RAJALAKSHMI ENGINEERING COLLEGE DEPARTMENT OF BIOTECHNOLOGY CURRICULUM AND SYLLABUS REGULATIONS – 2023 M.TECH –BIOTECHNOLOGY CHOICE BASED CREDIT SYSTEM

RAJALAKSHMI ENGINEERING COLLEGE (An Autonomous Institution Affiliated to Anna University Chennai) DEPARTMENT OF BIOTECHNOLOGY CURRICULUM AND SYLLABUS REGULATIONS – 2023 M.TECH –BIOTECHNOLOGY CHOICE BASED CREDIT SYSTEM

VISION OF THE INSTITUTION

To be an institution of excellence in Engineering, Technology and Management Education & Research.

To provide competent and ethical professionals with a concern for society.

MISSION OF THE INSTITUTION

To impart quality technical education imbibed with proficiency and humane values

To provide right ambience and opportunities for the students to develop into creative, talented and globally competent professionals

To promote research and development in technology and management for the benefit of the society

VISION OF THE DEPARTMENT

To be a department of academic excellence focused on education, research and development and to conquer the frontiers of biotechnology, benefitting the society.

MISSION OF THE DEPARTMENT

- To impart quality technical education
- To continuously enhance and enrich the teaching / learning process
- To provide an ambience for overall development of the students to be more creative, innovative and globally competent ethical professionals
- To promote research and develop technologies and products for the sustenance and wellbeing of the society

PROGRAMME EDUCATIONAL OBJECTIVES

- I. This program will strengthen the graduates' foundation in different facets of biotechnology, enhance their knowledge, hone their research skills and prepare them for higher studies and become ideal teachers in reputed academic institutes.
- II. This program will inspire, motivate, guide and train graduates to become globally competent and find employment in pharma, food and other biotech industries in R&D, quality control, process control and product development sectors.
- III. This program will help graduates with their creative thinking, analytical and managerial skills imbibed with ethical values to develop products, become successful entrepreneurs and serve the society.

PROGRAMME OUTCOMES

- 1. An ability to research, investigate, critically analyse and solve problems in the different areas of Biotechnology
- 2. An ability to write and present precise and accurate data, publish papers and communicate the findings to scientific community and society
- 3. An ability to impart knowledge to enthusiastic young minds and become ideal teachers in reputed academic institutions
- 4. An ability to find employment in pharma, food and other biotech industries in R&D, quality control, process control and product development sectors or become entrepreneurs imbibed with ethical and humane values

CURRICULUM

SEMESTER I

S. No	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Р	С	Category
THEO	RY							
1	MH23131	Statistical Techniques for Biotechnologist	5	3	0	2	4	BS
2	BY23111	Gene Manipulation and DNA analysis	3	3	0	0	3	PC
3	BY23112	Enzyme Technology and Fermentation Technology	3	3	0	0	3	PC
4	PG23111	Research Methodology and IPR	3	3	0	0	3	HS
5		Professional Elective I	3	3	0	0	3	PE
6		Professional Elective II	3	3	0	0	3	PE
7	AC23111	Audit Course I (English for Research Paper Writing)	3	3	0	0	0	MC
PRACT	ΓICAL							
8	BY23121	Preparative and Analytical Techniques in Biotechnology	4	0	0	4	2	PC
9	BY23122	Recombinant DNA Technology Laboratory	6	0	0	6	3	PC
		TOTAL	33	21	0	12	24	

SEMESTER II

S. No	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Р	C	Category
THEOF	RY							
1	BY23211	Bio separation Technology	3	3	0	0	3	PC
2	BY23212	Bioreaction Engineering	3	3	0	0	3	PC
3	BY23213	Biopharmaceuticals and Biosimilars	3	3	0	0	3	PC
4	BY23214	Immunotechnology	3	3	0	0	3	PC
5	BY23215	Advanced Genomics and Proteomics	3	3	0	0	3	PC
6		Professional Elective III	3	3	0	0	3	PE
7	AC23211	Audit Course II (Constitution of India)	3	3	0	0	0	MC
PRACT	ICAL							
8	BY23221	Immunotechnology Laboratory	4	0	0	4	2	PC
9	BY23222	Bioprocess and Downstream processing Laboratory	6	0	0	6	3	PC
10	BY23223	Artificial Intelligence and Machine Learning Laboratory for Biotechnologist	2	0	0	2	1	PC
		TOTAL	33	21	0	12	24	

SEMESTER III

S. No	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Р	С	Category
PRACT	PRACTICAL							
1		Professional Elective IV	3	3	0	0	3	PE
2		Open elective I	3	3	0	0	3	OE
PROJE	СТ							
4	BY23321	Project Phase – I	12	0	0	12	6	EEC
		TOTAL	18	6	0	12	12	

SEMESTER IV

S. No	COURSE CODE	COURSE TITLE	CONTACT PERIODS	L	Т	Р	С	Category	
PROJE	PROJECT								
1	BY23421	Project Phase – II	24	0	0	24	12	EEC	
TOTAL 24 0 0 24 12									

TOTAL NO. OF CREDITS: 72

S. No	COURSE CODE	COURSETITLE	CONTACT PERIODS	L	Т	Р	С
1	BY23P11	Biomaterials	3	3	0	0	3
2	BY23P12	Analytical Techniques in Biotechnology	3	3	0	0	3
3	BY23P13	Food Processing and Technology	3	3	0	0	3
4	BY23P14	Bionanotechnology	3	3	0	0	3

PROFESSIONAL ELECTIVES - I (SEMESTER I)

PROFESSIONAL ELECTIVES - II (SEMESTER I)

S. No	COURSE CODE	COURSETITLE	CONTACT PERIODS	L	Т	Р	С
1	BY23P15	Advances in Animal Biotechnology	3	3	0	0	3
2	BY23P16	Oncogenetics	3	3	0	0	3
3	BY23P17	Plant Tissue Culture and Gene Manipulation	3	3	0	0	3
4	BY23P18	Bioconjugate Technology	3	3	0	0	3
5	BY23P19	Advances in Molecular pathogenesis	3	3	0	0	3

PROFESSIONAL ELECTIVES -III (SEMESTER II)

S. No	COURSE CODE	COURSETITLE	CONTACT PERIODS	L	Т	Р	С
1	BY23P21	Bioreactor Design and Analysis	3	3	0	0	3
2	BY23P22	Bioprocess Modeling and Simulation	3	3	0	0	3
3	BY23P23	Biosafety and Bioethics	3	3	0	0	3
4	BY23P24	Bioenergy and Biofuels	3	3	0	0	3
5	BY23P25	Advances in Environmental Biotechnology	3	3	0	0	3

PROFESSIONAL ELECTIVES - IV (SEMESTER III)

S. No	COURSE CODE	COURSETITLE	CONTACT PERIODS	L	Т	Р	С
1	BY23P31	Tissue Engineering	3	3	0	0	3
2	BY23P32	Stem Cell Technology	3	3	0	0	3
3	BY23P33	Vaccinology	3	3	0	0	3
4	BY23P34	Data mining and machine learning for	3	3	0	0	3
		bioinformatics					

S.NO	SUBJECT AREA	CREDITS PER SEMESTER		CREDITS PER SEMESTER CREDIT			CREDITS TOTAL
		Ι	II	III	IV	-	
1	BS	4				4	
2	HS	3				3	
3	РС	11	21			32	
4	PE	6	3	3		12	
5	OE			3		3	
6	EEC			6	12	18	
7	МС	*	*				
	TOTAL	24	24	12	12	72	

SUMMARY OF CREDIT DISTRIBUTION

MH23131	STATISTICAL TECHNIQUES FOR BIOTECHNOLOGIST	Category	L	Т	Р	C
		BS	3	0	2	4

Course Objectives: This course will enable the students

- To analyse data pertaining to discrete and continuous variables and to interpret the results.
- To provide the principles underlying sampling as a means of making inferences about a population and different methods of estimation.
- To exhibit proficiency with statistical analysis of data and to apply data science concepts and methods to solve problems in real-world contexts.
- To describe mathematical background of the nonparametric statistical methods.
- To plan, design and conduct experiments including different types and analysis of variance (ANOVA), to draw valid conclusions

UNIT-I	RANDOM VARIABLE AND PROBABILITY DISTRIBUTION	9
C 1' <i>c</i> '		D 1 1 1 1 1

Conditional Probability, Random variables – Probability mass function – Properties – Probability density function – Properties – Moments: Mean and variance with properties – Measures of Skewness and Kurtosis - Simple Problems. Introduction to analysis of DNA Sequence.

UNIT-II SAMPLING DISTRIBUTIONAND ESTIMATION THEORY

Random sampling – Sample mean and variance – Standard error – Simple problems –Estimator: Unbiasedness – Maximum likelihood estimation – Method of moments – Curve fitting by the method of least squares: Fitting curves of the formy = ax + b, $y = ax^2 + bx + c$, $y = ab^x$, and $y = ax^b$ – Multiple Regression.

UNIT-III DATA ANALYSIS AND INTERPRETATION

Cluster analysis: Clustering by partitioning methods, hierarchical clustering, overlapping clustering, K-Means Clustering – Profiling and Interpreting Clusters – Factor analysis: Factor analysis model, Extracting common factors, determining number of factors, Factor scores.

UNIT-IV NON PARAMETRIC STATISTICS

One sample sign test – Sign test for paired samples – Signed rank test – Rank-sum test: The U-test – Rank-sum test: The H-test – Test based on runs.

UNIT-V DESIGN OF EXPERIMENTS

Completely random design – Randomized complete block design – Analysis of variance: One-way and two – way classifications – Latin square design - 2^2 –factorial design.

Total Contact Hours: 45

9

Q

9

S.No.	List of Experiments (using Data Analysis Lab with R)	Total Contact Hours: 30					
1	Introduction to R, Functions, Control flow and Loops						
2	Working with Vectors and Matrices						
3	Reading in and Writing Data						
4	Working with Data						
5	Graphics in R						

6	Differentiation and Integration
7	Simulation
8	Linear model
9	Data Frame – Factor analysis
10	Cluster analysis

Course Outcomes:

On completion of the course , the students will be able to

- Apply the basic concepts of probability, one dimensional and two dimensional random variables in engineering problems.
- Use the principles underlying sampling as a means of making inferences about a population and different methods of estimation.
- Demonstrate proficiency with statistical analysis of data and to apply data science concepts and methods to solve problems in real-world contexts.
- Illustrate the nonparametric tests for solving various statistical problems.
- Apply the concept of ANOVA in decision making in the lab testing and clinical trials.

SUGGESTED ACTIVITIES

- Problem solving sessions
- Activity Based Learning
- Implementation of small module

SUGGESTED EVALUATION METHODS

- Tutorial problems
- Assignment problems
- Quizzes
- Class Presentation/Discussion

Text B	Book(s):						
1.	1. Veerarajan T, Probability, statistics and random process with queueing theory and queueing						
	networks, 4 th edition, McGraw - Hill Publishing Company Limited.						
2.	Spiegel Libschutz, "Probability and Statistics", 4th Edition, McGraw Hill, New Delhi, 2010.						
3.	Miller I and Miller M., "Mathematical Statistics", 7th Edition, Pearson Education Inc. (10th						
	impression), 2012.						
4.	Warren J. Ewens, Gregory R. Grant, "Statistical Methods in Bioinformatics: An Introduction",						
	Second Edition, Springer New York, 2005.						

Refere	nce Books(s) / Web links:
1.	Jay L. Devore," Probability and Statistics for Engineering and Sciences", 8th Edition, Cengage
	Learning Pvt. Ltd., New Delhi, 2014.
2.	Johnson, R.A and Gupta C. B., "Miller and Freund's Probability and Statistics for Engineers",
	Pearson Education Int., Asia, 8 th Edition, 2011.
3.	Gupta, S.C. and Kapoor, V. K, "Fundamentals of Mathematical Statistics", Sultan Chand and Sons,
	14 th Edition, 2016.

D.A. Belsey, E. Kuh and R.E. Welsch ,"Regression Diagnostics , Identifying Influential Data and 4. Sources of Collinearety". M.R. Anderberg, "Cluster Analysis for Applications", Academic Press.

5.

РО	PO1	PO2	PO3	PO4
со				
MH23131.1	2	1	2	3
MH23131.2	2	1	2	3
MH23131.3	2	1	2	3
MH23131.4	2	1	2	3
MH23131.5	2	1	2	3
Average	2	1	2	3

BY23111	GENE MANIPULATION AND DNA ANALYSIS	Category	L	Т	Р	(
		РС	3	0	0	3
Course objecti	ves:					
This course wi	ll enable the students					
• To de	velop an understanding of the cloning vectors					
To pro	vide knowledge on the gene isolation and screening strategies					
• To an	lyze DNA sequencing techniques					
• To co:	nprehend mutation and the different PCR techniques					
• To ex	blain the fundamentals of gene therapy					
UNIT I (LONING AND EXPRESSION OF GENES				9	
DNA Manipul	ative enzymes, cloning vectors: plasmids – Host range, copy numbe	r. λ phage -	- Ins	erti	iona	ıl
and Replacem	ent vectors, in vitro packaging. Single strand DNA vector - M13	Phage. Cost	mids	, E	BAC	!
Yeast vectors-	YRp, YEp, Yip and YAC. Mammalian vector-SV40. Insect vector-tran	sposon.				
UNIT-II (CONSTRUCTION OF DNA LIBRARIES				9	
cDNA library	construction : Full length cDNA cloning - CAPture method and Olig	o capping. S	trate	gie	s fo	r
Genomic DNA	library construction and screening strategies. Overview on microarra	y and its app	licat	ion	ls.	
UNIT-III I	NA SEQUENCING				9	
DNA sequen	cing –Chemical & Enzymatic methods, Next Generation A	Automated	Sequ	iend	cing	5,
Pyrosequencin	g, Automated sequence, Genome sequencing methods - top down a	and bottom u	p ap	pro	bacł	۱.
Metagenomics						
UNIT-IV F	CR AND MUTAGENESIS				9	
	ble and applications. Different types of PCR - Hot start PCR, Tour					
PCR Nester	PCR, Colony PCR, , RACE PCR - Primer design strategies, Real-	time PCR, S	YBI	R G	iree	n
	probes. Site directed mutagenesis by PCR Kunkels'method.					
assay, Taqmar						
assay, Taqmar UNIT-V (ENE TRANSFER& GENE THERAPY				9	_
assay, Taqmar UNIT-V (Introduction o	ENE TRANSFER& GENE THERAPY f foreign genes into animal cells – DNA Microinjection, Retroviral				-	f
assay, Taqmar UNIT-V (Introduction o	ENE TRANSFER& GENE THERAPY				-	f

Course outcomes:

Upon completion of the course, the students will be able to

- Understand the cloning vectors
- Gain knowledge about the gene isolation and screening strategies.
- Analyze DNA sequencing techniques
 - Analyse the importance of mutation and the various PCR techniques
 - Apply the fundamentals of gene therapy

SUGGESTED ACTIVITIES

• Activity Based Learning

SUGGESTED EVALUATION METHODS

- Assignment problems
- Quizzes
- Class Presentation/Discussion

Text books:

- T A Brown "Gene cloning and DNA analysis"2006.
- Mullis kary B, Ferre Francois, Gibbs "The polymerase chain reaction" 1994

Reference books:

٠	Primrose SB and R. Twyman "Principles Of Gene Manipulation & Genomics Blackwell Science Publications, 2006.
٠	Genomes 3 by T.A.Brown, Fourth Edition 2017 (Garland Science Publishing)

PO	PO1	PO2	PO3	PO4
^{CO}				
BY23111.1	2	3	3	3
BY23111.2	3	3	3	3
BY23111.3	2	3	3	3
BY23111.4	3	3	3	3
BY23111.5	3	3	3	3
Average	2.6	3	3	3

BY23112	ENZYME TECHNOLOGY AND FERMENTATION TECHNOLOGY	Category	L	Т	Р	C		
		PC	3	0	0	3		
Course ob	Course objectives:							
This course	This course will enable the students							
• To	• To realise the importance of fundamental concepts and important parameters in fermentation							
pro	processes							
• To	To acquire advanced knowledge about the use of fermentation processes in enzyme production							

- To comprehend the process involved in the production of various enzymes and metabolites
- To investigate enzyme kinetics
- To assess different industrial applications of enzymes

UNIT I FUNDAMENTALS OF FERMENTATION	9
Overview of fermentation - Microbial biomass - Microbial Enzymes - Microbial Metabolite	_
Recombinant products - Media for industrial fermentations - Medium optimization - Mediu	ım
sterilization – Types of culture medium – Oxygen requirements of industrial fermentation.	
UNIT-II INDUSTRIAL FERMENTATION PROCESSES	9
Aerobic and anaerobic fermentations – Development of inocula for industrial fermentation – Batch cu	lture,
continuous culture, fed batch culture - Comparison of batch and continuous culture - Submerged and	solid
state fermentation for the production of enzymes - case study, - Immobilization of enzym	ies –
Biotransformation with crude enzymes and whole cells.	
UNIT-III PRODUCTION OF ENZYMES AND METABOLITES	9
Production of Proteases, Cellulases, Lipase, Amylase, Glucose isomerase, Pectinase, Peroxidase	_
Production of organic acids (Citric acid, Lactic acid) – Production of antibiotics (Penicillin, streptomyc	n)
- Production of vitamins (Vitamin B12, Riboflavin) - production of amino acids (Glutamic acid, Lysine	e).
UNIT-IV ENZYME KINETICS	9
Overview of enzyme and its action - Time course of enzymatic reactions - Effects of substra	
concentration on velocity – Steady state model of enzyme kinetics – Significance of kcat and Km –Ca	
study on experimental measurement of kcat and Km – Linear transformations of enzyme kinetic data –	Bi
Bi reaction mechanisms – Modes of reversible inhibition.	
UNIT-V APPLICATIONS OF ENZYMES	9
Enzymes in organic synthesis - Enzymes as biosensors - Enzymes for food, pharmaceutical, tanne	•
textile, paper and pulp industries applications – Enzyme for environmental applications – Enzymes	
analytical and diagnostic applications - Enzymes for molecular biology research. Case studies	on
bioproduct formation imbibing free enzymes/immobilized enzymes.	
Total Contact Hours :	45

Course	Course outcomes: Upon completion of the course, the students will be able to				
•	Outline the fundamentals and important parameters in fermentation processes				
•	Apply the knowledge of industrial fermentation process for enzyme production				
•	Access the production process of industrially important enzymes and metabolites				
•	Comprehend enzyme kinetics for research and industrial applications				
•	Evaluate the applications of enzymes in various industries				

Text b	ooks:
•	Buchholz, K., Kasche, V. and Bornscheuer, U., "Biocatalysts and Enzyme Technology", WILEY– VCH, 2005.
	,
•	Mansi, E.M.T.EL., Bryce, C.F.A., Demain, A.L. and Allman, A.R., "Fermentation Microbiology
	and Biotechnology", Taylor and Francis, 2006.
•	Michael L. Shuler, Fikret Kargi, <u>Matthew DeLisa</u> , Bioprocess Engineering 3 rd edition, Pearson
	Education, 2017.

Reference books: Copeland, R. A., "Enzymes", 2nd Edition, WILEY–VCH, 2008. ٠ Najafpour, G.D., "Biochemical Engineering & Biotechnology", Elsevier, 2007. • McNeil, B., Harvey, L., "Practical Fermentation Technology", John Wiley & Sons, 2008. • Trevor Palmer, Enzymes 2nd edition, Horwood Publishing Ltd., 2007 • Peter F. Stanbury, A. Whitaker & Stephen J. Hall, Principles of Fermentation Technology, 3rd • edition, Elsevier Ltd., 2016. Weblink: https://nptel.ac.in/courses/102106053 • SUGGESTED EVALUATION METHODS

- Assignment/Case study
- Quizzes
- Class Presentation/Discussion
- Question/Problem Formulation

PO	PO1	PO2	PO3	PO4
со				
BY23112.1	2	2	2	2
BY23112.2	2	2	2	2
BY23112.3	2	2	2	2
BY23112.4	3	3	2	3
BY23112.5	3	3	2	3
Average	2.4	2.4	2	2.4

PG23111	RESEARCH METHODOLOGY AND IPR	Category	L	T	Р	C
		HS	3	0	0	3
Course obje	ectives:					
This course	will enable the students					
•	To understand the research problem formulation and analyse the research related information by following research ethics.					
•						
•	To Emphasize the role of IPR in individual and nations growth					

UNIT I INTRODUCTION TO RESEARCH METHODOLOGY	9			
Objectives and Motivation of Research - Types of Research - Defining and Formulating the Research				
Problem - Errors in selecting a research problem - Features of research design, Different Research Des	signs-			
Criteria of good research - Problems encountered by researchers in India - Benefits to the society in gen	eral.			
UNIT-II DATA ANALYSIS AND HYPOTHESIS TESTING	9			
Data collection: Primary data - Secondary data - Data organization - Sample design - Estimation of				
population - Parametric vs. non parametric methods - Measures of central tendency and dispersion.				
ANOVA; Principles of least squares-Regression and correlation; Normal Distribution Properties of Normal				
Distribution; Testing of Hypothesis – Hypothesis Testing Procedure, Types of errors, t-Distribution - Chi-				
Square Test as a Test of Goodness of Fit - Use of statistical softwares.				
UNIT-III LITERATURE REVIEW AND RESEARCH REPORT WRITING	9			

Effective literature studies approaches- Importance of literature survey - Sources of information- analysis - Plagiarism - Research ethics.

Interpretation and Report Writing - Techniques and Precautions; Report Writing - Significance - Different Steps - Layout - Types of reports, Mechanics of Writing a Research Report - Precautions in Writing Reports; Format of the research report

UNIT-IV INTRODUCTION TO INTELLECTUAL PROPERTY, TRADE MARKS, 9 GRAPHICAL INDICATION AND INDUSTRIAL DESIGN

Importance of intellectual property rights; types of intellectual property-international organizations; Purpose and function of trademarks - acquisition of trade mark rights - protectable matter - selecting and evaluating trade mark - trade mark registration processes.

Industrial designs and IC Layout design - Registrations of designs-Semiconductor Integrated circuits and layout design Act - Geographical indications-potential benefits of Geographical Indications.

UNIT-V LAW OF COPYRIGHTS & PATENTS

Fundamental of copy right law - originality of material - rights of reproduction - rights to perform the work publicly -copy right ownership issues - copy right registration -notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process - ownership rights and transfer New Developments in IPR: Administration of Patent System.

Total Contact Hours:45

9

Course outcomes:

Upon completion of the course, the students will be able to

- Analyze the research problems and research processes
- To formulate the hypothesis, data collection and processing, analyzing the data using statistical methods
 - Interpret the observations and communicating the novel findings through a research report.
- Apply the conceptual knowledge of intellectual property rights for filing patents and trade mark registration process.
- Understand the adequate knowledge on copyright and patent law and rights.

Text/Reference books:

٠	C.R. Kothari, Research Methodology: Methods and Techniques, 2nd revised edition, New Age
	International Publishers, New Delhi, 2004.
٠	Deborah, E. Bouchoux, Intellectual property right, 5th edition, Cengage learning, 2017.

- R. Panneerselvam, Research Methodology, PHI learning Pvt. Ltd., 2009.
- Prabuddha Ganguli, Intellectual property right Unleashing the knowledge economy, Tata McGraw Hill Publishing Company Ltd, 2001.
- Donald R. Cooper and Ramela S. Schindler, Business Research Methods, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2000
- Uma Sekaran, Research Methods for Business, John Wiley and Sons Inc., New York, 2000.

• Ranjit Kumar, Research Methodology, Sage Publications, London, New Delhi, 1999.

• T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

РО	PO1	PO2	PO3	PO4
CO				
PG23111.1	1	3	3	2
PG23111.2	1	3	3	2
PG23111.3	1	3	3	2
PG23111.4	1	3	3	2
PG23111.5	1	3	3	2
Average	1	3	3	2

AC23111	ENGLISH FOR RESEARCH WRITING	Category	L	T	Р	С
			3	0	0	0

Objectives:

• To facilitate the students to express technical ideas in writing

• To train the students in using language structures appropriately

- To enable students to plan and organize the research paper
- To assist the students in understanding the structure and familiarise the mechanics of organised writing
- To equip the students to improvise academic English and acquire research writing skills

UNIT-I INTRODUCTION TO RESEARCH WRITING

Research – Types of Research - Selecting the Primary resources - Categorizing secondary sources - Discovering a researchable area and topic – Need Analysis - Research Question - Focussing on the Research Problem- Developing Research Design – Framing the Hypothesis – Identifying the Scope of the Research - Writing – General and Academic Writing

UNIT-II LANGUAGE OF WRITING

Active reading – text mining – use of academic words – jargons – ambiguities – use of expression – use of tense - proper voices – third person narration – phraseology – use of foreign words – use of quotes – interpreting quotes.

UNIT-III THE FORMAT OF WRITING

Types of Journals - different formats and styles - IEEE format - Structure – Margins - Text Formatting - Heading and Title - Running Head with Page Numbers - Tables and illustrations - Paper and Printing - Paragraphs - Highlighting – Quotation – Footnotes

UNIT-IV ORGANISING A RESEARCH PAPER

Title- Abstract – Introduction – Literature review - Methodology - Results –Discussion –Conclusion - Appendices - Summarising - Citation and Bibliography

UNIT-V PUBLISHING PAPER

Finding the Prospective publication or Journal - analysing the credits - Reviewing - Revising – Plagiarism Check - Proofreading - Preparing the Manuscript- Submitting - Resubmitting - Follow up - Publishing

Total Contact Hours:45

9

9

9

9

Course Outcomes:

At the end of the course the learner will be able to:

- Compile the basic structure of research work
- Apply proper use of language in writing paper
- Comprehend different formats of journal paper
- Follow the process of writing a research paper and write one
- Emulate the process of publishing journal paper and publish papers

SUGGESTED ACTIVITIES

- Group Discussions
- Writing review of literature
- Presentations
- Case study
- Writing a paper

SUGGESTED EVALUATION METHODS

- Assignment topics
- Quizzes
- Class Presentation/Discussion
- Continuous Assessment Tests

References Adrian Wallwork: "English for Writing Research Papers", Springer Science Business Media, Second 1 Edition, LLC 2011 Stephen Howe and Kristina Henrikssion: "Phrasebook for Writing Papers and Research in English", The 2 Whole World Company Press, Cambridge, Fourth edition 2007 The Modern Language Association of America: "MLA Handbook for Writers of Research Papers" 8th 3 Edition, The Modern Language Association of America, 2016 Rowena Murray: The Handbook of Academic Writing: A Fresh Approach, Sarah Moore Open 4 University Press, 2006 5 Stephen Bailey: Academic Writing: A Practical Guide for Students Routledge Falmer: 2003 Joseph M. Moxley: Publish, Don't Perish: The Scholar's Guide to Academic Writing and 6 Publishing, Praeger Publishers, 1992

РО	PO1	PO2	PO3	PO4
CO				
AC23111.1	1	1	1	1
AC23111.2	2	2	2	2
AC23111.3	3	3	3	3
AC23111.4	3	3	3	3
AC23111.5	3	3	3	3
Average	2.4	2.4	2.4	2.4

BY23121		PREPARATIVE AND ANALYTICAL TECHNIQUES IN	Category	L	Т	Р	С
		BIOTECHNOLOGY					
			PC	0	0	4	2
Course	objective	s: This course will enable the students					
•	• To learn and understand the principles behind the qualitative and quantitative estimation of				of		
	biomolecules						
•	To gain hands-on experience in spectroscopic and chromatographic methods of analysis						
•	To comprehend the principle behind spectroscopic analysis and its application in biomolecule						
	identification and assay of enzyme activity						
•	To acquire practical experience by performing recovery and subsequent purification of target			get			
	biological products through chromatographic techniques						

• To excel in all advanced preparative and analytical techniques required for future research or industry based work

LIST OF	EXPERIMENTS
1	Preparation of Acetate, Tris and Phosphate Buffer. Validation of Henderson Hasselbach equation.
2	Reactions of amino acids with Ninhydrin reagent.
3	Differential estimations of carbohydrates - reducing vs non-reducing, polymeric vs oligomeric,
	hexose vs pentose.
4	Estimation of protein concentration using Lowrys' method and Dye-binding method.
5	DNA determination by UV-Vis Spectrophotometer – hyperchromic effect.
6	Separation of lipids by TLC.
7	Preparative and quantitative estimation of biomolecules by HPLC analysis.
8	Assay of enzyme activity and specific enzyme activity.
9	Assessing purity of proteins using SDS-PAGE Gel Electrophoresis
10	Preparation of Casein using Isoelectric precipitation and its estimation
11	Separation and identification of water soluble colours in foods by paper chromatography
12	FTIR and GC-MS analysis of biomolecules –Demonstration
	TOTAL PERIODS: 60

Course outcomes:

Upon completion of the course, the students will be able to

- Analyze the principles of buffer preparation, the qualitative and quantitative estimation of carbohydrates, aminoacids and DNA
- Evaluate spectroscopic and chromatographic methods of analysis
- Validate spectroscopic analysis and its application in biomolecules and enzyme activity studies
- Apply chromatographic techniques for purification and recovery of target biological products
- Execute preparative and analytical techniques for future research or industry based work

Text/R	Text/Reference books:					
•	Principles and Techniques of Biochemistry and Molecular Biology, Author: Wilson, K. and Walker,					
	J., Cambridge University Press, 8th Edition, 2018.					
•	Advances in chemical Bioanalysis –Bioanalytical reviews, edited by Frank –Michael Matysik,					
	Springer, first edition 2016.					
•	High throughput Bioanalytical sample preparation: Methods and Automation Strategies, Author:					
	David A .Wells Elsevier Second Edition, 2020.					

PO	PO1	PO2	PO3	PO4
СО				
BY23121.1	3	2	3	3
BY23121.2	3	2	3	3
BY23121.3	2	2	3	3
BY23121.4	3	2	3	3
BY23121.5	3	2	3	3
Average	2.8	2	3	3

BY2312	2 RECOMBINANT DNA TECHNOLOGY LABORATOR	Y Category	L T P C
		PC	0 0 6 3
	objectives:		
This cou	urse will enable the students		
•	To understand the principles behind the cloning and expression of a gen	e	
•	To perform nucleic acid assays		
•	To study the recombinant protein expression		
٠	To illustrate the principles of cloning and expression of a gene		
•	To execute nucleic acid assays		
	LIST OF EXPERIMENTS		
1	Isolation of Genomic DNA and Plasmid DNA from bacteria		
2	Restriction Digestion and ligation of the plasmid vector		
3	Transformation to <i>E.coli</i>		
4	Polymerase chain reaction.		
5	Colony PCR		
6	Gel elution of DNA fragments.		
7	Optimisation of inducer time and concentration for recombinant prot	ein expression.	
8	Western blotting analysis		
9	Extraction of RNA		
10	cDNA preparation from RNA		
11	Real Time PCR		
12	Southern blotting – Non radioactive		
		TOTAL PER	IODS: 90

	npletion of the course, the students will be able to
•	Summarize the basic principles of molecular biotechnology and assays
•	Analyze the nucleic acid molecules both quantitatively and qualitatively
•	Illustrate the concept of genetic engineering
٠	Apply PCR techniques for quantification of genes
•	Design techniques to develop recombinant products
Reference	
•	Green M.R and Sambrook J Molecular cloning -A laboratory manual 4 th Edition, Cold spring habor laboratory press, USA, 2012.
•	Zyskind J.W and Bernestin S.I Recombinant DNA laboratory manual Revised edition, Academic press, USA, 1992.

PO	PO1	PO2	PO3	PO4
CO				
BY23122.1	3	2	1	3
BY23122.2	2	3	3	1
BY23122.3	3	3	3	2
BY23122.4	2	1	3	3
BY23122.5	3	2	3	3
Average	2.6	2.2	2.6	2.4

BY232	BIO SEPARATION TECHNOLOGY	Category	L	Т	Р	С
			3	0	0	3
	objectives:					
	urse will enable the students					
•	To analyze the methods for purification of proteins and enzymes for product research	ct developmer	it ar	nd		
•	To impart knowledge and experience on downstream processes to produce	therapeutic pi	ote	ins		
•	To educate the principle involved in membrane separations and enrichment	operations				
•	To promote the applicability of chromatographic techniques in Biological p	products separ	atio	n		
•	To educate about the finishing operations and formulations of commercial	applications				

UNIT I DOWNSTREAM PROCESSING

Introduction to downstream processing principles- Range and characteristics of bioproducts and bioprocesses. Fundamental properties of biological substances- Size, Molecular weight, diffusivity, Sedimentation coefficient, osmotic pressure, electrostatic charge, solubility, partition coefficient, light absorption and fluorescence. Cell disruption for product release – mechanical methods – Bead mill-Ultrasonicator, French press and Rotor- stator- released product concentration calculation- Non mechanical methods. RIPP Scheme for high volume, low value products and low volume, high value products.

UNIT-II SOLID-LIQUID SEPARATION TECHNIQUES

Introduction - Filtration process- filtration equipment's – Rotary drum filter, plate and frame filter press and leaf filter- constant pressure and constant rate- filter medium, specific cake resistance and total filtration cycle time calculation-Centrifugation – Basic principles, classification -Industrial centrifuges – Tubular bowl, Multichamber bowl and Disc bowl centrifuge- applications.

UNIT-III ISOLATION OF PRODUCTS

Membrane separation process principle –Microfiltration, ultra filtration, dialysis and Reverse osmosis – Structure and characteristics of membranes – Membrane models –Extraction methods–Solvent extraction, Dissociative extraction, selective extraction and Aqueous two-phase extraction process – Adsorption isotherms and break through curve in fixed bed adsorption technique – Protein precipitation – Methods of precipitation-Applications.

UNIT-IV PRODUCT PURIFICATION

Chromatography – Classification of chromatographic techniques – General description of column chromatography – Chromatographic terms and parameters – Normal-phase, reversed-phase chromatography, size exclusion chromatography, Ion exchange chromatography, hydrophobic and Bio-affinity chromatography – HPLC.

UNIT-V FINAL PRODUCT FORMULATION, POLISHING AND FINISHING 9 OPERATIONS

Drying – Mechanism, and applications, Types of dryers – Tray, spray, rotary drum and Tunnel dryer – Crystallization –mechanism, Nucleation, growth of crystal – Habit modifiers in crystallization – Freeze drying – Principle, process, applications – Case studies - Major downstream processing steps in ethanol fermentation, Citric acid manufacture, production of an intracellular enzyme, production of an antibiotic.

Total Contact Hours:45

9

9

9

9

Course	e outcomes:
Upon c	ompletion of the course, the students will be able to
•	Apply the methods to obtain pure proteins, enzymes and in general product development and
	research
•	Analyze the various downstream processes to isolate therapeutically important proteins
•	Articulate membrane separations and enrichment operations
•	Execute chromatographic techniques for separation of biological products
•	Evaluate the importance of finishing operations and formulations of commercial applications
Sugges	ted Activities
•	Problem solving sessions
Sugges	ted Evaluation Methods
•	Quizzes
•	Class Presentation / Discussion
•	Tutorial Problems
Text b	
•	Belter, P.A., Gussler, E.L. and Hu, W.S., "Bio-separation: Downstream Processing for
	Biotechnology", John Wiley and Sons, 2011.
٠	Sivasankar, B. "Bioseparations: Principles and Techniques". PHI, 2005.
•	Ghosh, R., "Principles of Bioseparations Engineering", World Scientific Publishers, 2006.
Refere	nce books/ Weblinks:
•	R.O. Jenkins, (Ed.) – Product Recovery In Bioprocess Technology – Biotechnology By
	Open Learning Series, Butterworth-Heinemann (1992).
•	Roger, H., "Bio-separations Science and Engineering", Oxford University Press, 2006
•	Ladisch, M.R., "Bioseparations Engineering: Principles, Practice, and Economics", John Wiley &
	Sons, 2001.
•	https://archive.nptel.ac.in/courses/102/106/102106022

РО	PO1	PO2	PO3	PO4
CO				
BY23211.1	3	3	2	3
BY23211.2	3	3	2	3
BY23211.3	3	3	2	3
BY23211.4	3	3	2	3
BY23211.5	3	3	2	3
Average	3	3	2	3

BY232	12 BIOREACTION ENGINEERING	Category	L	Τ	Р	С
		PC	3	0	0	3
Course objectives:						
This co	This course will enable the students					
•	To apply the stoichiometry and balances of substrate and biomass					
•	• To analyze and find the different modes of cultivation parameters and its kinetics					
•	To evaluate the various structured kinetic models and its application techniques					

- To solve the practical problems arising on the performance of bioreactors
- To work on immobilized bed bioreactors

14	I METABOLIC STOICHIOMETRY AND ENERGETICS	9
Mass a	nd energy balance in biological system - Stoichiometry of cell growth and product format	ion –
Elemer	tal balances, degrees of reduction of substrate and biomass, available electron balances,	yield
coeffic	ents of biomass and product formation - Maintenance coefficients - Oxygen consumptio	n and
heat ev	olution in aerobic cultures – Thermodynamic efficiency of growth.	
UNIT-	II MICROBIAL GROWTH, KINETICS, MAINTENANCE AND PRODUCT	9
	FORMATION	
	of cell growth in batch cultures - Growth associated and non-growth associated product form	
kinetic	s - Monod and Leudeking-Piret models - Effects of inhibition - Determination of k	inetic
parame	ters by batch, fed batch and continuous culture and analysis of chemo state performance - R	ole of
mainter	nance and endogenous metabolism in substrate utilization and growth.	
UNIT-	III UNSTRUCTURED AND STRUCTURED MODELS	9
Simple	unstructured kinetic models for microbial growth - Substrate utilization and product form	ation,
	red models for growth and product formation - Compartmental and metabolic models, Chem	
-	netically structured models - Kinetics of growth and product formation by filamentous organi	sms –
	erations for the production of r-DNA products.	
UNIT-		9
	ase Gas-Liquid mass transfer – General oxygen balances for Gas-Liquid transfer – Volu	
	ansfer co-efficient - problems - Scale up of bioreactors - problems - Models for oxygen tra	
•	e scale bioreactors - Case studies for large scale bioreactors - Model for oxygen gradients in a	air lift
bioreac	tor.	
bioreac	tor. V IMMOBILIZED BIOCATALYST SYSTEMS	9
bioreac UNIT- Externa	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of	9 finite
bioreac UNIT- Externa differen	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of ace model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction – Reaction systems – Dimensionless parameters from diffusion – Reaction – Reaction systems – Dimensionless parameters from diffusion – Reaction – R	9 finite action
bioreac UNIT- Externa differen models	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of new model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction – Reactiveness factor concept – Case study for diffusion with biological reaction. Case study	9 finite action
bioreac UNIT- Externa differen models	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of ace model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction - Refectiveness factor concept – Case study for diffusion with biological reaction. Case stud and plant cell cultivation in bioreactors.	9 finite action dy on
bioreac UNIT- Externa differen models	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of new model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction – Reactiveness factor concept – Case study for diffusion with biological reaction. Case study	9 finite action
bioreac UNIT- Externa differen models	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of ace model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction - Refectiveness factor concept – Case study for diffusion with biological reaction. Case stud and plant cell cultivation in bioreactors.	9 finite action dy on
bioreac UNIT- Externa differen models animal	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of ace model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction - Refectiveness factor concept – Case study for diffusion with biological reaction. Case stud and plant cell cultivation in bioreactors. Total Contact Hours	9 finite action dy on
bioreac UNIT- Externa differen models animal	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of nee model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction encept – Case study for diffusion with biological reaction. Case study and plant cell cultivation in bioreactors. Total Contact Hours e outcomes:	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of nee model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reactiveness factor concept – Case study for diffusion with biological reaction. Case stuand plant cell cultivation in bioreactors. Total Contact Hours e outcomes: ompletion of the course, the students will be able to	9 finite action dy on
bioreac UNIT- Externa differen models animal	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of ace model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction - Reaction systems – Dimensionless parameters from diffusion – Reaction - Effectiveness factor concept – Case study for diffusion with biological reaction. Case study and plant cell cultivation in bioreactors. Total Contact Hours e outcomes: ompletion of the course, the students will be able to Perform the balances of substrate and biomass and stoichiometric calculations	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of nee model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction encember of diffusion with biological reaction. Case study and plant cell cultivation in bioreactors. Total Contact Hours e outcomes: ompletion of the course, the students will be able to Perform the balances of substrate and biomass and stoichiometric calculations Work on different modes of cultivation parameters and kinetics	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of the model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction empletes factor concept – Case study for diffusion with biological reaction. Case studies and plant cell cultivation in bioreactors. Total Contact Hours e outcomes: ompletion of the course, the students will be able to Perform the balances of substrate and biomass and stoichiometric calculations Work on different modes of cultivation parameters and kinetics Evaluate various structured kinetic models and its application techniques	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of nee model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction encember of diffusion with biological reaction. Case study and plant cell cultivation in bioreactors. Total Contact Hours e outcomes: ompletion of the course, the students will be able to Perform the balances of substrate and biomass and stoichiometric calculations Work on different modes of cultivation parameters and kinetics	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c • •	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of the model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction empletes factor concept – Case study for diffusion with biological reaction. Case studies and plant cell cultivation in bioreactors. Total Contact Hours e outcomes: ompletion of the course, the students will be able to Perform the balances of substrate and biomass and stoichiometric calculations Work on different modes of cultivation parameters and kinetics Evaluate various structured kinetic models and its application techniques	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c • • • •	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of the model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reactiveness factor concept – Case study for diffusion with biological reaction. Case studies and plant cell cultivation in bioreactors. Total Contact Hours e outcomes: ompletion of the course, the students will be able to Perform the balances of substrate and biomass and stoichiometric calculations Work on different modes of cultivation parameters and kinetics Evaluate various structured kinetic models and its application techniques Solve the practical problems arising on the performance of bioreactors	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c • • • •	tor. V IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of nee model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction emotel for diffusion with biological reaction. Case stuand plant cell cultivation in bioreactors. Total Contact Hours outcomes: outcomes: Ompletion of the course, the students will be able to Perform the balances of substrate and biomass and stoichiometric calculations Work on different modes of cultivation parameters and kinetics Evaluate various structured kinetic models and its application techniques Solve the practical problems arising on the performance of bioreactors Work on immobilized bed bioreactors	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c • • • • • • • • • • • • • • • • • •	tor. IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of ince model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction and plant cell cultivation in bioreactors. Image: Contract Hours Ima	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c • • • • • • • • • • • • • • • • • •	tor. Immobilized bioCATALYST SYSTEMS Il mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of nee model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction encempter – Case study for diffusion with biological reaction. Case study and plant cell cultivation in bioreactors. Total Contact Hours e outcomes: ompletion of the course, the students will be able to Perform the balances of substrate and biomass and stoichiometric calculations Work on different modes of cultivation parameters and kinetics Evaluate various structured kinetic models and its application techniques Solve the practical problems arising on the performance of bioreactors Work on immobilized bed bioreactors ted Activities Problem solving sessions ted Evaluation Methods	9 finite action dy on
bioreac UNIT- Externa differen models animal Course Upon c • • • • • Sugges	tor. IMMOBILIZED BIOCATALYST SYSTEMS al mass transfer – Internal diffusion and reaction within biocatalysts – Derivation of ince model for diffusion – Reaction systems – Dimensionless parameters from diffusion – Reaction and plant cell cultivation in bioreactors. Image: Contract Hours Ima	9 finite action dy on

Tutorial Problems

Text books:

• Dunn, I.J., Heinzle, E., Ingham, J. and Prenosil, J.E., "Biological Reaction Engineering", 2nd Edition, WILEY-VCH publications, 2003.

• Dutta, R., "Fundamentals of Biochemical Engineering", Springer, 2008.

•	Shuler, M.L. and Kargi, F., Bioprocess Engineering: Basic concepts, 2 nd Ed., Prentice-Hall, 2002.			
•	Doran Pauline M, Bioprocess Engineering Principles, 2 nd Ed., Academic Press, 1995.			
•	Nielsen, J., and Villadsen, J., Bioreaction Engineering Principles, 2 nd Ed., Springer, 2007.			
•	Blanch, H.WandClark D.S., Biochemical Engineering, 2 nd Ed., MarcelDekker, 1997.			
Reference books/ Weblinks:				
•	Najafpour, G.D., "Biochemical Engineering & Biotechnology", Elsevier, 2007.			
•	Truskey, G.A., Yuan, F. and Katz, D.F., "Transport Phenomena in Biological Systems", Pearson			
	Prentice Hall, 2004.			
•	Katoh, S. and Yoshida, F., "Biochemical Engineering – A Text Book for Engineers, Chemists and			
	Biologists", Wiley publications, 2009.			
•	https://onlinecourses.nptel.ac.in/noc22_bt19			

PO	PO1	PO2	PO3	PO4
CO				
BY23212.1	2	2	3	2
BY23212.2	2	2	3	2
BY23212.3	2	2	3	2
BY23212.4	2	2	3	2
BY23212.5	2	2	3	2
Average	2	2	3	2

BY23213	BIOPHARMACEUTICALS AND BIOSIMILARS	Category	L	Т	Р	С
		PC	3	0	0	3
Course Objecti	ves:					
•	To enhance the fundamental knowledge of regulatory framew	vorks in drug	g dev	elop	men	t
•	To unifyse the commercial strategies behind the development of recombinant products					
•	• To investigate the production and regulatory processes associated with the development of biosimilars					
•	To understand the principle behind lyophilization and tests for	or lyophilized	l pro	duct	S	
•	To evaluate the formulation of dosage forms and controlled r	elease syster	ns			
UNIT-I	DRUG DEVELOPMENT				9	
and Excretion-	ent-Drug regulating authorities, Pharmacokinetics – Absorpt Renal excretion and Non-renal excretion. Pharmacodynam of drugs, Bioavailability, Bioequivalence, Pharmacovigilance.					
UNIT-II	RECOMBINANT BIOPHARMACEUTICALS				9	
	evelopment of biological drugs- Factor VIII - Human					
	, Somatostatin, Hepatitis-B vaccine, Erythropoietin, t-PA, Nov	el proteins, l	nter	leuk	in-2.	
UNIT-III	BIOSIMILARS				9	
	licine-INN nomenclature system - key trends in biosim					nt –
Production of bi	osimilar products -Non clinical and clinical study - Regulatio	n and approv	val pi	roce	ss.	
UNIT-IV	LYOPHILIZATION AND PRODUCT ANALYSIS				9	
	Lyophilization equipment –schematic diagram of lyophilizer, Triple point, applications. Endotoxin and other pyrogenic contaminants-LAL test, Rabbit test.					
UNIT-V	DOSAGE FORMS AND CONTROLLED RELEASE MI	EDICATIO	N		9	
Formulation of	tablet -Gelatin capsules-Hard gelatin capsule, Soft gela	tin capsule,	Sus	spen	sion	and

Emulsion	n, Controlled release medication -oral osmotic pump and osmoti	c pressure activate	ed drug	deliver
systems.	Transdermals.	-	-	
-		Contact	:	45
		Hours		
Course (Outcomes:			
On comp	letion of the course, the students will be able to			
•	Apply the knowledge of clinical trial and develop new drugs	3		
	Develop production techniques and evaluate the commercial		ey reco	ombinan
•	drugs	-	-	
٠	Investigate the methodologies and regulatory processes invo biosimilars.	lved in the develo	pment	of
٠	Apply the principle of lyophilization to preserve the bioprod	lucts.		
•	Design and develop innovative dosage forms and advanced	controlled release	drug de	elivery
•	systems		-	
Suggeste	ed Activities			
٠	Case studies			
Suggeste	ed Evaluation Methods			
•	Quizzes			
•	Class Presentation / Discussion			
Text Boo	ok(s):			
•	Walsh, G., "Pharmaceutical Biotechnology-Concepts and A	pplication", John	Wiley	and Son
•	Publishers, 2007.		-	
•	Crommelin, D.J.A., Sindelar, R.D. and Meibohm, B.,	"Pharmaceutical	Biotec	hnology
•	Fundamentals and application", 3rd Edition, Informa Health	care, 2007.		
•	Schijns, V.E.J.C. and Ohagan, D.T., "Immunopotentiator	s in Modern Vac	cines",	Elsevie
•	academic press, 2006			
٠	K D Tripathi: Essentials of Medical Pharmacology.			
Reference	ce Books(s) / Web links:			
٠	Carter, S.J., "Cooper and Gunn's Dispensing for Pharmaceu Distributors, 2008.	tical Students", CI	3S Pub	lishers a
•	Gad, S.C., "Handbook of Pharmaceutical Biotechnology" Jo	ohn Wiley & sons,	2007.	
•	Reminton .The Science and Practice of Pharmacy, 21st editi			

РО	PO1	PO2	PO3	PO4
CO				
BY23213.1	2	3	3	3
BY23213.2	2	3	3	3
BY23213.3	2	3	3	3
BY23213.4	3	3	3	3
BY23213.5	2	3	3	3
Average	2	3	3	3

BY23214	IMMUNOTECHNOLOGY	Category 1	L	T	P	C
		PC 3	3	0	0	3
Course objectives:						
This course w	ill enable the students					
To imp	part knowledge of immune cells and their function					
To arti	culate on antigen and antibody interaction					

•	To explain the principle and interpretation of immunological techniques
•	To interpret various types of vaccines and their working principle
•	To familiarize the student in the area of immune therapy

UNIT I INTRODUCTION TO IMMUNE SYSTEM	9
Hematopoiesis- Cells of the immune system and- Primary and secondary lymphoid organs - Immu	nity
and their types - Humoral immune response - Cell mediated immune responses - Inflammation react	
Tolerance – Autoimmunity - Cytokines and Complements- Immune cell markers.	
UNIT-II ANTIGEN AND ANTIBODY REACTION	9
Antigen - Classification of antigen based in chemical and properties. Antibody- Properties	and
classification of antibody - Preparation and characterization of polyclonal and monoclonal antibodi	es –
Purification of antibody - Analysis of antigen and antibody reactions (Agglutination and precipita	tion
tests ELISA - ELISpot- RIA - Western Blot - Hybridization - Immunofluorescence- Immuno- la	teral
flow assay).	
UNIT-III IMMUNO CELL BASED ASSAY	9
PBMC separation from the blood - Ficoll-hypaque method - Identification of lymphocytes based on	CD
markers - FACS - Lymphoproliferation assay - Cr5I release assay - Macrophage detection assa	ys –
Rosette assay - Cytokine bioassays: IL2, IFNy, TNFa - Mixed lymphocyte reaction - HLA typin	ig –
.Diagnosis of immediate and delayed hypersensitivity- Complement-dependent cytotoxicity as	
.Diagnosis of minediate and delayed hypersensitivity- Complement-dependent cytotoxicity as	
Neutralization assays.	
Neutralization assays. UNIT-IV VACCINE BIOLOGY	say-
Neutralization assays.	say- 9 n) –
Neutralization assays. UNIT-IV VACCINE BIOLOGY Principles in vaccine development – Adjuvant, Immunization (Active and Passive immunization)	say- 9 n) – gens
Neutralization assays. UNIT-IV VACCINE BIOLOGY Principles in vaccine development – Adjuvant, Immunization (Active and Passive immunization) Vaccine validation – Protein based vaccines – DNA vaccines – Edible vaccine – Recombinant antiparticipartintervintenteteeparticiparticiparticiparticipartintervinteteepar	say- 9 n) – gens
Neutralization assays. UNIT-IV VACCINE BIOLOGY Principles in vaccine development – Adjuvant, Immunization (Active and Passive immunization Vaccine validation – Protein based vaccines – DNA vaccines – Edible vaccine – Recombinant anti as vaccines – Multivalent subunit vaccine – Reverse vaccinology –Cancer vaccine – corona vaccine validation – Corona vaccine – Reverse vaccinology –Cancer vaccine – Corona vaccine validation – Corona vaccine – Reverse vaccinology –Cancer vaccine – Corona vaccine – Coron	say- 9 n) – gens
Neutralization assays. UNIT-IV VACCINE BIOLOGY Principles in vaccine development – Adjuvant, Immunization (Active and Passive immunization Vaccine validation – Protein based vaccines – DNA vaccines – Edible vaccine – Recombinant anti as vaccines – Multivalent subunit vaccine – Reverse vaccinology –Cancer vaccine – corona vaccine.	say- 9 n) – gens virus 9
Neutralization assays. UNIT-IV VACCINE BIOLOGY Principles in vaccine development – Adjuvant, Immunization (Active and Passive immunization) Vaccine validation – Protein based vaccines – DNA vaccines – Edible vaccine – Recombinant antial as vaccines – Multivalent subunit vaccine – Reverse vaccinology –Cancer vaccine – corona vaccine. UNIT-V IMMUNOTHERAPEUTICS	say- 9 1) – gens irus 9 uries
Neutralization assays. UNIT-IV VACCINE BIOLOGY Principles in vaccine development – Adjuvant, Immunization (Active and Passive immunization Vaccine validation – Protein based vaccines – DNA vaccines – Edible vaccine – Recombinant antipas vaccines – Multivalent subunit vaccine – Reverse vaccinology –Cancer vaccine – corona vaccine. UNIT-V IMMUNOTHERAPEUTICS Engineered antibodies – Catalytic antibodies, idiotypic antibodies, plantibodies – Combinatorial libration	say- 9 1) – gens irus 9 uries

Course outcomes: Upon completion of the course, the students will be able to					
^	Comprehend the role of the immune system in pathogen elimination				
•	Illustrate advanced immunological techniques and be able to interpret their results				
•	Analyze the immune cells based on CD markers and be able to explain the role of MHC in HLA				
	typing.				
•	Validate the role of vaccine principle and their advancement.				
•	Assess applications of immunotherapy in the modern world.				

Suggested Activities			
•	Discussion sessions		

Suggested Evaluation Methods		
•	Quizzes	
•	Class Presentation	

Text l	books:
•	Goldsby, R.A., Kindt, T. J., Kuby, J. and Osborne, B. A., "Immunology", Fifth Edition, W H
	Freeman, 2006.
•	Abbas, A.K., Lichtman, A.H. and Pillai, S., "Cellular and Molecular Immunology", 6 th Edition,
	Elsevier, 2007.
•	Roitt, Ivan. Essential Immunology, 9 th Ed., BlackwellScientific, 1997.
•	Roitt, I.,Brostoff, J & Male, D.Immunology, 6 th Ed.Mosby, 2001.
•	Goldsby, R.A., Kindt, T.J., Osbome, B.A&Kerby, J. Immunology, 5 th Ed., W.HFreeman,2003.
•	Weir, D.M&Stewart, J.Immunology, 8 th Ed., ChurchillLivingstone, 1997.
Refer	ence books:
•	Fleisher, Dr., "Clinical Immunology Principle", 3rd Edition, Elsevier, 2008.
•	Rabson, A., Roitt, I.M. and Delves, P.J. "Really Essential Medical Immunology". 2 nd Edition,
	Blackwell Publishing, 2005.
•	Domitzer, P.R., Mandl, C.W. and Rappuoli, R., "Replicating Vaccine – A New Generation",
	Springer, 2011.
•	Kenneth Murphy: Janeway'sImmunobiology, 8 th Ed. Garland Science, 2011, ISBN:9780815342434.
•	Ajoy Paul: Immunology, Books & Allied (P) Ltd, Kolkata, 2016. ISBN:978-93-84294-72-4.

PO	PO1	PO2	PO3	PO4
СО				
BY23214.1	2	2	2	2
BY23214.2	3	3	3	3
BY23214.3	2	3	2	3
BY23214.4	2	2	2	2
BY23214.5	2	2	2	2
Average	2.2	2.4	2.2	2.4

BY23215	ADVANCED GENOMICS AND PROTEOMICS	Category	L	Т	Р	С
		PC	3	0	0	3

proteomics in the life sciences. By the end of this course, each student should be: uniliar to the basic biology of modern genomics and the experimental tools that can be used to measure
ble to discuss the key technological developments that enabled modern genomic and proteomics
nderstand principles and technologies for generating genomic information for biotechnological
plications.
ware of the immense volumes of -omics data
arryout genomics and proteomics related research work
b n PF

M.Tech. Biotechnology, Department of BIOTECHNOLOGY, REC

UNIT I	INTRODUCTION TO GENOME AND GENE STRUCTURE	9
Introduction	: Genome, Genomics, Omics and importance, History of genome projects, Organizat	ion and
structure of	genomes in prokaryotes, eukaryotes, and organelles (chloroplast, mitochondrion); C	Genome
mapping me	ethods (Genetic Mapping -i)Cross breeding and pedigree analysis, ii)DNA markers -	RFLPs,
SSLPs, SNI	Ps and Physical Mapping - Restriction mapping, Fluorescent in situ hybridization, Ra	adiation
hybrid mapp	bing and Sequence tagged site mapping); Advances in gene finding and functional predi-	ction.
UNIT II	LARGE SCALE GENOME DATA ANALYSYS/GENOMICS	9
Introduction	of Next Generation Sequencing (NGS). Genome projects: The Human genome	project,
	oject, The 1000 genome project, and The ENCODE Project. Structural genomics: Asser	
a contiguou	is DNA sequence- shotgun method, clone contig method, and whole -genome	shotgun
sequencing,	Computational Algorithm in assembly of sequencing data Genome-wide association	(GWA)
	oplication of Computational method in genetic study; Comparative Genomic Hybrid	
	ssively parallel Signature Sequencing (MPSS); Whole genome shot-gun sequencing	
· ·	. Pharmacogenetics - High throughput screening in genome for drug discovery-identific	ation of
gene targets	, Pharmacogenetics and drug development.	
UNIT III	COMPARATIVE TRANSCRIPTOMICS	9
	ssion analysis by cDNA and oligonucleotide arrays; DNA microarray: understand	
•	(experimental analysis and data analysis), normalizing microarray data, detecting diff	
•	sion, correlation of gene expression data to biological process and computational analys	
	clustering approaches). Methylome analysis using microarray; ChIP-on Chip a	
	ic analysis of large-scale microarray data and RNA-seq data for comparative transcrip	otomics,
2	sis for RNA.	
UNIT IV	COMPARATIVE PROTEOMICS	9
	e proteomics based on global in-vitro and in-vivo labelling of proteins/peptides follo	
·	ometry. Analysis of post translational modification (PTM) of proteins; Protein micro	oarrays.
Application	of Bioinformatics in Proteomics Data analysis.	
UNIT V	METAGENOMICS, PHARMACOGENOMICS, METABOLOMICS	9
	ics: approaches for metagenomics analysis; Functional metagenomics. Different s	
1 0	analyze the metagenomics data. Pharmacogenomics; Genetic variability in drug re	. .
	lications and challenges in Pharmacogenomics; Impact of pharmacogenomics in futu	re drug
developmen	t. Metabolomics and application of MS. Raw data analysis and measurement methods.	
	Total Contact Ho	ours: 45

Course outcomes: Upon completion of the course, the students will be able to

- Illustrate the methods used for genomics and proteomics.
- Apply functional genomics techniques in the laboratory
- Familiar with how the methods are applied in real-life scientific research.
- Review the immense volumes of –omics data
- Develop the methods and approaches in genomics and proteomics areas which help them to carry out cutting edge academic and industrial research

Suggested Activities				
•	Discussion sessions			
•	Lab oriented sessions			
Suggested	Suggested Evaluation Methods			
•	Quizzes			
•	Class Presentation			
•	Assignments			

Tex	tbooks:
•	S.P. Hunt and F. J. Livesey, (2000) Functional Genomics
•	N. K. Spur, B. D. Young, and S. P. Bryant (1998) ICRF Handbook of Genome Analysis Volume 1
	& 2.
•	G. Gibson and S. V. Muse (2002) A primer of Genome Science
•	R. J. Reece (2004) Analysis of Genes and Genomes
•	Rinaldis E. D. And Lahm A (2007) DNA Microarrays. Horizon bioscience.
•	Simpson R. J. "Proteins and Proteomics – A Laboratory Manual"Cold Spring Harbour Laboratory
	Press, 2002
•	Twyman R. M. "Principles of Proteomics". Taylor & Francis, 2004
•	O'Connor C. D. And Hames B. D. "Proteomics". Scion, 2008.
Ref	erence books:
•	Schena M. "Protein Microarrays". Jones and Bartlett, 2005.
•	Smejkal G. B. And Lazarev A. V. "Separation methods in Proteomics". CRC Press, 2006.

PO	PO1	PO2	PO3	PO4
CO				
BY23215.1	2	2	3	3
BY23215.2	3	3	3	3
BY23215.3	3	2	3	3
BY23215.4	3	3	3	3
BY23215.5	3	3	3	3
Average	2.8	2.6	3	3

BY23221	ADVANCED IMMUNOTECHNOLOGY	Category	L	Τ	Р	С
	LABORATORY					
		PC	0	0	4	2
Course ob	jectives: To provide training					
•	To collect blood and to separate serum and plasma.					
•	To analyze the immune cells based on the morphological features					
•	To isolate the lymphocytes and to prepare the microbial antigen for the generation of					
	monoclonal antibody.					
•	To carry out various immune diagnostic assay and to interpret the results					
•	To determine concentration of antigen or antibody the sample u	using the ELISA	ł			

	LIST OF EXPERIMENTS			
1	Total lecukocyte count by using the Leishman & Giemsa stain			
2	Isolation and identification of lymphocytes.			
3	Latex Agglutination Assay			
4	C- Reactive protein assay kit			
5	Purification of IgG by Precipitation Technique			
6	Slide and tube agglutination reaction (Widal test)			

7	Hepatitis B Virus (HBsAg) Test using ELISA	
8	Estimation of cytokines by ELISA	
9	Preparation of a microbial antigen	
10	Determination of the molecular weight of immunoglobin by SDS PAGE.	
11	Characterization of antigens by western blotting	
12	Identification of antigen by Immunofluorescent assay	
13	Complement fixation test	
		Total periods: 60

Course outcomes:

Upon c	Upon completion of the course, the students will be able to				
•	Isolate, identify, and characterize the immune cells.				
٠	Interpret the results of an immunodiagnostic assay with reference to immunology.				
٠	Demonstrate the importance of antigen-antibody interaction in the immunodiagnostic assay.				
٠	Purify the immunoglobin and characterize them.				
•	Articulate the acquired knowledge in immunological research and diagnosis.				

Reference books:

•	Antibodies: A Laboratory Manual, Ed Harlow, David P Lane, Cold Spring Harbor Laboratory
	Press, 2 nd Edition, 1998
•	Current protocols in immunology / editorial board John E. Coligan .et al,. 2003, New York : Wiley
	Interscience,2003
•	Ashim K. Chakravarthy, Immunology, TataMcGraw-Hill, 1998.
•	Noel R. Rose, Herman Friedman, John L. Fahey. Manual of Clinical Laboratory Immunology.
	ASM. 3rd ed., 1986.
•	GP Talwar, A Handbook of Practical & Clinical Immunology, Vol.2, 2 nd edition.
•	Interscience,2003 Ashim K. Chakravarthy, Immunology, TataMcGraw-Hill, 1998. Noel R. Rose, Herman Friedman, John L. Fahey. Manual of Clinical Laboratory Immunology. ASM. 3rd ed., 1986.

PO CO	PO1	PO2	PO3	PO4
BY23221.1	3	3	3	3
BY23221.2	3	3	3	3
BY23221.3	3	3	3	3
BY23221.4	3	3	3	3
BY23221.5	3	2	3	3
Average	3	2.8	3	3

BY23	222	BIOPROCESS AND DOWNSTREAM PROCESSING	Category	L	Т	Р	C
		LABORATORY					
			PC	0	0	6	3
Cours	se object	ives:					
		ns to provide hands on training in Bioprocess and Downstream Proce	essing Lab				
•	To per	form enzyme kinetics and optimization of parameters					
•	To pro	vide expertise on enzyme immobilization techniques and media optin	nization				
•	To perform experiments on different modes of cultivation						
•	• To make the students analyze the different methods involved in isolation, extraction of components,						
	purification and preservation of products.						
•							

LIST O	F EXPERIMENTS
1	Enzyme kinetics, inhibition, factors affecting reaction pH, temperature.
2	Enzyme immobilization studies – Gel entrapment and adsorption immobilisation.
3	Optimization techniques – Plackett Burman, Response surface methodology.
4	Batch cultivation – recombinant <i>E.coli</i> – growth rate, substrate utilization kinetics.
5	Fed batch cultivation -E.coli, Pichiapastoris
6	Batch sterilization design
7	Bioreactor studies: Sterilisation kinetics.
8	kLa determination-sodium sulphite method, power correlation method, residence time distribution
9	Cell separation methods; Centrifugation and microfiltration
10	Ultrasonication
11	Aqueous two phase extraction of biologicals.
12	High resolution purification; Ion exchange, affinity and Gel filtration chromatography, Freeze
	drying
13	Protein precipitation by salting -out method (ammonium sulphate).
14	Aqueous two phase extraction of biologicals.
	TOTAL PERIODS: 90

COU	COURSE OUTCOMES:				
Upon	completion of the course, the students will be able to				
•	Carryout experiments on enzyme kinetics				
•	Perform immobilization techniques and optimization methods				
•	Evaluate the growth kinetics of microorganisms				
•	Execute isolation, extraction and purification techniques				
•	Validate on chromatography techniques				
Refer	Reference books:				
•	Shuler, M.L. and Kargi, F., Bioprocess Engineering: Basic concepts, 2 nd Ed., Prentice-Hall, 2002.				
٠	Doran Pauline M, Bioprocess Engineering Principles, 2 nd Ed., Academic Press, 1995.				

PO	PO1	PO2	PO3	PO4
CO				
BY23222.1	3	2	1	3
BY23222.2	2	3	3	1
BY23222.3	3	3	3	2
BY23222.4	2	1	3	3
BY23222.5	3	2	3	3
Average	2.6	2.2	2.6	2.4

!	Subject Code	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING LABORATORY FOR BIOTECHNOLOGIST	Category	L	Т	Р	С
B	SY23223			0	0	2	1
Ob	jectives:		1				
•		the fundamental usage of machine learning in biotechnology.					
•	Be familia	ar with regression models.					
•		classification based machine learning problems.					
•	Articulate	clustering based machine learning problems.					
•	Apply PC	A and dimensionality reduction in modeling biological datasets.					
		List of Experiments					
1	Linear re	gression					
2	Logistic 1	egression					
3	Single lay	ver perceptron					
4	Multi-lav	er perceptron with back propagation					
5	Decision						
6		K-means					
7		nality reduction – PCA					
/		Contact I	Hours		:	3	0
Co	urse Outco		louis		•	U	0
		of the course, the students will be able to					
•		id usage of machine learning in biotechnology field.					
•		ear regression to model biological datasets.					
•		and and explore the machine learning algorithms with classification.					
•		chine learning algorithms with clustering method on biological data					
•	Apply dee	ep learning algorithms for solving biotechnological problems.					
Sug	gested Act	ivities					
•	Problem so	lving sessions					
Sug		luation Methods					
•	Interactive	Quizzes					
•	Programmi	ng assignments					
Tey	xt Book(s):						
1	Aurélien	Géron - Hands-On Machine Learning with Scikit-Learn, Keras, and	TensorFlow,	2nc	ł		
1	Edition. S	eptember 21019, Reilly Media, Inc., ISBN: 9781492032649.					
2		Aarsland, —Machine Learning – An Algorithmic Perspective, Secor	nd Edition, Cl	nap	mai	n ar	١d
2		Machine Learning and Pattern Recognition Series, 2014.					
3		ev-Shwartz and Shai Ben-David," Understanding Machine Learn	ing: From T	heo	ry	to	
		ns",Cambridge University Press 2014.					
Ref	ference Boo	ks(s) / Web links:	<u> </u>	•			
1	Alex Smo Press 200	la and S.V.N. Vishwanathan," Introduction to Machine Learning", (Cambridge U	nive	ersi	ty	
		o. C. Müller and Sarah Guido," Introduction to Machine Learning with P	vthon A Gui	det	for	Dat	ta
2	Scientists		ymon. A Gui	ue		Du	u
	O'Reilly N	Aedia, Inc. 2016.					
3	S. Russel and P. Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, Prentice Hal						
	$\frac{2009}{C \text{ M Bis}}$	hop, "Pattern Recognition and Machine Learning", Springer, 2007.					
4		ww.coursera.org/lecture/python-machine-learning/introduction-4f2So	2				
5	-	tel.ac.in/courses/106/106/106139/	<u>,</u>				
6	nups://np	te1.ac.111/courses/100/100/100100139/					

PO/PSO CO	PO1	PO2	PO3	PO4
BY23223.1	2	2	3	3
BY23223.2	3	2	3	1
BY23223.3	3	2	3	1
BY23223.4	3	2	3	1
BY23223.5	3	2	2	2
Average	2.8	2	2.8	1.6

PROFESSIONAL ELECTIVES

BY23	P11 BIOMATERIALS	Category	L	Т	Р	С
		PE	3	0	0	3
Cours	e objectives:					
This c	ourse will enable the students to					
•	Learn characteristics and classification of Biomaterials					
•	Understand different metals, ceramics and nanomaterial's characteristics a	s biomaterials				
٠	Learn polymeric materials and its combinations that could be used as a tiss	sue replacemen	nt in	npla	ints	;
٠	Get familiarized with the concepts of host reactions to biomaterials					
•	Understand the concept of biocompatibility for artificial organs					

UNIT I INTRODUCTION TO BIO-MATERIALS	9
Definition and classification of biomaterials, Characterization of biomaterials: mechanical propert	ies,
surface properties, physical properties of materials, wound healing process, body response to impla	nts,
Effects of physiological fluid on the properties of biomaterials, blood compatibility.	
UNIT-II METALLIC, CERAMIC MATERIALS AND POLYMERIC IMPLANT	9
Metallic implants: Stainless steels, co-based alloys, Ti-based alloys, shape memory alloy. Cerai	mic
implant: bioinert, biodegradable or bio resorbable, bioactive ceramics, applications of ceramic a	and
metallic implants. Polymerization, factors influencing the properties of polymers, polyamides, Acryr	ilic
polymers, rubbers, high strength Thermoplastic, Bio polymers: Collagen and Elastin, Medical Texti	les:
Silica, Chitosan, PLA composites, medical applications	
UNIT-III TISSUE REPLACEMENT IMPLANTS	9
Soft tissue replacements, sutures, surgical tapes, adhesive, Percutaneous and skin implants, maxillofac	cial
augmentation, Vascular grafts, hard tissue replacement Implants, Internal fixation device, joint	
replacements.	
UNIT-IV HOST REACTIONS TO BIOMATERIALS	9
- Inflammation; Wound healing and the foreign body response; Systemic toxicity	
Hypersensitivity; Blood coagulation and Blood-materials Interactions; Tumorigenesis. Degradation	ı of
Materials in Biological Environment: Degradation of Polymers, Metals and Ceramics.	
UNIT-V ARTIFICIAL ORGANS AND BIOCOMPATIBILITY	9
Artificial blood, Artificial skin, Artificial Heart, Cardiac pacemaker, Prosthetic Cardiac Valves, Ar	
	blood
lung (oxygenator), Artificial Kidney (Dialyser membrane), Dental Implants. biocompatibility,	
lung (oxygenator), Artificial Kidney (Dialyser membrane), Dental Implants. biocompatibility, compatibility and tissue compatibility. Toxicity tests: acute and chronic toxicity studie	es (in
lung (oxygenator), Artificial Kidney (Dialyser membrane), Dental Implants. biocompatibility,	es (in

Total Contact Hours	:	45

Cours	Course outcomes:			
Upon	Upon completion of the course, the students will be able to			
•	Analyze different types of biomaterials and their classification and apply the concept of			
	nanotechnology towards biomaterials use.			
•	Overcome challenges in developing metallic and ceramic materials			
•	Identify significant gap to redress challenges in the development of polymeric materials			
•	Create combination of materials that could be used as a tissue replacement implant			
•	Analyze the testing standards applied for biomaterials.			

Text books:

٠	Sujata V. Bhatt, Biomaterials, Second Edition, Narosa Publishing House, 2005.
•	Sreeram Ramakrishna, MuruganRamalingam, T. S. Sampath Kumar, and Winston O. Soboyejo,
	Biomaterials: A Nano Approach, CRC Press, 2010.

Refer	ence books:
•	Myer Kutz, Standard Handbook of Biomedical Engineering and Design, McGraw Hill, 2003
•	John Enderle, Joseph D. Bronzino, Susan M.Blanchard, Introduction to Biomedical Engineering,
	Elsevier, 2005.
•	Park J.B., Biomaterials Science and Engineering, Plenum Press, 1984.
•	A.C Anand, J F Kennedy, M.Miraftab, S.Rajendran, Woodhead Medical Textiles and Biomaterials
	for Healthcare, Publishing Limited 2006.
•	D F Williams, Materials Science and Technology: Volume 14, Medical and Dental Materials: A
	comprehensive Treatment Volume, VCH Publishers 1992.

SUGGESTED EVALUATION METHODS

- Assignment/Case study
- Quizzes
- Class Presentation/Discussion
- Continuous Assessment Tests

PO CO	PO1	PO2	PO3	PO4
BY23P11.1	3	2	3	2
BY23P11.2	2	2	3	2
BY23P11.3	2	2	3	2
BY23P11.4	3	2	3	2
BY23P11.5	3	2	3	2
Average	2.6	2	3	2

BY23	P12 ANALYTICAL TECHNIQUES IN BIOTECHNOLOG	Y	Category	L	Т	Р	C
			PE	3	0	0	3
Cours	e objectives:						
This c	purse will enable the students						
•	To get basic knowledge about the principle and methods of protein cr	ystalliz	zation and u	se o	of n	nicı	ro
	fluidics enables crystallization of protein that is available in very small	amour	nt.				
•	• To acquire knowledge on the different chromatographic methods, immune precipitation and for						
	separation of biological compounds which can be used for high-end research?						
•	• To understand the principle behind 2D gel electrophoresis, the different staining methods and their						
	use in estimating the molecular weight of proteins.						
•	• To understand the construction and application of various types of microscopy.						
٠							
	characterization of the purified proteins.						

ological macro-molecules – Principle of protein crystallization – Method – Testing – Cryotechniques nfluence of heterogeneity on crystallization – Progress in structural genomics – Micro crystallization – lity of microfluidics for crystallization NT-II PROTEIN AND PEPTIDE PURIFICATION 9
lity of microfluidics for crystallization NT-II PROTEIN AND PEPTIDE PURIFICATION 9
NIT-IIPROTEIN AND PEPTIDE PURIFICATION9
romatographic methods for protein and peptide purification – Multidimensional chromatography –
gh throughput screening of soluble recombinant proteins – Immunoprecipitation – Affinity
romatography for antibody purification – Role of reverse phase HPLC in proteomic research.
NT-IIIELECTROPHORETIC TECHNIQUES9
ategies – Separation of proteins using 2D gel electrophoresis – Electrophoresis method for purifying
oteins – <i>in situ</i> enzyme detection – Staining method – Separation of peptide mixture – Pulse field gel
ctrophoresis – Denaturing gradient gel electrophoresis
NT-IV MICROSCOPY 9
croscopy with light and electrons - Electrons and their interaction with the specimen - Electron
fraction
Instrument, specimen preparation and application of TEM and SEM – Fluorescence microscopy –
ser confocal microscopy – Phase contrast – Video microscopy – Scanning probe microscopy.
NT-V SPECTROSCOPY 9
thods for characterizing purified proteins - IR absorption process, IR spectrometer and sample
paration
Instrumentation and applications of UV – Over view of mass spectrometry, ionization methods,
ss analysis, detection and quantitation – Circular dichroism (CD) spectroscopy – NMR – Fourier
nsform infrared spectroscopy (FTIR).
Total Contact Hours : 45

Cour	Course outcomes:				
Upon	completion of the course, the students will be able to				
•	Apply protein crystallography principles and techniques for structural genomics and crystallization				
	advancements in biotechnology.				
•	Develop proficiency in chromatographic methods for purification of proteins, peptides, and				
	antibodies in proteomic research.				
•	Employ electrophoretic techniques for separation and detection of proteins.				
•	Acquire skills on instrumentation and applications of microscopic techniques for sample analysis.				

12

• Demonstrate various spectroscopic methods for characterization of proteins.

Text l	Text books:				
•	Bhowmik, G. and Bose, S., "Analytical Techniques in Biotechnology", Tata McGraw-Hill				
	Publishers, 2011.				
•	Simpson, R.J., "Purifying Proteins for Proteomics", Cold Spring Harbor Lab Press, 2004.				
Refer	Reference books:				

•	Chandler, D. and Roberso, R.W., "Bioimaging: Current Techniques in Light & Electron
	Microscopy", Jones and Bartlett publishers, 2008.
•	Babine, R.E. and Abdel-Meguid, S.S., "Protein Crystallography in Drug Discovery", Willy-VCH
	Verlag GmbH& Co., 2004.

Pavia, D.L., Lampman, G.M., Kriz, G.S. and Vyvyan, J.R., "Introduction to Spectroscopy", 4th • Edition, Brooks/Cole Cengage Learning, 2008.

SUGGESTED EVALUATION METHODS

- Assignment/Case study •
- Quizzes •
- Continuous Assessment Tests

PO CO	PO1	PO2	PO3	PO4
BY23P12.1	2	3	3	2
BY23P12.2	2	3	3	2
BY23P12.3	2	3	3	2
BY23P12.4	2	3	3	2
BY23P12.5	2	3	3	2
Average	2	3	3	2

BY23P	13 FOOD PROCESSING AND TECHNOLOGY	Category	L	Т	Р	C
		PE	3	0	0	3
Course objectives:						
This co	urse will enable the students					
• To know about the constituents and additives present in the food.						
• To gain knowledge about the microorganisms, which spoil food and food borne diseases.						
•	To comprehend different techniques used for the preservation of foods					

• To comprehend different techniques used for the preservation of foods.

UNIT I FOOD CHEMISTRY

Constituent of food - water, carbohydrates, lipids, proteins, vitamins and minerals, dietary sources, role and functional properties in food, contribution to texture, flavor and organoleptic properties of food; food additives - intentional and non-intentional and their functions. 8

UNIT-II FOOD MICROBIOLOGY

Food fermentation; food chemicals and enzymes; food borne diseases - infections and intoxications,

Microbiology and spoilage of milk & milk products, meat, fish, poultry & egg, fruits & vegetable, confectionary.

UNIT-III FOOD PROCESSING OPERATIONS AND PRESERVATION

Raw material characteristics; cleaning, sorting and grading of foods; physical conversion operations – mixing, emulsification, extraction, filtration, centrifugation, membrane separation, crystallization, heat processing. Use of high temperatures – sterilization, pasteurization, blanching, canning; evaporation and drying; frozen storage – freezing curve characteristics. Factors affecting quality of frozen foods; irradiation preservation of foods and preservation using chemicals.

UNIT-IV MANUFACTURE OF FOOD PRODUCTS

Bread and baked goods, dairy products – milk processing, cheese, butter, ice-cream, vegetable and fruit products; edible oils and fats; meat, poultry and fish products; beverages.

UNIT-V APPLIED FOOD SCIENCE AND QUALITY MANAGEMENT

Concept of balanced Diet, Food Groups: Food adulteration- common adulterants, techniques used identify the food adulterants, Food quality and Safety Management System- ISO 22000, GMP, GHP, HACCP, FSMS, FSSAI, Entrepreneurial development- Business opportunity Identification, Assessment, development of entrepreneurial skills and become a successful entrepreneur.

Total Contact Hours:45

8

8

9

Course outcomes:

Upon completion of the course, the students will be able to

- Apply the techniques followed in food processing
- Integrate food fermentation & the role of enzymes in food processing
- Learn about different fermented foods produced
- Work with different preservation techniques and aware of food spoilage
- Comprehend the process of quality control in foods

Text books:

- Fellows, P.J., "Food Processing Technology: Principles and Practice", 3rd Edition, CRC Press, 2009.
- Pometto A, Shetty K, Paliyath G and Levin R. E., "Food Biotechnology", 2nd Edition, CRC press, 2005.

Reference books:

- Hutkins R. W., "Microbiology and Technology of Fermented Foods", IFT Press series, Volume 32 of Institute of Food Technologists Series, Wiley-Blackwell, 2006.
- ZeuthenP. and Bogh-Sorensen, L., "Food Preservation Techniques", 1stEdition, CRC Press, 2003.
- Adams M., Adams M. R. and Robert Nout M. J., "Fermentation and food safety", Springer, 2001.
- Da-Wen S., "Emerging Technologies for Food Processing", Academic Press, 2005.
- Coultate, T.P. Food The chemistry of its components, 2nd Ed., Royal society, 1992.
- Sivasankar, B. Food processing and preservation, Prentice Hall of India Pvt. Ltd., 2002.
- Fennema, O.R. Principles of food science: Part I, Food chemistry, Marcel Dekker, 1976.
- Frazier, W.C. &Westhoff, D.C. Food Microbiology, 4th Ed. McGram-Hill Book Co., 1988.
- Brenner, J.G., Butters, J.R., Cowell, N.D. & Lilly, A.E.V. Food Engineering Operations, 2nd Ed., Applied Sciences Pub. Ltd., 1979.
- Pyke, M. Food Science and Technology, 4th Ed., John Murray, 1981.

SUGGESTED EVALUATION METHODS

- Assignment/Case study
- Quizzes
- Class Presentation/Discussion
- Continuous Assessment Tests

PO	PO1	PO2	PO3	PO4
CO				
BY23P13.1	2	2	3	3
BY23P13.2	2	2	3	3
BY23P13.3	2	1	1	3
BY23P13.4	3	2	2	3
BY23P13.5	2	1	_	3
Average	2.2	1.6	1.8	3

	BIONANOTECHNOLOGY	Category	L	Т	P		
		PE	3	0	0		
Course of							
	e will enable the students						
	To understand Biological Assembly/Structures in nanoscale						
	know principles of structural and functional bionanotechnology						
• To	gain knowledge on artificial bio assemblies.						
• To	understand Biomimetic fabrication						
• To	understand the concept of nanomedicine, nanopharmaceuticals and biona	nosensor.					
UNIT I	BIOLOGICAL ASSEMBLY AND STRUCTURES ATTHENANO-	SCALE			9		
Concepts	n nanotechnology – Interface between Nanotechnology and Biotechnolog	gy – Theoret	ical	bas	is		
for Self-A	ssembly – Combination of Bionanotechnology and Nanobiotechnology	– Self-Asser	nbly	v ar	nd		
	anization of bacterial S-Layers, Viruses, Phospholipids membrane, Fi						
	cids, Oligosaccharides and Polysaccharides, Amyloid Fibrils, Silk, Ril						
	rough Self- Assembly – Affinity and Specificity of Biological Interaction						
	Sensors of Recognition.						
UNIT-II	STRUCTURAL AND FUNCTIONAL PRINCIPLES OF				9		
	BIONANOTECHNOLOGY				-		
Biomoleci	lar structure and stability – Protein folding – Self-assembly – Self-orga	nization – N	lole	cul	ar		
	n – Flexibility – Information – Driven nanoassembly – Energetics – Chem						
	n – Biomaterials – Biomolecular motors – Traffic across membranes – Bi						
-	cation – Machine-phase bionanotechnology.			8			
UNIT-III				<u> </u>	9		
	tal strategies of porinMspA as a Nanotemplate – Nanostructuring	by deposit	ion	of	-		
Experimen	ntal strategies of porinMspA as a Nanotemplate – Nanostructuring				the		
Experimer MspApori	n MspA-Nanochannels generated by the porin/polymer-template Met	thod – Pori	n-T	ran	the spor		
Experimen MspApori Assay – S	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im	thod – Pori mobile DNA	n-T A Ju	rans	the the spor		
Experimen MspApori Assay – S Order in	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S	thod – Pori mobile DNA S-Layer-Spec	n-T A Ju	rans	the the spor		
Experimen MspApori Assay – S Order in polysacch	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobioted	thod – Pori mobile DNA S-Layer-Spec	n-T A Ju	rans	the spor ions		
Experimen MspApori Assay – S Order in polysacch UNIT-IV	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobioted DNA-BASED NANOSTRUCTURES	thod – Pori mobile DNA S-Layer-Spec chnology.	n-T A Ju cific	rans inct He	the spor ions etero		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobiotec DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan	thod – Pori mobile DNA S-Layer-Spec chnology.	n-T A Ju vific A-E	rans inct He Base	the spor ions etero 9 ed		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot Nanoelect	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobiotec DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan ronics - Biomimetic fabrication of DNA based metallic nanowires and ne	thod – Pori mobile DNA S-Layer-Spec chnology. owires - DN etworks – DI	n-T A Ju vific A-E	rans inct He Base	the spor ions etero 9 ed		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot Nanoelect nanopartic	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobioted DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan ronics - Biomimetic fabrication of DNA based metallic nanowires and ne le conjugates – Nanoparticles as non-viral transfection agents - Nanocomp	thod – Pori mobile DNA S-Layer-Spec chnology. owires - DN etworks – DI puting.	n-T A Ju vific A-E	rans inct He Base	the spor ions etero <u>9</u> ed ld		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot Nanoelect nanopartic UNIT-V	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobiotec DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan ronics - Biomimetic fabrication of DNA based metallic nanowires and ne le conjugates – Nanoparticles as non-viral transfection agents - Nanocom NANOMEDICINE, NANOPHARMACEUTICALS AND NANOSI	thod – Pori mobile DNA S-Layer-Spec chnology. owires - DN etworks – DI puting. ENSING	n-T A Ju xific A-E NA-	rans Inct He Base Go	the spor ions etero 9 ed ld		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot Nanoelect nanopartic UNIT-V Relationsh	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobiotec DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan ronics - Biomimetic fabrication of DNA based metallic nanowires and ne le conjugates – Nanoparticles as non-viral transfection agents - Nanocom NANOMEDICINE,NANOPHARMACEUTICALS AND NANOSI ips of biotechnology, nanotechnology, and medicine – Promising nan	thod – Pori mobile DNA S-Layer-Spec chnology. owires - DN etworks – DI puting. ENSING obiotechnologi	n-T A Ju cific A-E NA-	rans inct He Base Go Co	the sportions eteror 9 ed ld 9 or		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot Nanoelect nanopartic UNIT-V Relationsh application	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobioted DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan ronics - Biomimetic fabrication of DNA based metallic nanowires and ne le conjugates – Nanoparticles as non-viral transfection agents - Nanocom NANOMEDICINE,NANOPHARMACEUTICALS AND NANOSI ips of biotechnology, nanotechnology, and medicine – Promising nan as in medicine – Role of nanotechnology in methods of treatment – Nan	thod – Pori mobile DNA S-Layer-Spec chnology. owires - DN etworks – DI puting. ENSING obiotechnolo omedicine a	n-T A Ju cific A-E NA-	rans inct He Base Go cs fe	the sportions etero <u>9</u> ed ld <u>9</u> or		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot Nanoelect nanopartic UNIT-V Relationsh application to therape	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobioted DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan ronics - Biomimetic fabrication of DNA based metallic nanowires and ne le conjugates – Nanoparticles as non-viral transfection agents - Nanocomp NANOMEDICINE,NANOPHARMACEUTICALS AND NANOSI ips of biotechnology, nanotechnology, and medicine – Promising nan ns in medicine – Role of nanotechnology in methods of treatment – Nan utic areas – Nano-Sized Carriers for Drug Delivery and drug carrier syste	thod – Pori mobile DNA -Layer-Spec chnology. owires - DN etworks – DN puting. ENSING obiotechnolo omedicine a ems – Gene a	n-T A Ju rific A-F NA- Dogie	rans inct He Base Go cs fe rdir Dru	the spor ions etero 9 ed ld 9 or ng		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot Nanoelect nanopartic UNIT-V Relationsh application to therape delivery s	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobioted DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan ronics - Biomimetic fabrication of DNA based metallic nanowires and ne le conjugates – Nanoparticles as non-viral transfection agents - Nanocom NANOMEDICINE,NANOPHARMACEUTICALS AND NANOSI ips of biotechnology, nanotechnology, and medicine – Promising nan the in medicine – Role of nanotechnology in methods of treatment – Nan tic areas – Nano-Sized Carriers for Drug Delivery and drug carrier syste system with soluble inorganic carriers – Cellular behaviors during drug de	thod – Pori mobile DNA -Layer-Spec- chnology. owires - DN etworks – DN puting. ENSING obiotechnole omedicine a ems – Gene a livery – Nar	n-T A Ju rific A-F NA- Dogie	rans inct He Base Go cs fe rdir Dru	<pre>interpretation of the second sec</pre>		
Experimen MspApori Assay – S Order in polysacch UNIT-IV DNA-Prot Nanoelect nanopartic UNIT-V Relationsh application to therape delivery s	n MspA-Nanochannels generated by the porin/polymer-template Met caffolds as Quantum dots, Organic Chains, polymers, DNA structures, Im DNA and Proteins – Genetically Engineered S-Layer Proteins and S arides –Versatile molecular construction kit for applications in Nanobiotec DNA-BASED NANOSTRUCTURES ein nanostructures – Effective Models for Charge Transport in DNA Nan ronics - Biomimetic fabrication of DNA based metallic nanowires and ne le conjugates – Nanoparticles as non-viral transfection agents - Nanocom NANOMEDICINE,NANOPHARMACEUTICALS AND NANOSI ips of biotechnology, nanotechnology, and medicine – Promising nan as in medicine – Role of nanotechnology in methods of treatment – Nan utic areas – Nano-Sized Carriers for Drug Delivery and drug carrier syster system with soluble inorganic carriers – Cellular behaviors during drug de ng Molecules, Cells, Materials – Bionanosensors in Bioanalytical Technol	thod – Pori mobile DNA -Layer-Spec- chnology. owires - DN etworks – DN puting. ENSING obiotechnole omedicine a ems – Gene a livery – Nar	n-T A Ju ific A-F NA- Dogie and nose	rans inct He Base Go cs fe rdir Dru	<pre>interpretation of the second sec</pre>		

Course outcomes:

Upon completion of the course, the students will be able to

- Apply the concept of bionanotechnology.
- Relate the principle of bionanotechnology.
- Apply the knowledge of bio assemblies to design new device.
- Integrate the concept of biomimetic fabrication
 - Apply the knowledge of nanotechnology in medicine, pharmaceuticals and biosensors

Text books:

- Niemeyer, C.M. and Mirkin, C.A., "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley- VCH, 2004.
- Goodsell, D.S., "Bionanotechnology", John Wiley and Sons, 2004.

Reference books:

- Shoseyov, O. and Levy I., "Nanobiotechnology: Bioinspired Devices and Materials of the Future", Humana Press, 2007.
- Bhushan, B., "Springer Handbook of Nanotechnology", Springer-Verlag Berlin Heidelberg, 2004.
 Freitas Jr, R.A., "Nanomedicine", Vol. II, 1st Edition, Landes Biosciences, 2004.
- Kohler, M. and Fritzsche, W., "Nanotechnology An Introduction to Nanostructuring Techniques",
- Wiley-VCH, 2004.
- Rosenthal, S.J. & Wright, D. W. NanoBiotechnology Protocols (Methods in Molecular Biology), 1stEd, Humana Press, 2005.
- Madhuri, S., Maheshwar, S., Pandey, S. &Oza, G. Bio-Nanotechnology Concepts and applications, 1st Ed, Ane Books Pvt Ltd, 2012.
- Clarke, A.R. &Eberhardt, C.N. Microscopy Techniques for Material Science, 1stEd, CRC Press, 2002.

SUGGESTED EVALUATION METHODS

- Assignment/Case study
- Quizzes
- Class Presentation/Discussion
- Continuous Assessment Tests

PO CO	PO1	PO2	PO3	PO4
BY23P14.1	2	3	3	2
BY23P14.2	2	3	3	2
BY23P14.3	2	3	3	2
BY23P14.4	2	3	3	2
BY23P14.5	2	3	3	2
Average	2	3	3	2

BY23P15	ADVANCES IN ANIMAL BIOTECHNOLOGY	Category	L	Т	Р	С	
		PE	3	0	0	3	
Course objec	Course objectives:						
This course w	ill enable the students						
• To understand the fundamentals of animal cell culture, details of the diseases and therapy							
To pro	To provide the knowledge about the micromanipulation and transgenic animals						

CELL CULTURE TECHNOLOGY UNIT I

12

5

12

7

History and Scope of Animal Biotechnology, primary and secondary cell culture, cell lines, Scaling up of animal cell culture-monolayer culture: Multiarray disks, spirals and tubes; Roller culture; Microcarriers; Perfused monolaver cultures; Membrane perfusion; Hollow fibre perfusion; Matrix perfusion; Microencapsulation, Suspension culture: Fluidized bed reactors for suspension, Air-lift fermentor, Chemostat/Turbidostat, Bioreactor process control. Chicken embryo fibroblast culture, Chicken liver and kidney culture.

THERAPEUTIC PRODUCTS FROM ANIMAL CELL CULTURE UNIT-II

Animal Biotechnology for production of regulatory proteins, blood products, viral vaccines, hormones and other therapeutic proteins, Hybridoma technology. 9

UNIT-III | MOLECULAR BIOLOGY AND GENETIC ENGINEERING

Types of animal viral vectors- SV40, adeno virus, retrovirus, vaccinia virus, herpes virus, adeno associated virus and baculo virus. Molecular diagnostics for detection of animal diseases -PCR, Nucleic acid hybridization, DNA based methods for identification of animal species, DNA biosensor chips for GMO detection. Metagenomics in animal gastro intestinal ecosystems.

UNIT-IV REPRODUCTIVE BIOTECHNOLOGY

Biotechnological approaches to reproduction, methodology of super ovulation, Oestrus Synchronization and Timed Artificial Insemination, preparation of sperm for IVF; In vitro maturation; Fertilization and culture of embryos; embryo splitting, embryo sexing by different methods and their limitations; Genetics and Epigenetic alterations involved in Assisted Reproductive Technologies (ARTs), Multiple Ovulation and Embryo Transfer; Rate of Genetic Improvement using AI, MOET, ONBS; Embryo transfer in large and small ruminants. Laparoscopic and Laparoscope guided ET. Cryopreservation of sperm and embryos.

UNIT-V APPLICATIONS

Knockout mice and mice model transgenesis- methods of transferring genes into animal oocytes, eggs, embryos and specific tissues by physical, chemical and biological methods; Transgenic animals (Mice, Cows, Pigs, Sheep, Goat, Birds and Insects); Biopharming, application of stem cells in animal biotechnology.

Total Contact Hours 45 :

C	
Cours	se outcomes:
Upon	completion of the course, the students will be able to
٠	Learn the scope of animal biotechnology and develop cell culture based products
•	Design animal cell culture based bioreactors
٠	Create molecular tools like probes and diagnose animal diseases
•	Analyze the efficiency of different gene transfer methods and gain knowledge on
	micromanipulation technology.
٠	Relate the use of different transgenic animals in various research areas.
Text l	books:
•	Watson, J.D., Gilman, M., WitowskiJ.andZoller, M. Recombinant DNA, 2nd ed., Scientific
	American Books, 1983

٠	Lewin, B. Genes VIII, Pearson Prentice Hall, 2004
	Davis J.M. Basic Cell Culture: A Practical Approach, IRL Press, 1998 5. Freshney R.I. Animal Cell Culture- a practical approach, 1987
•	Freshney R.I. Animal Cell Culture- a practical approach, 1987

Reference books:

- Portner R Animal cell biotechnology: Methods and Protocols, Humana Press, 2014.
 - Glick, B.R. and Pasternack, J.J. Molecular Biotechnology, 3rd ed., ASM Press, 2003

1	PO	PO1	PO2	PO3	PO4
	CO				
	BY23P15.1	3	1	3	2
	BY23P15.2	-	2	2	3
	BY23P15.3	1	3	2	1
	BY23P15.4	3	2	3	1
	BY23P15.5	2	3	3	1
	Average	2	2	3	2

BY23	P16 ONCOGENETICS	Category	L	Т	Р	С		
			3	0	0	3		
Cours	Course objectives:							
•	• To enable the students to know cell cycle dys regulation in cancer and various stages of carcinogenesis.							
•	To understand the molecular basis of cancer and propose new treatment options for cancer patients							

UNIT I	PRINCIPLES OF CANCER BIOLOGY	9
	efinition, causes, properties, classification, clonal nature – Cell Cycle: Regulation of cell cyc	
cell prolife	eration and apoptosis - Signal transduction pathways - Apoptosis: apoptotic pathways, sig	nal
molecules,	effects on receptor, signal switches - Modulation of cell cycle in cancer - Mechanism	of
spread.		
UNIT-II	PRINCIPLES OF CARCINOGENESIS	9
Cancer rish	x factors – Theory of carcinogenesis – Chemical carcinogenesis – Physical carcinogenesis: x	k-ray
radiation -	mechanisms of radiation carcinogenesis - Stages of cancer: initiation, promotion, progressi	on.
UNIT-III	MOLECULAR BIOLOGY OF CANCER	9
Signal targ	gets and cancer – Growth factors – Transformation – Activation of kinases – Oncogenes:	C-
Myc, Ras,	Bcl-2 family - Mechanism of oncogene activation - Retroviruses and oncogenes - Detecti	on
of oncoger	nes - Oncogenes/proto oncogene activity - Tumor suppressor genes: Rb, p53, APC, BRC	CA
paradigms.	Telomerases.	
UNIT-IV	CANCER METASTASIS	9
Clinical si	gnificances of invasion – Heterogeneity of metastatic phenotype – Metastatic casca	de:
basement	membrane disruption, invasion - Recent approach to identify key factors controlling	ing
	– Angiogenesis.	-
UNIT-V	CANCER THERAPY	9

Therapy forms – Surgery, chemotherapy, radiation therapy - Detection of cancers – Prediction of						
aggressiveness of cancer – Advances in cancer detection – Tumor markers; New approaches of cancer						
therapy mAbs, vaccines, gene therapy, stem cell therapy.						
	Total Contact Hours	:	45			

Cours	Course outcomes:				
Upon	Upon completion of the course, the students will be able to				
•	Describe signal transduction pathways and cell cycle in cancer				
•	Analyze the risk factors and stages of cancer				
•	Integrate oncogenes and tumour suppressor genes				
٠					
•	Analyse chemo, radiation and advanced therapy for cancer				

Text books:						
•	Ruddon, R.W., "Cancer Biology", 2 nd Edition, Oxford University Press, 2007					
•	Weinberg, R.A., "The Biology of Cancer", Taylor & Francis, Garland Science, 2007					

Refer	Reference books:					
•	Schulz, W.S., "Molecular Biology of Human Cancers – An Advanced Students Text Book",					
	Springer, 2005.					
•	Pelengaris, S. and Khan, M., "The Molecular Biology of Cancer", Blackwell Publishing, 2006.					
•	• Fialho, A. and Chakrabarty, A., "Emerging Cancer Therapy: Microbial Approaches and					
	Biotechnological Tools" 1 st Edition, Wiley, 2010.					

PO	PO1	PO2	PO3	PO4
CO				
BY23P16.1	3	2	3	2
BY23P16.2	3	2	3	3
BY23P16.3	3	2	3	3
BY23P16.4	3	2	3	2
BY23P16.5	3	2	3	3
Average	3	2	3	2.6

BY23	P17	PLANT TISSUE CULTURE AND GENE MANIPULATION	Category	L	T	Р	С
			PE	3	0	0	3
Cours	Course objectives:						
•	• To enable the students to understand details of plant cells, genome and their functions						
•	 To provide the basics of agrobacterium and applications of plant biotechnology. 						

UNIT I INTRODUCTION TO PLANT MOLECULAR BI	OLOGY	9
Genetic material of plant cells, nucleosome structure and its biologic	cal significance; transposons,; outlir	ne
of transcription and translation, alternative and trans splicing, con-	stitutive and differentially expresse	ed
genes in plants.		
UNIT-II CHLOROPLAST AND MITOCHONDRIA		9
Structure, function: Light and dark reaction and genetic materia coordination, regulation and transport of proteins. Mitochondria: Ge import of proteins, comparison and differences between mitoc chloroplast transformation.	nome, cytoplasmic male sterility ar	nd
UNIT-III PLANT METABOLISM AND METABOLIC ENG	INEERING	9
Nitrogen fixation, Nitrogenase activity, nod genes, nif genes, bacto	eroids, plant nodulins, production	of
secondary metabolites, flavanoid synthesis and metabolic engineerir		
UNIT-IV AGROBACTERIUM AND PLANT VIRUSES		9
Pathogenesis, crown gall disease, genes involved in the pathogeness in genetic engineering. Plant viruses and different types, Viral Vector virus, viral vectors and its benefits, vectors used for plant transfor identification.	ors: Gemini virus, cauliflower mosa	ic
UNIT-V APPLICATIONS OF PLANT BIOTECHNOLOGY	ζ	9
Outline of plant tissue culture, transgenic plants, herbicide and pest	resistant plants, molecular pharming	z,
therapeutic products, RNA i, Transgene silencing ,ethical issues.		
inerapeutic products, KNA I, Transgene shehcing ,eulical issues.		

SUGGESTED EVALUATION METHODS

- Assignment/Case study
- Quizzes
- Class Presentation/Discussion
- Continuous Assessment Tests

Course outcomes:					
Upon completion of the course, the students will be able to					
Relate the fundamentals of plant cells, structure and functions					
Articulate nitrogen fixation mechanism and significance of viral vectors					
Organize viral vectors and agrobacterium based vectors in creating transgenic plants					
Review the plant tissue culture and transgenic plants					
Design methods for the development of therapeutic products					
Text books:					
• Grierson D. and Covey, S.N. Plant Molecular Biology, 2 nd ed.,Blackie,1988					
• Slater A et al. Plant Biotechnology : The Genetic Manipulation of Plants, Oxford University Press, 2003 (1 st and 2 nd edition)					
• Gamburg O.L., Philips G.C. Plant Tissue & Organ Culture: Fundamental Methods. Narosa, 1995.					
• Heldt, Hans-Walter, Plant Biochemistry & Molecular Biology, Oxford University Press, 1997.					
Reference books:					
Wilkins M.B .Advanced Plant Physiology, ELBS, Longman, 1987.					

PO	PO1	PO2	PO3	PO4
CO				
BY23P17.1	2	2	3	3
BY23P17.2	2	2	3	3
BY23P17.3	2	2	3	3
BY23P17.4	2	2	3	3
BY23P17.5	2	2	3	3
Average	2	2	3	3

BY23P1	8 BIOCONJUGATE TECHNOLOGY AND APPLICATIONS	Category	L	Τ	P
		PE	3	0	0
Objectives	· · · · · · · · · · · · · · · · · · ·				
	lerstand the derivatization processes of amino acids in proteins				
• To den	nonstrate about the active functionalities and their derivatization				
• To app	bly knowledge about bioconjugate reagents.				
 To exp 	plain enzyme and nucleic acid modification and their conjugation				
• To cre	ate strategies for the preparation of various conjugates and their applicati	ons			
UNIT-I	FUNCTIONAL TARGETS				9
conformati	mino acids – Important functional groups of polypeptide – Prot on and activity of proteins – Oxidative modifications of Pro, Arg, Lys, T of protein oxidation CHEMISTRY OF ACTIVE GROUPS				
	CHEMISTRY OF ACTIVE GROUPS ctional groups – Derivatization of sugars, polysaccharides, and glycoc	oniugatas	۸ ۳۰	inc	-
	Photoreactive chemical reactions.	- conjugates	AII	ime	,
i moi, and					
INIT_III					0
Zero lengti bifunctiona					
Zero lengt bifunctiona Definition,	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct	ional cross-l)
bifunctiona Definition, UNIT-IV Characteris	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems.	ional cross-l GATION ivated enzy	inke mes	ers -	9 r
Zero lengt bifunctiona Definition, UNIT-IV Characteris conjugation	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act	ional cross-l GATION ivated enzy	inke mes	ers -	9 r
Zero lengt bifunctiona Definition, UNIT-IV Characteris conjugation to DNA.	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act	ional cross-l GATION ivated enzy	inke mes	ers -	9 r
Zero lengt bifunctiona Definition, UNIT-IV Characteris conjugation to DNA. UNIT-V Preparation Immunoto>	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides of cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJUTICS of common enzymes used for conjugation – Preparation of act n – Chemical modification of nucleic acids – Biotin labeling of DNA – I BIOCONJUGATE APPLICATIONS a of hapten-carrier immunogen conjugates – Antibody modification kin conjugation techniques – Conjugation of protein to liposome – Preploidal gold – Preparation of colloidal gold-labeled proteins and their apple	ional cross-l GATION ivated enzy Enzyme con and conjug paration of o lications.	mes juga gatic	fo fo ttion	9 r n 9 r
Zero lengti bifunctiona Definition, UNIT-IV Characteris conjugation to DNA. UNIT-V Preparation Immunotos sizes of col	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act n – Chemical modification of nucleic acids – Biotin labeling of DNA – I BIOCONJUGATE APPLICATIONS a of hapten-carrier immunogen conjugates – Antibody modification kin conjugation techniques – Conjugation of protein to liposome – Preploidal gold – Preparation of colloidal gold-labeled proteins and their applor	ional cross-l GATION ivated enzy Enzyme con and conjug paration of o	mes juga gatic	fo fo ntion	9 r n 9 r
Zero lengti bifunctiona Definition, UNIT-IV Characteris conjugation to DNA. UNIT-V Preparation Immunotos sizes of col	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act n – Chemical modification of nucleic acids – Biotin labeling of DNA – I BIOCONJUGATE APPLICATIONS a of hapten-carrier immunogen conjugates – Antibody modification kin conjugation techniques – Conjugation of protein to liposome – Preploidal gold – Preparation of colloidal gold-labeled proteins and their apploration Itemes:	ional cross-l GATION ivated enzy Enzyme con and conjug paration of o lications.	mes juga gatic	fo fo ttion	9 7 7 1 9
Zero lengt bifunctiona Definition, UNIT-IV Characteris conjugation to DNA. UNIT-V Preparation Immunotos sizes of col Course Ou On comple	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act n – Chemical modification of nucleic acids – Biotin labeling of DNA – I BIOCONJUGATE APPLICATIONS a of hapten-carrier immunogen conjugates – Antibody modification kin conjugation techniques – Conjugation of protein to liposome – Preploidal gold – Preparation of colloidal gold-labeled proteins and their application contents: tion of the course, the students will be able to	ional cross-l GATION ivated enzy Enzyme con and conjug paration of o lications. ontact Hour	mes juga gatic	fo fo ttion	9 7 7 9 7 1 9 7 1 1
Zero lengt bifunctiona Definition, UNIT-IV Characteris conjugation to DNA. UNIT-V Preparation Immunotos sizes of col Course Ou On comple Compi	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act n – Chemical modification of nucleic acids – Biotin labeling of DNA – I BIOCONJUGATE APPLICATIONS a of hapten-carrier immunogen conjugates – Antibody modification kin conjugation techniques – Conjugation of protein to liposome – Preploidal gold – Preparation of colloidal gold-labeled proteins and their applor Contromes: tion of the course, the students will be able to le functional targets for the derivatization of proteins, polypeptide, and and	ional cross-l GATION ivated enzy Enzyme con and conjug paration of o lications. ontact Hour	mes juga gatic	fo fo ttion	9 r n 9 r
Zero lengti bifunctiona Definition, UNIT-IV Characteris conjugation to DNA. UNIT-V Preparation Immunotox sizes of col Course Ou On comple Compi Illustra	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act n – Chemical modification of nucleic acids – Biotin labeling of DNA – I BIOCONJUGATE APPLICATIONS a of hapten-carrier immunogen conjugates – Antibody modification kin conjugation techniques – Conjugation of protein to liposome – Preploidal gold – Preparation of colloidal gold-labeled proteins and their applor Contemes: tion of the course, the students will be able to the functional targets for the derivatization of proteins, polypeptide, and and act active functional groups and their derivatization process	ional cross-l GATION ivated enzy Enzyme con and conjug paration of d lications. ontact Hour mino acids	mes juga gatic	fo fo ttion	9 r n 9 r
Zero lengti bifunctiona Definition, UNIT-IV Characteris conjugation to DNA. UNIT-V Preparation Immunotox sizes of col Course Ou On comple Compi Illustra Demon	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides – al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act n – Chemical modification of nucleic acids – Biotin labeling of DNA – I BIOCONJUGATE APPLICATIONS a of hapten-carrier immunogen conjugates – Antibody modification kin conjugation techniques – Conjugation of protein to liposome – Preploidal gold – Preparation of colloidal gold-labeled proteins and their applor Contemes: tion of the course, the students will be able to le functional targets for the derivatization of proteins, polypeptide, and an ate active functional groups and their derivatization process nstrate and apply bioconjugate reagents for the preparation bioconjugates	ional cross-l GATION ivated enzy Enzyme con and conjug paration of d lications. ontact Hour mino acids	mes juga gatic	fo fo ttion	9 7 9 7 9 7 1 9 7 1 1
Zero lengti bifunctiona Definition, UNIT-IV Characteris conjugation to DNA. UNIT-V Preparation Immunotos sizes of col Course Ou On comple Compi Illustra Demon Perfor	BIOCONJUGATE REAGENTS h cross-linkers – Definition, examples, and reactions of carbodiimides al cross-linkers – Classification, structure, properties, and uses - Trifunct examples – Cleavable reagent systems. ENZYME AND NUCLEIC ACID MODIFICATION AND CONJU tics of common enzymes used for conjugation – Preparation of act n – Chemical modification of nucleic acids – Biotin labeling of DNA – I BIOCONJUGATE APPLICATIONS a of hapten-carrier immunogen conjugates – Antibody modification kin conjugation techniques – Conjugation of protein to liposome – Preploidal gold – Preparation of colloidal gold-labeled proteins and their applor Contemes: tion of the course, the students will be able to the functional targets for the derivatization of proteins, polypeptide, and and act active functional groups and their derivatization process	ional cross-l GATION ivated enzy Enzyme con and conjug paration of d lications. ontact Hour mino acids	mes juga gatic	fo fo ttion	9 7 9 7 9 7 1 9 7 1

Suggested Activities

Group Discussion

Suggested Evaluation Methods

• Quizzes

Class Presentation / Discussion

Text/Reference Books(s) / Web links:

1 Bioconjugate Techniques, G.T. Hermanson, Academic Press, 1999.

PO	PO1	PO2	PO3	PO4
CO				
BY23P18.1	2	2	3	2
BY23P18.2	2	2	3	2
BY23P18.3	2	2	3	2
BY23P18.4	2	2	3	2
BY23P18.5	2	2	3	2
Average	2	2	3	2

BY23P19ADVANCES IN MOLECULAR PATHOGENESISCategoryLT							С	
PE 3 0 0								
Cours	Course objectives:							
• To understand the key concepts of host defense against pathogens and microbial defense strategies								
•	To lear	n the techniques of molecular approach to control the microbial pathe	ogens					

UNIT I	VIRAL PATHOGENESIS	9
Various pa	thogen types and modes of entry – Viral dissemination in the host – Viral virulence – Inju	ury
induced by	virus – Host susceptibility of viral disease – Pattern of infection - Acute infection – Persist	ant
infection -	Latent infection – Slow infection – Methods for the study of pathogenesis – Foot and mo	uth
	us, Pestiviruses, Arteriviruses, Blue tongue virus and Animal herpes viruses	
UNIT-II	FUNGAL PATHOGENESIS	9
Innate hur	noral immunity to fungi – Acquired cellular immunity – Mucosal immunity – Intracellu	ılar
pathogene	sis of Histoplasma capsulatum- Facultative intracellular pathogen of Cryptococ	cus
	s- Fungal interaction with leukocytes – Fungal vaccine development – Host defense agai	
	sseminated Candidiasis- Study fungal virulence by using Genomics - Functional genor	
	s to fungal pathogenesis.	
1.1	BACTERIAL PATHOGENESIS	9
Epidemolo	gy and Clinicaldisease–Clinicalcourseandbasicimmunology– <i>Invitro</i> modelsofSalmonella	
.	– Antibiotic resistant Salmonella–Salmonella based vaccines – Shigellacellular mode	els o
	Influenza virus – Pathogenic <i>Escherichia coli – Vibrio cholerae</i> – Streptococcal dise	
	lus influenza infection.	
UNIT-IV		9
	PROTEINS	

Clinical importance of understanding host defense – Interference with cytokine and Chemokine function

structure of proteins – Class I and II MHC mediated antigen – Evasion from natural killer cells. UNIT-V MOLECULAR APPROACHES TO CONTROL 9 Classical approaches based on serotyping – Modern diagnosis based on highly conserved virulence factors, immune and DNA based techniques – New therapeutic strategies based on recent findings on molecular pathogenesis – Viral Vaccines – Immune modulators – New vaccine technology.	- impairment of host mediated killing of infected cells - inhibition of apoptosis - Immunologica							
Classical approaches based on serotyping – Modern diagnosis based on highly conserved virulence factors, immune and DNA based techniques – New therapeutic strategies based on recent findings on	structure of proteins – Class I and II MHC mediated antigen – Evasion from natural killer cells.							
factors, immune and DNA based techniques - New therapeutic strategies based on recent findings on	UNIT-V MOLECULAR APPROACHES TO CONTROL 9							
	Classical approaches based on serotyping - Modern diagnosis based on highly conserved virulence							
molecular pathogenesis Viral Vaccines Immune modulators New vaccine technology	factors, immune and DNA based techniques - New therapeutic strategies based on recent findings or							
molecular pathogenesis – vitar vacenes – minune modulators – New vacene technology.								
Total Contact Hours : 45		Total Contact Hours :	45					

Course outcomes:					
Upon completion of the course, the students will be able to					
Describe the basic feature of pathogenesis and how virus involved in disease progress.					
Predict host defense strategy against pathogens and fungi defense strategies.					
•	Analyze molecular mechanism of virulence and the ability to perform the cause of bacterial infections.				
•	Assess molecular mechanism of pathogen (virus) invasion of the host.				
٠	Evaluate different molecular techniques to control the mechanism of microbial pathogens.				

Text books:						
•	Groismen, E.A., "Principles of Bacterial Pathogenesis", Academic Press, 2001.					
•	Norkin, L.C., "Virology: Molecular Biology and Pathogenesis", ASM Press, 2009.					

Refer	Reference books:				
•	Gyles, C.L., Prescott, J.F., Songer, J.G. and Thoen C.O., "Pathogenesis of Bacterial Infections in				
	Animals", 3rd Edition, Wiley-Blackwell, 2004.				
•	Flint, J., Enquist, L.W., Krug, R.M., Racaniello, V.R. and Skalka, A.M., "Principles of Virology:				
	Molecular Biology, Pathogenesis and Control", American Society of Microbiology, 2003.				
•	Mettenleitter, T.C. and Sobrino, F,"Animal Viruses: Molecular Biology", Caister Academic Press,				
	2008.				

PO	PO1	PO2	PO3	PO4
CO				
BY23P19.1	3	3	3	2
BY23P19.2	3	3	3	3
BY23P19.3	3	3	2	3
BY23P19.4	3	3	3	2
BY23P19.5	3	3	3	3
Average	3	3	2.8	2.6

BY23P21 BIOREACTOR DESIGN AND ANALYSIS Category L T PE 3 0					
Course abias	•	PE	3 0	03	
Course object	ill enable the students				
	erstand and develop mathematical models for batch and CSTR biore	actors by ann	licatio	n of	
	te, biomass, and product mass balances	actors by app	ncano	1 01	
	w and apply the transport phenomena principles to bioreactors				
	asure and control the process variables involved in the process				
	ne the requirements needed for the design of reactor				
	lyse the scale up and scale down aspects of bioreactors			0	
	ASIC BIOREACTOR CONCEPTS	Cantinuaua		9	
	ration – Batch operation, semi-continuous and fed-batch operation, turbidostat – General balances – Tank-type biological reactors, b				
	- Continuous Fermentation with Biomass Recycle, Enzymatic Ta				
plug flow bior		11K5-111-501105,	Tubu	lai	
	ERATION AND AGITATION IN BIOPROCESS SYSTEMS			9	
	in agitated tanks – Balance between oxygen supply and demand, Co	orrelations w	ith k.a	-	
	ls– Power number, Power requirement for mixing in aerated and				
	d non-Newtonian liquids – Mixing time in agitated reactor, residen				
	, bubble damage, Methods of minimizing cell damage – Laminar				
-	preactors –Case studies for aeration and agitation				
	IOREACTOR INSTRUMENTATION AND CONTROL			9	
	easuring process variables -Temperature - Flow measurement and	control – lic	uids a	nd	
	re measurement and control, safety valves – Agitation – shaft po		•		
	and control - Microbial biomass - Measurement and control of Dis				
and outlet gas	analysis – pH measurement and control, automatic control systems.				
UNIT-IV S	ELECTION AND DESIGN OF BIOPROCESS EQUIPMENT			9	
	construction for bioprocess plants - Design considerations for m	•	•		
	ns processing equipments, selection, specification - Design of he				
	ed in bioprocess industries - Requirements, design and operati	on of Biore	actor 1	or	
	nt cell and animal cell- Case studies			1.	
	CALE UP AND SCALE DOWN OF BIOREACTORS			9	
	e on oxygenation, mixing, sterilization, pH, temperature, inoculum				
•	d supply – Bioreactor scale-up based on constant power consumption	*	-	0	
	tip speed (shear), mass transfer co-efficients – Scale up of dow				
	UB method), Chromatography (constant resolution etc.), Filtratio				
	gation (equivalent times etc.), Extractors (geometry based rules) Studies in Bioreactor Scaleup and Scale-down aspects	- Scale-dow	II Iela	eu	
aspects – Case		Contact Hou	rs :	45	
Course outoo				43	
Course outco					
	ion of the course, the students will be able to appropriate bioreactor configurations and operation modes based upo	n the nature	of hio		
• Select produc			01 010		
-	their knowledge of transport phenomena in designing field				
	research career or to work in the biotechnology industry with strong	foundation			
	te research lab and Industry; identify problems and seek practical sol			0	
		utions for far	ge scal	C	
	nentation of Biotechnology with process control expertise				
	bioreactor, scale up and troubleshooting the problems in bioreactors	1			
Suggested Ac					
• Pro	blem solving sessions				

Sugge	sted Evaluation Methods
•	Quizzes
•	Class Presentation / Discussion
•	Tutorial Problems
Text l	books:
1	E. M. T. El-Mansi, C. F. A. Bryce, Arnold L. Demain, A.R. Allman., "Fermentation
	Microbiology and Biotechnology", 3 rd edition (revised), Taylor & Francis, 2011.
2	Mann, U., "Principles of Chemical Reactors Analysis & Design: New tools for Industrial
	Chemical Reactor Operations ", Willey-VCH, 2009.
Refer	ence books/ Web links:
1	Impre, J.F.M.V., Vanrolleghem, P.A. and Iserentant, D.M., "Advanced Instrumentation, Data
	Interpretation and Control of Biotechnological Processes", Kluwer Academic Publishers, 2010.
2	Shuler, M.L. and Kargi, F., "Bioprocess Engineering: Basic Concepts", 2 nd Edition, Prentice Hall,
	2001.
3	
	and Process Design", Butterworth – Heinemann ltd., Elsevier, 2008.
4	https://archive.nptel.ac.in/courses/102/106/102106086/

PO	PO1	PO2	PO3	PO4
CO				
BY23P21.1	2	2	3	2
BY23P21.2	2	2	3	2
BY23P21.3	2	2	3	2
BY23P21.4	2	2	3	2
BY23P21.5	2	2	3	2
Average	2	2	3	2

BY23P22BIOPROCESS MODELING AND SIMULATIONCategoryLT						
		PE	3	0	0	3
Course object	tives:					
This course w	ill enable the students					
• To und	lerstand the basic concepts and principles in bioprocess modelling.					
• To kno	w about the different modelling aspects in bioprocess					
• To stue	dy in detail about the non-ideal behaviour of different types of bioread	ctors				
• To app	rehend the dynamic simulation of biochemical reactors					
• To use	the different software solution strategies for solving bioprocess parar	neters and m	ode	ls		
UNIT I C	ONCEPTS AND PRINCIPLES				9	
Introduction t	o modelling – Systematic approach to model building – Material a	and energy b	balaı	nce	_	
Classification	of models - General form of dynamic models dimensionless mo	odels – Con	serv	atic	on	
principles ther	modynamic principles of process systems.					
UNIT-II M	IODELLING APPROACHES FOR BIOLOGICAL SY	YSTEMS	AN	D	9	
P	ROCESSES					
	c models - Structured and Unstructured models - Compartmental me					
Product forma	tion -Genetically structured models-Stochastic model for thermal ster	rilization of t	he r	ned	iun	n
- Modelling for	or activated sludge process - Model for anaerobic digestion - Models	for lactic fer	mer	ıtati	on	
and antibiotic	production.					
UNIT-III M	IODELLING OF BIOREACTORS				9	
	n bioreactors - Tanks-in-series and Dispersion models - Modelling of					
order process	es - Analysis of packed bed and membrane bioreactors, Recor	nbinant Cell	Cu	ıltu	re	

Proces	sses – Plasmid stability in recombinant Cell Culture limits to over-expression- Case studies	
UNIT	-IV MONITORING OF BIOPROCESSES	9
	e data analysis for measurement of important physico-chemical and biochemical parameters –	
	eter estimation techniques for biochemical processes – Biochemical reactors-model equations –	
	y-state function – Dynamic behavior-Linear and non-linear estimation of the kinetic parameters,	
UNIT		9
	on strategies for lumped parameter models - Stiff differential equations - Solution methods f	
	value and boundary value problems - Euler's method - R-K method - shooting method - Find	
	ence methods -Software packages for simulation of bioprocesses - MATLAB-SIMULIN	К,
Creati	ng bioprocess models in MATLAB and Simulink environment Case studies	
	Total Contact Hours :	45
	se outcomes:	
Upon	completion of the course, the students will be able to	
٠	Apply the concepts and principles in bioprocess modelling.	
•	Apply different modelling aspects in bioprocess	
•	Study non-ideal behaviour of different types of bioreactors	
•	Simulate the dynamics of biochemical reactors	
•	Execute different software solution strategies for solving bioprocess parameters and models	
Sugge	sted Activities	
•	Problem solving sessions	
Sugge	sted Evaluation Methods	
•	Quizzes	
•	Class Presentation / Discussion	
•	Tutorial Problems	
Text k	books:	
1	Hangos, K.M. and Cameron, I.T., "Process Modelling and Simulation", 2001.	
2	Heinzle, E., Biwer, A.P. and Cooney, C.A.L., "Development of Sustainable Bioprocess: Modeli	ng",
	Wiley, 2007.	0 /
Refer	ence books/Web links:	
1	Boudreau, M.A. and McMillan, G.K.," New Directions in Bioprocess Modelling and Control", 1	ISA,
	2006.	
2	Bequette, B.W., "Process Control:Modeling, Design & Stimulating", Prentice Hall,2003.	
3	Bailey, J.A. and Ollis, D. F., Fundamentals of Biochemical Engineering", McGraw Hill-1986.	
4	https://archive.nptel.ac.in/courses/103/105/103105215/	

PO PO	PO1	PO2	PO3	PO4
CO				
BY23P22.1	3	2	3	1
BY23P22.2	3	2	3	2
BY23P22.3	3	2	3	2
BY23P22.4	3	2	3	2
BY23P22.5	3	2	3	3
Average	3	2	3	2

BY23P23	BIOSAFETY AND BIOETHICS	Category	L	Т	Р
		PE		0	0
Course object	ives:	112	5	U	U
	Il enable the students				
	w about the importance of safety in industries				
	n about the concept of containment				
	prehend the guidelines for biosafety				
	p the knowledge of bioethics				
U	art the awareness of bioethics among the public				
	TRODUCTION				9
	y in industries; Safety Programmes – components and realization;	Potential h	9791	·de	-
	ing conditions, toxic chemicals; safe handling		azai	us	
	OLOGICAL SAFETY CABINETS				9
	inment for Biohazards; Biosafety Levels; Biosafety Levels of Sp	ecific Micro	oro	ani	-
	Biosafety Levels for Infectious Agents and Infected Animals; Case s		5016	um	51115
	OSAFETY GUIDELINES	tuales			9
	f India; Definition of GMOs & LMOs; Roles of Institutional B	iosafety Co	mm	itte	-
	C etc. for GMO applications in food and agriculture; Environmenta				
	; Risk Assessment; Risk management and communication; Ov				
	d relevant International Agreements including; Cartegana Protocol.				
UNIT-IV B	OETHICS				9
Research ethic	s and Bioethics - Principles of research ethics; Ethical issues in clinic	al trials; Use	e of	hui	nan
in Scientific E	xperiments; Ethical committee system including a historical overview	v; the inform	ed o	con	sent
	ethical codes and conduct; Introduction to animal ethics; Animal ri				
in the advance	ment of medical technology; Introduction to laws and regulation rega	arding use of	f ani	ima	ls ir
research, ethic	al dimensions of IPR, technology transfer and other global biotech iss	ues			
UNIT-V B	OTECHNOLOGY AND SOCIAL RESPONSIBILITY				9
The legal, in	stitutional and socioeconomic impacts of biotechnology; biotec	hnology an	d s	oci	al
responsibility,	Public education to increase the awareness of bioethics with regar	d to genera	ting	ne	W
	for informed decision making, Ethical implications of biotechnol				
techniques. So		logical prod	ucts	ar	ıd
	cial and ethical implications of biological weapons-Case studies			ar	ıd
		logical prod		ar	nd 45
Course outco	Total C				
	Total C				
Upon complete	Total Control				
Upon complete • Adopt	Total Connes: on of the course, the students will be able to				
Upon completion•Adopt•Apply	Total Control nes: on of the course, the students will be able to the safety handling procedures the concept of biosafety levels				
UponComplete•Adopt•Apply•Outline	Total Contents on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety				
Upon complete Adopt Apply Outline Discuss	Total Commes: on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues				
Upon complete Adopt Apply Outline Discuss Compr	Total Commestion on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ethend the ethical implications of biotechnological products				
Upon complete Adopt Adopt Apply Outline Discuss Compr Suggested Act	Total Commes: on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ehend the ethical implications of biotechnological products ivities				
Upon complete ● Adopt ● Apply ● Outling ● Compr Suggested Action ● Indust	Total Commes: on of the course, the students will be able to he safety handling procedures he concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ehend the ethical implications of biotechnological products ivities ustrial visit				
Upon complete $A d opt$ <	Total Comes: on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ehend the ethical implications of biotechnological products ivities ustrial visit aluation Methods				
Upon consistent $A d opt$ <td>Total Commes: on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ethend the ethical implications of biotechnological products ivities astrial visit aluation Methods zzes</td> <th></th> <td></td> <td></td> <td></td>	Total Commes: on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ethend the ethical implications of biotechnological products ivities astrial visit aluation Methods zzes				
Upon complete $A dopt$ </td <td>Total Commes: on of the course, the students will be able to he safety handling procedures he concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ehend the ethical implications of biotechnological products ivities isstrial visit aluation Methods zzes ss Presentation / Discussion</td> <th></th> <td></td> <td></td> <td></td>	Total Commes: on of the course, the students will be able to he safety handling procedures he concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ehend the ethical implications of biotechnological products ivities isstrial visit aluation Methods zzes ss Presentation / Discussion				
Upon complete $A d o pt$ $D i s cuss$ $D i s cuss$ $A d o pt$ $B uggested A d opt$ $A d opt$ $B uggested A d opt$ $A d opt$	Total Commes: on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ethend the ethical implications of biotechnological products ivities astrial visit aluation Methods zzes				
Upon complete $A d opt$ <	Total Commes: on of the course, the students will be able to the safety handling procedures the concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ethend the ethical implications of biotechnological products sivities istrial visit aluation Methods zzes ss Presentation / Discussion ignment/case study	ontact Hour		:	45
Upon complete $A d opt$ $A d opt$ $A d opt$ $A op$	Total Comes: on of the course, the students will be able to he safety handling procedures he concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ehend the ethical implications of biotechnological products ivities istrial visit aluation Methods zzes ss Presentation / Discussion ignment/case study	ontact Hour		:	45
Upon consistent in the second	Total Comes: on of the course, the students will be able to he safety handling procedures he concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ehend the ethical implications of biotechnological products ivities isstrial visit aluation Methods zzes ss Presentation / Discussion ignment/case study	ontact Hour		:	45
Upon complete $A dopt$ $A dopt$ $A pply$ $OutlineOutlineOutlineComprComprSuggested ComprSuggested EvenQuiOutlineQuiOutline$	Total Comes: on of the course, the students will be able to he safety handling procedures he concept of biosafety levels the regulations and guidelines framed for biosafety s ethical issues ehend the ethical implications of biotechnological products ivities istrial visit aluation Methods zzes ss Presentation / Discussion ignment/case study	ontact Hour		:	45

3	Fleming, D.O. and Hunt, D.L., "Biological Safety: Principles and Practices", 4th Edition, American
	Society for Microbiology, 2006
Refer	ence books:
1	Matoren, Gary M. "The Clinical Research Process in the Pharmaceutical Industry." Marcel Dekker,
	1984.
2	Young, T., "Genetically Modified Organisms and Biosafety: A Background Paper for
	DecisionMakers and Others to Assist in Consideration of GMO Issues" 1st Edition, World
	Conservation Union, 2004.

PO	PO1	PO2	PO3	PO4
CO				
BY23P23.1	1	1	3	3
BY23P23.2	1	2	3	3
BY23P23.3	2	2	3	3
BY23P23.4	2	2	3	3
BY23P23.5	2	2	3	3
Average	1.6	1.8	3	3

BY23P24	BIOENERGY AND BIOFUELS	Category	L	Т	P	(
		PE	3	0	0	5
Course object	ives:					
This course wi	ll enable the students					
To gain	n knowledge about Physical and chemical pretreatment of lignocellul	osic biomass				
• To kno	w the engineering strains for ethanol production from variety of carbo	on sources to	im	prov	ved	
produc						
	cribe the Energetics of biodiesel production and effects on greenhous	e gas emissic	ns l	ssu	es	
	toxicity and sustainability					
	erstand the production of Biodiesel from microalgae					
	n the impacts of biofuels to the environment					
	VTRODUCTION				9	
	mass availability and its contents. Lignocellulose as a chemical resou		and	ł		
	eatment of lignocellulosic biomass. Cellulases and lignin degrading e	nzymes.				
<u> </u>	THANOL				9	
	sportation fuel and additive; bioethanol production from carbohydrat	es; engineeri	ng s	strai	ins	
^	duction from variety of carbon sources to improved productivity.					
	IODIESEL				9	
composition a effects on gree production.	d Production Processes; Vegetable oils and chemically processed nd production processes; Biodiesel economics; Energetics of biod enhouse gas emissions. Issues of ecotoxicity and sustainability with	liesel produc	tior	ar	nd	
UNIT-IV O	THER BIOFUELS				9	
	n microalgae and microbes; Biohydrogen production; bioelectricity					
	obutanol, Biopropanol, Bioglycerol -Principles, materials and	feedstocks	-	Pro	oces	38
	nd techniques-Advantages and Limitations.					
UNIT-V A	PPLICATIONS OF BIOFUEL				9	
	ls, Life cycle environmental impacts of biofuels and co pro- of biofuels – Energy security and supply, Economic sustainability of l		viro	nm	ent	a

	Total Contact Hours : 45							
Cours	se outcomes:							
Upon	completion of the course, the students will be able to							
•	Have knowledge about Physical and chemical pretreatment of lignocellulosic biomass							
•	Know the engineering strains for ethanol production from variety of carbon sources to improved productivity							
٠	Describe the Energetics of biodiesel production and effects on greenhouse gas emissions Issues of Eco toxicity and sustainability							
•	Replace fossil-based products with biodiesel							
•	Analyze the impacts of biofuels to the environment							
Sugge	sted Activities							
٠	Industrial visit							
Sugge	sted Evaluation Methods							
٠	Quizzes							
٠	Class Presentation / Discussion							
٠	Assignment/Case study							
Text b	pooks:							
1	Gupta. V. K. and Tuohy. M. G. Biofuel Technologies, Springer, 2013.							
2	Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011							
3	Volume 2, Springer, 2015.							
4	David M. Mousdale, "Biofuels: Biotechnology, Chemistry, and Sustainable Development "CRC Press, 2008.							
Refer	ence books/ Web links:							
1	Lee, Sunggyu; Shah, Y.T. "Biofuels and Bioenergy". CRC / Taylor & Francis, 2013.							
2	Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016.							
3	Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011.							
4	Samir K. Khanal, "Anaerobic Biotechnology for Bioenergy Production: Principles and Applications", Wiley-Blackwell Publishing, 2008.							
5								
6								

BY23P24.1	1	2	3	2
BY23P24.2	1	2	3	3
BY23P24.3	1	3	3	3
BY23P24.4	2	3	3	3
BY23P24.5	2	2	3	3
Average	1.4	2.4	3	2.8

	ADVANCES IN ENVIRONMENTAL BIOTECHNOLOGY	Category	L	Т	P (
		PE	3	0	0 3
Course object	ives:				
This course wi	ll enable the students				
To lear	n the concept of biodegradation				
To stuc	ly the various microbial processes for wastewater treatment				
• To und	erstand the biological treatment of wastewater				
To kno	w the concepts of air pollution				
• To app	ly the biotechnological process for green environment				
UNIT I B	IODEGRADATION				9
	dation of aliphatic and aromatic compounds - Metabolic degradation				
	gradation of aromatic compounds, halogenated organics and sulfona				
	d pesticides -Biodesulphurization of coal and oil - Biolea	ching, biopr	ecip	itat	ion,
bioaccumulati	on and biosorption of heavy metals.				
UNIT-II M	ICROBIAL METABOLISM IN WASTEWATER TREATMEN	Г			9
	n of organic compounds in natural and manmade ecosystems - Mass				
	naerobic reactions - Hydrolysis of biopolymers by aerobic and anae				
	gradation of carbohydrates, proteins, fats and lipids - Nitrogen rem				ion,
	enitrification, anaerobic ammonia oxidation – Enhanced biological pl	nosphorus ren	iova		_
	IOLOGICAL TREATMENT OF WASTEWATER				9
	ical characteristics of wastewater – Overview of aerobic and anaerobi				
	ign of aerobic and anaerobic system – Design of Activated sludge				
	r – Rotating biological contactors – Fluidized bed reactor – Design reactor (UASB) – Membrane bioreactors – Algal photosynthesis in v				
		OLID WA			9
	ANAGEMENT	OLID WA	511	1	,
	control and treatment strategies – Biotechnology for treating air po				
	control and treatment strategies – \mathbf{D} directinology for treating an \mathbf{D}	ollutants – Bio	ofilte	ers	and
Bioscrubbers	- Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes				
Bioscrubbers leather, hospit	- Biotechnology for the management of agricultural, plastic, dairy,			tex	
Bioscrubbers leather, hospit UNIT-V B	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES 	paper and pu	ılp,	tex	tile, 9
Bioscrubbers leather, hospit UNIT-V B Overview of	- Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes	paper and pu npost – Pro	ılp,	tex ior	tile, 9 1 of
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor 	paper and pu npost – Pro phydrogen, b	ilp, duct iodi	tex ior ese	tile, 9 1 of 21 –
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and value 	paper and pu npost – Pro phydrogen, b	ilp, duct iodi	tex ior ese	tile, 9 1 of 21 –
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. 	paper and pu npost – Pro phydrogen, b	ulp, duct iodi duct	tex ior ese	tile, 9 1 of 21 –
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. 	paper and pu npost – Pro phydrogen, b ie added pro-	ulp, duct iodi duct	tex ior ese	tile, 9 1 of 21 – 7 rom
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Course outco Upon complet	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total Comes: ion of the course, the students will be able to 	paper and pu npost – Pro phydrogen, b ie added pro-	ulp, duct iodi duct	tex ior ese	tile, 9 1 of 21 – 7 rom
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet • Identif	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation 	paper and pu npost – Pro phydrogen, b ie added pro-	ulp, duct iodi duct	tex ior ese	tile, 9 1 of 21 – 7 rom
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet • Identif • Recogn	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation hise the microbial processes for the treatment of wastewater 	paper and pu npost – Pro phydrogen, b ie added pro-	ulp, duct iodi duct	tex ior ese	tile, 9 1 of 21 – 7 rom
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet • Identif • Recogn	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation 	paper and pu npost – Pro phydrogen, b ie added pro-	ulp, duct iodi duct	tex ior ese	tile, 9 1 of 21 – 7 rom
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet • Identif • Recogn • Develor	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation hise the microbial processes for the treatment of wastewater 	paper and pu npost – Pro phydrogen, b ie added pro-	ulp, duct iodi duct	tex ior ese	tile, 9 1 of 21 – 7 rom
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet • Identif • Recogn • Develo • Integra	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation nise the microbial processes for the treatment of wastewater p the various biological processes for wastewater treatment 	paper and punpost – Prophydrogen, build added prophydrogen	duct iodi duct s	tex ior ese s f	tile, 9 1 of 1 - 7 7 7 45
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet Identif Recogn Develo Integra Apply	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation nise the microbial processes for the treatment of wastewater p the various biological processes for wastewater treatment te the biotechnology concepts for the control of air pollution 	paper and punpost – Prophydrogen, build added prophydrogen	duct iodi duct s	tex ior ese s f	tile, 9 1 of 1 - 7 7 7 45
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet Identif Recogn Develo Integra Apply	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation nise the microbial processes for the treatment of wastewater p the various biological processes for wastewater treatment te the biotechnology concepts for the control of air pollution the knowledge for the development of bioproducts from renewable so mological process for a clean and green environment 	paper and punpost – Prophydrogen, build added prophydrogen	duct iodi duct s	tex ior ese s f	tile, 9 1 of 1 - 7 0 1 45
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet • Identif • Recogn • Develo • Integra • Apply biotech Suggested Ac	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation nise the microbial processes for the treatment of wastewater p the various biological processes for wastewater treatment te the biotechnology concepts for the control of air pollution the knowledge for the development of bioproducts from renewable so mological process for a clean and green environment 	paper and punpost – Prophydrogen, build added prophydrogen	duct iodi duct s	tex ior ese s f	tile, 9 1 of 1 - 7 0 1 45
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet Identif Recogn Identif Apply biotech Suggested Ac Pro	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation nise the microbial processes for the treatment of wastewater p the various biological processes for wastewater treatment te the biotechnology concepts for the control of air pollution the knowledge for the development of bioproducts from renewable so mological process for a clean and green environment tivities 	paper and punpost – Prophydrogen, build added prophydrogen	duct iodi duct s	tex ior ese s f	tile, 9 1 of 1 - 7 7 7 45
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet • Identif • Recogn • Develor • Integra • Apply biotech Suggested Ev	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total C mes: ion of the course, the students will be able to y the importance of biodegradation hise the microbial processes for the treatment of wastewater p the various biological processes for wastewater treatment te the biotechnology concepts for the control of air pollution the knowledge for the development of bioproducts from renewable scanological process for a clean and green environment tivities 	paper and punpost – Prophydrogen, build added prophydrogen	duct iodi duct s	tex ior ese s f	tile, 9 1 of 1 - 7 0 1 45
Bioscrubbers leather, hospit UNIT-V B Overview of biofertilizers Production of renewable sou Upon complet Ourse outcor Upon complet Identif Recogn Develor Develor Suggested Ac Pro Suggested Ev Qui	 Biotechnology for the management of agricultural, plastic, dairy, al and pharmaceutical industrial wastes IOPRODUCTS FROM RENEWABLE SOURCES renewable sources – Production of biocompost and vermicor and biopesticides – Production of biomethane, bioethanol, bio bioplastics and biopolymers – Bioelectricity generation and valurces. Total Comes: ion of the course, the students will be able to y the importance of biodegradation nise the microbial processes for the treatment of wastewater p the various biological processes for wastewater treatment te the biotechnology concepts for the control of air pollution the knowledge for the development of bioproducts from renewable so mological process for a clean and green environment tivities blem solving sessions aluation Methods 	paper and punpost – Prophydrogen, build added prophydrogen	duct iodi duct s	tex ior ese s f	tile, 9 1 of 1 - 7 0 1 45

•	Assignment/Case study
Text k	books:
1	Jordening, H.J. and Winter, J., "Environmental Biotechnology: Concepts and Application", Wiley- VCH Verlag GmbH & Co., 2005.
2	Evans, G.G. and Furlong, J., Environmental Biotechnology: Theory and Application, 2nd Edition, John Wiley & Sons, 2011.
3	Alan .H. Scragg., Environmental Biotechnology, 2 nd Edition, Longman publisher., 2005.
Refer	ence books:
1	Henze, M., Harremoes, P., Jansen, J.C. and Arvin, E., "Wastewater Treatment: Biological and
	Chemical Processes", 2 nd Edition, Springer, 2013.
2	Zarook, S. and Ajay, S., Biotechnology for Odor and Air Pollution Control, Springer, 2005.
3	Wong J.W-C., Tyagi R.D., and Pandey. A., "Current Developments in Biotechnology and
	Bioengineering Solid waste" Elsevier, 2016.
4	https://onlinecourses.nptel.ac.in/noc21_bt41/preview

PO CO	PO1	PO2	PO3	PO4
BY23P25.1	2	3	3	3
BY23P25.2	2	3	3	3
BY23P25.3	2	3	3	3
BY23P25.4	2	3	3	3
BY23P25.5	2	3	3	3
Average	2	3	3	3

BY23P31	TISSUE ENGINEERING	Category	L	T	P	C
		PE	3	0	0	3
Objectives:						
	knowledge on the type of stem cells and growth factors involved in tiss ciated ethical issues.	sue repairing	and	ste	m	
• To study	the construction of biomaterials and measurement of its physical and a	mechanical p	rop	ertie	es.	
• To be fa	miliar with the stem cell interaction with biopolymer and microfluidic	s system				
To acqu	re knowledge on clinical applications of tissue engineering in drug del	ivery using				
biopolymers.						
· ·	re synthesis of potential scaffolds for tissue engineering and organ bio	printing in				
U	tive medicine.					
	FUNDAMENTAL OF TISSUE ENGINEERING				11	
	sue grade organization in living system - Cell cycle – Stem cells – T					
	hymal stem cells (MSC), adult stem cells, markers for detection of ster	-				
	stem cells formation, cell adhesion - Extracellular matrix - Glycar					
	stin, extracellular matrix functions - Cell Signalling - Types, cell					
	-In vitro cell viability and cell proliferation studies - Risks with th	e use of ster	n ce	ells	_	_
<u> </u>	of stem cells in tissue engineering and Scope of tissue engineering.					
	BIOMATERIALS FOR TISSUE ENGINEERING				7	
-	of biomaterials and their types - Measurement of mechanical pro-	-				
	Measurement of protein adsorption – Direct and indirect methods, fibrinogen adsorption – Displaceable and					
·	able - Changes in protein conformation upon adsorption - Vron		prin	cipl	e t	0
• • • •	aximize the amount of fibrinogen adsorption. Devices for tissue engineering transplant cells					

UN	IT-III	DELIVERY OF MOLECULAR AGENTS AND CELL INTER	ACTIONS WITH		9
		POLYMERS			
Mo	lecular	agents in tissue engineering - Controlled released of agents - Futur	e applications of co	ontro	olled
		Microfluidic systems - Cell interactions - Factors influencing cell interactions		eract	tions
		er surfaces and suspension - Cell interactions with two and three-dim	nensional polymer.		
		POLYMERS FOR CONTROLLED DRUG DELIVERY			7
		f bio polymer - Natural and synthetic biodegradable polymers - Stru			
-	•	Biodegradable polymers in drug delivery –Polymeric drug delivery s	ystems – Applicatio	ns c	of
-	-	ble polymers.			
UN	IT-V	SCAFFOLDS ENGINEERED TISSUES AND ORGAN BIOPR	INTING		11
Sca	ffolds-s	ources and processing methods, Assessment of scaffolds	nechanical propert	ies	and
bio	degrada	pility - Biocompatibility and host response - Application of scaffe	olds in tissue engine	eeri	ng –
Eng	gineered	tissues - Skin regeneration - Nerve regeneration, Liver, cartilage,	bone and heart .Bio	prii	nting
-C	lassifica	tion -Inkjet, extrusion and Laser Bioprinting, Types of Bioinks, '	Tissue designing st	trate	egies
(21),3D,4D	and Insitu organ printing.			
			Total Contact	:	45
			Hours		
		tcomes:			
On		ion of the course, the students will be able to			
		y the components of tissue architecture, application of stem cells in ti	ssue engineering an	d	
•		ted ethical issues.			
•		e the construction of biomaterials and measurement of its physical an		rties	s.
•		arize in the stem cell interaction with biopolymer and microfluidics sy	/stem.		
•		elivery mechanisms using biopolymers.			
•		the role of tissue engineering and organ bioprinting in regenerative n	nedicine.		
Su		Activities			
•		art presentation for various tissue implants preparation protocols			
Su		Evaluation Methods			
٠	Quizze	S			
•		r presentation based on case study			
٠	Debate	Discussion			
Te	xt Book				
1		N. and Suscheck, C.V., "Tissue Engineering: From Lab to Clinic" Sp	pringer,2010		
2	Saltzm	an, W.M., "Tissue Engineering", Oxford University Press,2004.			
3	-	U.; Meyer, Th.; Handschel, J.; Wiesmann H.P. Fundamentals of Tis	sue Engineering and	d	
3	Regene	erative Medicine.2009.			
Re	ference	Books(s) / Web links:			
1		n, B., Hubbell, J.A., Plonsey, R. and Bronzino, J.D., "Tissue Engineer		003	•
2		n, B.O. and Bhatia, S., "Tissue Engineering", Pearson Prentice Hall, 2			
3		r, T., Lee, K. and Kaplan, D., "Advances in Biochemical Engineering	g / Biotechnology –	Tis	sue
3		ering I", Volume 102, Springer-Verlag Berlin Heidelberg, 2006.			
4	https://	onlinecourses.nptel.ac.in/noc23_bt49/unit?unit=82&lesson=83			

PO	PO1	PO2	PO3	PO4
со				
BY23P31.1	2	2	3	2
BY23P31.2	3	2	3	2
BY23P31.3	2	2	3	2
BY23P31.4	2	2	3	2
BY23P31.5	3	2	3	3
Average	2	2	3	2

BY	23P32	STEM CELL TECHNOLOGY	Category	L	Т	Р	(
			PE	3	0	0	<i>(</i> ,,
Obje	ctives:			11			
• T	'o learn ba	sics of stem cells					
• T	'o underst	and the different types stem cells					
• T	o learn th	e multipotential of stem cells					
• T	'o know tł	e clinical importance of stem cells					
• T	'o underst	and the ethical concerns, and applications of stem cells.					
UNIT	I-I ST	EM CELLS BASICS AND CONCEPTS				9	
Introd	luction to	stem cells, Definition of Stem cells, Basics and concepts of s	tem cells- p	ote	ncy	ar	nd
		m cells. Culture of stem cell and ethical concerns of stem cells. S					
differ	entiation a	nd their role.					
UNIT	T-II SO	URCES AND TYPS OF STEM CELLS				9	
Sourc	es of ster	n cells- Embryonic, cord blood, bone marrow, peripheral blood.	Embryonic	ste	m	cell	s,
isolati	ion and ch	aracterization. Adult stem cells- Skeletal muscle stem cells, Intestin	al stem cells	, M	am	mai	ry
stem o	cells, Corr	heal stem cells, Hair follicle stem cells. Neuronal stem cells. Induced	l pluripotenc	y st	em	cel	15
and li	imitations	Factors influencing adult and embryonic stem cells. Cancer ste	m cells – is	sola	tion	ar	10
charad	cterizatior						
UNIT	C-III BC	NE MARROW STEM CELLS				9	
		stem cells- biological properties, immunogenic, isolation, ch					
expan	sion. Reg	ulations of mesenchymal stem cells. Properties of Hematopoiet	ic stem cell	s, i	sola	tio	n,
charad	cterizatior	and regulations. Hematopoietic stem cells differentiation pathways.					
UNIT	T-IV ST	EM CELL THERAPEUTICS AND APPLICATIONS				9	
		m cells in neurodegenerative diseases- Parkinson disease, Alzheir					
		cular dystrophies. Tissue engineering- Triad, biomaterials types,					
		edicine. Applications of stem cells in cancer treatment. Bone mar	row transpla	inta	tion	an	ıd
limita							
UNIT		FTEY REGULATIONS AND EHTICS OF STEM CELLS				9	
•	•	ons of stem cells. Ethical issues of stem cells usage in clinical.	Creation of	gei	neti	call	ly
reprog	grammed	stem cells and their role in stem cell technology.					
			ontact Hour	S	:	4	5
	se Outcor						
		of the course, the students will be able to					
		sic concepts of stem cell technology					
		e types of sources and types of stem cells					
		amental and gain knowledge about bone marrow stem cells					
• Ic		therapeutic potentials of stem cells					
• In	A	hical concerns of stem cells usage					
• In Sugge	ested Acti	hical concerns of stem cells usage					

Su	ggested Evaluation Methods
•	Quizzes
•	Class Presentation / Discussion
Te	xt/Reference Books(s) / Web links:
1	CS. Potten. Stem cells - Elsevier: 1997.
2	Robert Paul Lanza, Essentials of stem cell biology, 2006.
3	Clive Svendensen and Allison D. Ebert, Encyclopedia of stem cell research, volume 1.
4	Stem cell basics and application" Ed. By K. D. Deb and S. M. Totey, Tata McGraw Hill Pvt. Ltd, 2011.
5	Berger A.C. Beachy S.H and Olson S .Stem Cells Therapies, National Academic press, Washington
3	DC, USA 2014.
6	Daniel R. Marshak, —Stem cell biology cold spring laboratory press.
7	Robert Lanza,Essentials of stem cell biology, Elsevier, 2001
8	Stem cell therapy for organ failures- Edited by S. Indumathi, Springer Verlag, 2015.

PO	PO1	PO2	PO3	PO4
CO				
BY23P32.1	3	2	2	3
BY23P32.2	3	2	2	3
BY23P32.3	3	2	2	3
BY23P32.4	3	2	2	3
BY23P32.5	3	2	2	3
Average	3	2	2	3

BY23P33		VACCINOLOGY	Category	L	T	P	C
		PE		3	0	0	3
Cours	se object	ives:					
•	To pro	To provide knowledge on conventional and recent technologies of vaccine production.					
•	To pro	To provide immunological background on vaccine production.					
•	To des	To describe the immune response to vaccines.					
•	To imp	To impart the regulatory requirements for vaccine formulations.					
•	To arti	To articulate the modern methods for vaccine development					

UNIT I	INTRODUCTION TO VACCINE	9
Historical	aspects of vaccination, vaccine are a tool for prevention of infectious diseases, human vacci	nes
manuf	acturer and licensed vaccines. Over view of bacterial and viral vaccines and their important	ce.
Epider	niology and pathophysiology of vaccine preventable diseases with special emphasis	son
Diphth	eria, Tetanus and Pertussis.	
UNIT-II	VACCINE RSEARCH	9
Fundame	ntal aspect of rational vaccine design. Antigen identification, T-Cell expression cloning	for
identifica	tion of vaccine targets for intracellular pathogens, Fundamentals of Immune recognition	on,
implicati	ons for manipulating the T-Cell repertoire, Targeting Macrophage; a rational approach	for
Vaccine	levelopment, Cellular basis of T- Cell memory, Rational design of new vectors.	
UNIT-II	I VACCINE PRODUCTION	9
Seed stra	in characterization for vaccine production. Adjuvants: types, mechanisms and curr	ent
achiev	ements. New vaccines development and prominent delivery systems. Production of inactiva	ted

response(s) to vaccines. Immunization strategies for disease control and eradication. UNIT-IV REGULATROTY ASPECTS 9 Overview of national and international regulatory requirements for vaccine approval and guidance for production, quality control and Current Good Manufacturing Practices (cGMP) implementation. Importance and implementation of cGMP in the production of safe and efficacious biological products/vaccines, and clean-in-place(CIP)cycle development for process equipment. 9 UNIT-V QUALITY CONTROL 9 Consistency approach for vaccine quality improvement. Toxicity and potency evaluation of bacterial and viral vaccines; overview of currently approved methods and alternative methods under development. 9	bacterial vaccines with respect to Diphtheria, Tetanus and Whole cell pertussis (DTwP).Immun	ne			
Overview of national and international regulatory requirements for vaccine approval and guidance for production, quality control and Current Good Manufacturing Practices (cGMP) implementation. Importance and implementation of cGMP in the production of safe and efficacious biological products/vaccines, and clean-in-place(CIP)cycle development for process equipment. UNIT-V QUALITY CONTROL 9 Consistency approach for vaccine quality improvement. Toxicity and potency evaluation of bacterial and	response(s) to vaccines. Immunization strategies for disease control and eradication.				
production, quality control and Current Good Manufacturing Practices (cGMP) implementation. Importance and implementation of cGMP in the production of safe and efficacious biological products/vaccines, and clean-in-place(CIP)cycle development for process equipment. UNIT-V QUALITY CONTROL Consistency approach for vaccine quality improvement. Toxicity and potency evaluation of bacterial and	UNIT-IV REGULATROTY ASPECTS	9			
Consistency approach for vaccine quality improvement. Toxicity and potency evaluation of bacterial and	production, quality control and Current Good Manufacturing Practices (cGMP) implementation Importance and implementation of cGMP in the production of safe and efficacious biological	n.			
	UNIT-V QUALITY CONTROL	9			
	Consistency approach for vaccine quality improvement. Toxicity and potency evaluation of bacterial and viral vaccines: overview of currently approved methods and alternative methods under development.				
Total Contact Hours : 45	Total Contact Hours :	45			

Cours	Course outcomes:			
Upon	Upon completion of the course, the students will be able to			
•	Describe the role of vaccine in prevention and eradication of infectious diseases.			
•	Explain the role of adjuvant in vaccines production.			
•	Demonstrate the immunization strategies for disease control			
•	Articluate the international regulatory requirements for vaccine approval.			
•	Comprehend adverse effect of vaccination			

Text b	Text books:					
•	Ronald W. Ellis, "New Vaccine Technologies", Landes Bioscience, 2001.					
•	Cheryl Barton, "Advances in Vaccine Technology and Delivery", Espicom Business Intelligence, 2009.					
•	Male, David et al., "Immunology", 7th Edition, Mosby Publication, 2007.					

Refer	Reference books:					
Coico, R. etal., "Immunology: A Short Course", 5th Edition, Wiley – Liss, 2003.						
•	Parham, Peter "The Immune System", 2nd Edition, Garland Science, 2005.					
•	Abbas, A.K. etal., "The Cellular and Molecular Immunology", 6th Edition, Sanders / Elsevier, 2007.					
•	Weir, D.M. and Stewart, John "Immunology", 8th Edition, Churchill Pvt. Ltd., 2000					

PO CO	PO1	PO2	PO3	PO4
BY23P33.1	2	2	3	3
BY23P33.2	3	2	3	3
BY23P33.3	2	2	3	3
BY23P33.4	3	2	3	3
BY23P33.5	3	2	3	3
Average	2.6	2	3	3

I	3Y23P34	DATA MINING AND MACHINE LEARNING TECHNIQUES FOR BIOINFORMATICS	Category	L	Т	Р	C
			PE	3	0	0	3
Ob	jectives:						
•	To underst	and the importance of data mining procedures for bioinformatics anal	lysis.				
٠	To learn di	ifferent algorithms available for machine learning.	-				
	To familia	rize with different data formats available in industry.					
٠	To model	different types of biological data.					
	To apply N	AL on available bioinformatics data.					
UN	NIT-I IN	TRODUCTION TO BIOINFORMATICS DATA MINING				9	
Mi	ning chemic	al compounds – protein localization – gene mapping – Modeling sec	quence data	- s	equ	end	ce
alig	gnment – str	ucture comparison – phyloinformatics – Data cleaning – Data transfor	rmation - Da	ita f	orn	nats	5.
UN	NIT-II RI	EGRESSION MODELS				9	
Lir	near classific	cation – univariate linear regression - bivariate regression – multivar	riate linear i	egr	essi	on	_
reg	ularized re	gression – Logistic regression. Naive Baye's – Discriminant F	Functions -I	Prob	abi	list	ic
Ge	nerative Mo	dels – Probabilistic Discriminative Models – Bayesian Logistic Regres	ssion.				
		REE MODELS				9	
		: Training and Visualizing a Decision Tree - Making Predictio			<u> </u>		
		The CART Training Algorithm - Computational Complexity - Gini		r E	ntro	ру	-
		ods: Bagging - Boosting-Boosting AdaBoost - Gradient Boosting - X	Xg boost.				
		JPERVISED LEARNING				9	
Pet	contront n	nultilayer neural networks – back propagation - learning neural netwo	1				
vec	ctor machin	es: – soft margin SVM – going beyond linearity – generalizati					
vec reg	ctor machin gularization -	es: – soft margin SVM – going beyond linearity – generalizati - validation.				ng	
vec reg UN	ctor machin gularization - NT-V UN	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING	ion and ov	er f	fitti	ng 9	
vec reg UN Ch	ctor machin gularization - NT-V UN ustering: Nea	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime	ion and ov ensionality F	er f	fitti	ng 9 on:	_
vec reg UN Ch Lir	ctor machin gularization - NIT-V UN ustering: Nea near Discrim	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING	ion and ov ensionality F	er f	fitti	ng 9 on:	_
vec reg UN Ch Lir	ctor machin gularization - NT-V UN ustering: Nea	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	_ nt
vec reg UN Ch Lir	ctor machin gularization - NIT-V UN ustering: Nea near Discrim	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In	ion and ov ensionality F	er f Redu Cor	fitti	ng 9 on:	_ nt
vec reg UN Ch Lir An	ctor machin gularization - NT-V UN ustering: Nea near Discrim alysis.	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – I Co	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An	tor machin gularization - NT-V U ustering: Nea hear Discrim alysis.	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes:	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An	tor machin gularization - NT-V U ustering: Nea ear Discrim alysis. urse Outcon completion	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An	tor machin gularization - NT-V UI ustering: Nea alysis. urse Outco completion Download	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format.	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An	tor machin gularization - NT-V U ustering: Nea ear Discrim alysis. urse Outco completion Download Choose the	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data.	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An Co On On	tor machin gularization - IT-V UN Istering: Nea ear Discrim alysis. urse Outcon completion Download Choose the Clean and	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling.	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec regg Ch Lir An On On On On	tor machin gularization - NT-V UN ustering: Nea ear Discrim alysis. urse Outcon completion Download Choose the Clean and Fine tune a	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters.	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Ch Lir An On On On On On	tor machin gularization - NT-V UI ustering: Nea ear Discrim alysis. urse Outco completion Download Choose the Clean and Fine tune a Apply ML	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems.	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An On On On On On On Su	tor machin gularization - NT-V UN ustering: Nea near Discrimalysis. urse Outcon completion Download Choose the Clean and Fine tune a Apply ML ggested Act	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An On On On On On Su Su	tor machin gularization - IT-V UI istering: Nea ear Discrim alysis. urse Outcor completion Download Choose the Clean and Fine tune a Apply ML ggested Act Problem so	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities blving sessions using google colab	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An On On On On On On On Su Su	tor machin gularization - NT-V UI istering: Nea ear Discrim alysis. urse Outco completion Download Choose the Clean and Fine tune a Apply ML ggested Act Problem so ggested Eva	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Clu Lir An On On On On On Su Su Su	tor machin gularization - NT-V UI ustering: Nea ear Discrimalysis. urse Outcon completion Download Choose the Clean and Fine tune a Apply ML ggested Act Problem so ggested Eva Quizzes	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities blving sessions using google colab luation Methods	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An On On On On On Su Su Su	tor machin gularization - IT-V UI istering: Nea ear Discrim alysis. urse Outcor completion Download Choose the Clean and Fine tune a Apply ML ggested Act Problem so ggested Eva Quizzes Class Press	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities blving sessions using google colab fluation Methods entation / Discussion	ion and ov ensionality F independent	er f Redu Cor	fitti	ng 9 on: one	
vec reg UN Chu Lir An On On On On On On On Su Su Su Te	tor machin gularization - IT-V UI istering: Nea ear Discrim alysis. urse Outcor completion Download Choose the Clean and Fine tune a Apply ML ggested Act Problem so ggested Eva Quizzes Class Preso	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – If Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities blving sessions using google colab luation Methods entation / Discussion e Books(s) / Web links:	ion and ov ensionality F independent ontact Hour	er f		9 0 n: 0 ne 4: 	
vec reg UN Chu Lir An On On On On On On On On On On On On On	tor machin ularization NT-V UI ustering: Near alysis. urse Outcon completion Download Choose the Clean and Fine tune a Apply ML ggested Act Problem so ggested Eva Quizzes Class Press xt/Referenc Tan, Stein	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities blving sessions using google colab aluation Methods entation / Discussion e Books(s) / Web links: bach and Vipin Kumar, Introduction to Data Mining, Pearson Education	ion and ov ensionality F independent ontact Hour ontact Hour	er f		9 0 n: 0 ne 4: 	
vec reg UN Chu Lir An On On On On On On On Su Su Su Te	tor machin ularization NT-V UI ustering: Near near Discrimalysis. urse Outcomage of the second s	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – Ir Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities olving sessions using google colab aluation Methods entation / Discussion e Books(s) / Web links: bach and Vipin Kumar, Introduction to Data Mining, Pearson Education hammed, Hannu, Dennis, Data Mining in Bioinformatics, Springer. 20	ion and ov ensionality F independent ontact Hour ontact Hour ontact Hour	er 1 Redu Con S On, on,		9 0 n: 0 ne 4: 	
vec reg UN Clu Lir An On On On On On On Su Su Su Su Co Co On On On On Co Co On On Co Co Co Co Co Co Co Co Co Co Co Co Co	tor machin gularization - NT-V UN istering: Nea near Discrim alysis. urse Outcon completion Download Choose the Clean and Fine tune a Apply ML gested Act Problem so ggested Eva Quizzes Class Preso xt/Reference Tan, Stein Jason, Mol Shastry, K	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – Ir Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities blving sessions using google colab duation Methods entation / Discussion e Books(s) / Web links: bach and Vipin Kumar, Introduction to Data Mining, Pearson Education hammed, Hannu, Dennis, Data Mining in Bioinformatics, Springer. 20 A., Sanjay, H.A, Machine Learning for Bioinformatics. In: Srinivasa,	ion and ov ensionality F independent ontact Hour ontact Hour ontact Hour ontact Hour ontact Hour ontact Hour ontact Hour ontact Hour ontact Hour ontact Hour	er f		9 0 n: 0 ne 4: 	
vec reg UN Chu Lir An On On On On On On On On On On On On On	tor machin gularization - IT-V UI istering: Nea ear Discrim alysis. urse Outco completion Download Choose the Clean and Fine tune a Apply ML ggested Act Problem so ggested Eva Quizzes Class Preso xt/Referenc Tan, Stein Jason, Mol Shastry, K Manisekha	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – In Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities olving sessions using google colab aluation Methods entation / Discussion e Books(s) / Web links: bach and Vipin Kumar, Introduction to Data Mining, Pearson Educati hammed, Hannu, Dennis, Data Mining in Bioinformatics, Springer. 20 A., Sanjay, H.A, Machine Learning for Bioinformatics. In: Srinivasa, r, S. (eds) Statistical Modelling and Machine Learning Principles for	ion and ov ensionality F independent ontact Hour on, 2 nd Editi 005. , K., Siddesl Bioinforma	er f		9 0 n: 0 ne 4: 	
vec reg UN Clu Lir An On On On On On On Su Su Su Su Co Co On On On Co On On Co Co On Co Co Co On Co Co Co Co Co Co Co Co Co Co Co Co Co	tor machin gularization - IT-V UI istering: Nea near Discrim alysis. urse Outco completion Download Choose the Clean and Fine tune a Apply ML ggested Act Problem so ggested Eva Quizzes Class Press xt/Referenc Tan, Stein Jason, Mol Shastry, K Manisekha Technique	es: – soft margin SVM – going beyond linearity – generalizati - validation. NSUPERVISED LEARNING arest neighbor models – K-means – clustering around Medoids. Dime inant Analysis – Principal Component Analysis – Factor Analysis – Ir Co mes: of the course, the students will be able to bioinformatics data in proper usable format. e right ML algorithm to use with the data. transform the data and make it suitable for modelling. a machine learning model depending on validation parameters. concept to varied biological problems. ivities blving sessions using google colab duation Methods entation / Discussion e Books(s) / Web links: bach and Vipin Kumar, Introduction to Data Mining, Pearson Education hammed, Hannu, Dennis, Data Mining in Bioinformatics, Springer. 20 A., Sanjay, H.A, Machine Learning for Bioinformatics. In: Srinivasa,	ion and ov ensionality F independent ontact Hour on, 2 nd Editi 005. , K., Siddesl Bioinforma	er f		9 0 n: 0 ne 4: 	

M.Tech. Biotechnology, Department of BIOTECHNOLOGY, REC

РО	PO1	PO2	PO3	PO4
CO				
BY23P34.1	3	2	3	3
BY23P34.2	3	2	3	3
BY23P34.3	3	2	3	3
BY23P34.4	3	2	3	3
BY23P34.5	3	2	3	3
Average	3	2	3	3