives:										
•	The objective of	t this course is to make the students to understand the basics of control s	ystem used in a	utomo	biles						
UN	$\frac{11-1}{1}$ IN1	RODUCTION TO VEHICLE CONTROL SYSTEM	11 1 1 X	1 * 1		<u> </u>	9				
Tre	nds, overview an	d examples of vehicle control system- Sensors, actuators and control	ller modules-V	ehicle	comn	nunic	ation				
Net	work-System Eng	ineering v-diagram- Algorium Development - Steps in vehicle control	system design-	Degre	e of fr	in Vo	n lor				
ven	icie control- sele	like engines, suspension, broking, sir conditioning. Constal types	of vahiala aar	e vari trollor	aonfi	in va	iona				
Eee	dback Inferential	Feed-Forward Ratio control	of vehicle con	uonei	conn	guiat	10115-				
IIN		NTROL SCHEMES CRUISE AND HEADWAY CONTROL					0				
East a control - Coscada control Design considerations for cascade control Time delay compensation. Inferential control											
Not	nlinear control- A	dantive control etc. Cruise control design- Autonomous cruise control-	Anti locking h	akes-	Tracti	on cc	ntrol				
svs	tem- Vehicle stabi	lity control linear and non-linear vehicle model- VSC Design Principles	– four-wheel st	eering	– Gor	als of	4WS				
Alg	orithms – active s	uspensions.	iour mieerst	eening	000						
UN	IT-III DRI	VER MODELING AND POWERTRAIN CONTROL SYSTEMS					9				
Dri	ving simulators-	percentage of road departure- Driver modeling- Transfer function n	nodels- Previe	w/ Pre	dictiv	e mo	dels-				
lon	gitudinal driver m	odels Control oriented engine modeling- Air intake model- Fuel dynar	nics model- Ai	r Fuel	ratio	dynai	mics-				
Eng	gine Control Loop	s- Air Fuel Ratio control- EGR Control- Spark Timing control- Idle sp	eed control- K	nock c	ontro	l-Ada	ptive				
kno	ock control- Comb	ustion torque estimation- Transmission control									
UN	IT–IV CO	NTROL OF HYBRID AND FUEL CELL VEHICLES					9				
Ser	ies-Parallel- Split	Hybrid Configurations- Hybrid Vehicle Control Hierarchy- Control Co	oncepts of Serie	s Hyb	rids- l	Equiv	alent				
Cor	nsumption minimi	zation strategy- control concepts for split hybrid modelling of fuel cell	systems- fuel s	tack m	odel-	conti	ol of				
fue	l cell system.										
UN	IT-V HU	MAN FACTORS AND INTELLIGENT TRANSPORT SYSTEM					9				
Hui	man factors in vel	hicle automation- cross over model principle- Risk- Homeostatic Theor	ry- Driving sin	ulator	s- per	centa	ge of				
roa	d departure Adva	need traffic management system- Advanced traveller information sys	stem- commerc	al ve	nicle	opera	tion-				
Adv	vanced vehicle co	udinal control approaches. String stability. Automated stability and later	i platoons- Sit	e spec	nic ir	norm	ation				
lond	a change and follo	uuniai control approaches- string staointy- Automateu steering and fater	a = control - La	ne sen	sing-	auton	lateu				
Tany	change and fond	v conuol.		45 I	FRI	פתר					
Co	urse Outcomes	J	IOTAL .	-51	ERIC	JD 5					
At t	the end of the cou	rse, the student will be able to									
1	Understand the	basics of control system used in automobiles									
2	Recognize the e	lectronically controlled system used in driving mechanics									
3	Understand the	working principle of driver modelling and power train control systems.									
4	Identify the con	trol system used in hybrid and electrical vehicles.									
5	Illustrate the ne	ed of automated transport systems.									
Тех	xt Books										
1	Galip Ulsoy,	Automotive Control System, Cambridge University Press, 2012.									
2	Uwe Kiencke	and Lars Nielson, Automotive Control System, SAE Publications, 2006									
Ref	erence Books										
1	Bosch Autom	otive Handbook, Sixth Edition,2004									
2	Benjamin C.K	uo and Farid Golnaraghi, Automatic Control System, John Wiley & Sor	ns, Eight edition	n, 2003	;						
3	Katsuhiko Og	ata, System Dynamics, Prentice Hall International, Inc. Third Edition, 19	98								
4	Richard C.Do	rf and Robert H.Bishop, Modern Control Systems, Pearson Prentice Hall	1,2008								